当前位置:文档之家› 小学六年级奥数基础知识——数论

小学六年级奥数基础知识——数论

小学六年级奥数基础知识——数论
小学六年级奥数基础知识——数论

行程问题

基本行程问题平均速度火车过桥流水行船接送问题电梯行程

数论问题

奇偶分析数的整除约数倍数进位制余数问题完全平方数

几何问题

小学几何五大模型勾股定理与弦图巧求周长立体图形的体积

计数问题

加法原理乘法原理容斥原理排列组合枚举法归纳法

应用题

鸡兔同笼问题年龄问题盈亏问题牛吃草问题工程问题浓度问题

计算问题

分数列项与整数列项繁分数的计算数学计算公式换元法找规律

其他

数阵图与数字谜操作与策略抽屉原理逻辑推理不定方程染色问题

小学六年级奥数基础知识——数论一

一质数和合数

(1)一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

(2)自然数除0和1外,按约数的个数分为质数和合数两类。

任何一个合数都可以写成几个质数相乘的形式。

要特别记住:0和1不是质数,也不是合数。

(3)最小的质数是2 ,2是唯一的偶质数,其他质数都为奇数;

最小的合数是4。

(4)质数是一个数,是含有两个约数的自然数。

互质

是指两个数,是公约数只有一的两个数,组成互质数的两个数可能是两个质数(3和5),可能是一个质数和一个合数(3和4),可能是两个合数(4和9)或1与另一个自然数。

(5)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

(6)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.

注意:两个质数中差为1的只有3-2 ;除2外,任何两个质数的差都是偶数。

二整除性

(1)概念

一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得

的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b 能整除a)。记作b|a.否则,称为a不能被b整除,(或b不能整除a)。如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

(2)性质

性质1:(整除的加减性)如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。也就是说,

被除数加上或减去一些除数的倍数不影响除数对它的整除性。

性质2:如果b与c的积能整除a,那么b与c都能整除a.

即:如果bc|a,那么b|a,c|a。

性质3:(整除的互质可积性)如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

注意:(b,c)=1这个条件,如果没这个条件,结论就不一定能成立。

譬如:4|28,14|28,4×14=56不能整除24。

性质4:(整除的传递性)如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

(3)数的整除特征

①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.

②能被5整除的数的特征:个位是0或5。做题时常常把这里当作突破口。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

判断能被3(或9)整除的数还可以用“弃3(或9)法”:

例如:8351746能被9整除么?

解:8+1=9,3+6=9,5+4=9,在数字中只剩7,7不是9的倍数,所以8351746不能被9整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和

的差(大减小)是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组

成的数之差(以大减小)能被7(11或13)整除,依此反复检验。

例如:判断3546725能否被13整除?

解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725。

小学奥数数论综合练习题

涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问

题.

1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?

【分析与解】我们知道如果有5个连

续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

所以n小于5.

一:当n为4时,如果其内含有5的倍数(个位数字为O或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;

如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;

所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能.

二:当n为3时,有1×2×3的个位数字为6,2×3×4的个位数字为4,3×4×5的个位数字为0,……,不满足.

三:当n为2时,有1×2,2×3,3×4,4×5的个位数字分别为2,6,4,0,显然不满足.

至于n取1显然不满足了.

所以满足条件的n是4.

2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么,

(1)a+b的最小可能值是多少?

(2)a+b的最大可能值是多少?

【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,

67,71,73,79,83,89,97.

可得出,最小为11+19=13+17=30,最大为97+71=89+79=168.

所以满足条件的a+b最小可能值为30,最大可能值为168.

3.如果某整数同时具备如下3条性质:

①这个数与1的差是质数;

②这个数除以2所得的商也是质数;

③这个数除以9所得的余数是5.

那么我们称这个整数为幸运数.求出所有的两位幸运数.

【分析与解】条件①也就是这个数与1的差是2或奇数,这个数只能是3或者偶数,再根据条件③,除以9余5,在两位的偶数中只有14,32,50,68,86这5个数满足条件.

其中86与50不符合①,32与68不符合②,三个条件都符合的只有14.所以两位幸运数只有14.

4.在555555的约数中,最大的三位数是多少?

【分析与解】555555=5×111×1001

=3×5×7×11×13×37

显然其最大的三位数约数为777.

5.从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?

【分析与解】从长2002毫米、宽847毫米的长方形纸板上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是2002除以847所得的商.而余数恰好是剩下的长方形的宽,于是有:2002÷847=2……308,847÷308=2……231,308÷231=1……77.231÷77=3.

不难得知,最后剪去的正方形边长为77毫米.

6.把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1.那么最少要分成多少组?

【分析与解】26=2×13,33=3×11,34=2×17,35=5×7,63=×7,85=5×17,91=7×13,143=11×13.

由于质因数13出现在26、91、143三个数中,故至少要分成三组,可以分成如下3组:

将26、33、35分为一组,91、34、33分为一组,而143、63、85分为一组.

所以,至少要分成3组.

7.设a与b是两个不相等的非零自然数.

(1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值?

(2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的数值?

【分析与解】 (1)a与b的最小公倍数72=2×2×2×3×3,有12个约数:1,2,3,4,6,8,9,12,18,24,36,72.不妨设a>b.

一:当a=72时,b可取小于72的11种约数,a+b≥72+1=73;

二:当a=36时,b必须取8或24,a+b的值为44或60,均不同第一种情况中的值;

三:当a=24时,b必须取9或18,a+b的值为33或42,均不同第一、二种情况中的值;

四:当a=18时,b必须取8,a+b=26,不同于第一、二、三种情况的值;

五:当a=12时,b无解;

六:当a=9时,b必须取8,a+b=17,不同于第一、二、三、四情况中的值.总之,a+b可以有ll+2+2+1+1=17种不同的值.

(2)60=2×2×3×5,有12个约数:1,2,3,4,5,6,10,12,15,20,30,60.a、b为60的约数,不妨设a>b.

一:当a=60时,b可取60外的任何一个数,即可取11个值,于是a-b可取11种不同的值:59,58,57,56,55,54,50,48,45,40,30;

二.当a=30时,b可取4,12,20,于是a-b可取26,18,10;

三:当a=20时,b可取3,6,12,15,所以a-b可取17,14,8,5;

四:当a=15时,b可取4,12,所以a-b可取11,3;

五: 当a=12时,b可取5,10,所以a-b可取7,2.

总之,a-b可以有11+3+4+2+2=22种不同的值.

8.在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)

【分析与解】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.

1~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.

9.甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.求A等于多少?

【分析与解】由题意知4倍393除以A的余数,等于2倍939除以A的余数,等于甲603除以A的余数.

即603÷A=a……k;(2×939)÷A=b……k;(4×393)÷A=c……k.

于是有(1878-603)÷A=b-a;(1878-1572)÷A=b-c;(1572-603)÷A=c -a.

所以A为1275,306,969的约数,(1275,306,969)=17×3=51.

于是,A可能是51,17(不可能是3,因为不满足余数是另一余数的4倍).当A为51时,有603÷51=11……42;939÷51=18……21;393÷51=7……36.不满足;

当A为17时,有603÷17=35……8;939÷17=55……4;393÷17=23……2;满足.

所以,除数4为17.

10.证明:形如11,111,1111,11111,…的数中没有完全平方数.

【分析与解】我们知道奇数的完全平方数是奇数,偶数的完全平方数为偶数,而奇数的完全平方数除以4余1,偶数的完全平方数能被4整除.

现在这些数都是奇数,它们除以4的余数都是3,所以不可能为完全平方数.评注:设奇数为2n+1,则它的平方为+4n+1,显然除以4余1.

11.有8个盒子,各盒内分别装有奶糖9,17,24,28,30,31,33,44块.甲先取走一盒,其余各盒被乙、丙、丁3人所取走.已知乙、丙取到的糖的块数相同且为丁的2倍.问:甲取走的一盒中有多少块奶糖?

【分析与解】我们知道乙、丙、丁三人取走的七盒中,糖的块数是丁所取糖块数的5倍.

八盒糖总块数为9+17+24+28+30+31+33+44=216.

从216减去5的倍数,所得差的个位数字只能是1或6.

观察各盒糖的块数发现,没有个位数字是6的,只有一个个位数字是1的数31.

因此甲取走的一盒中有3l块奶糖.

12.在一根长木棍上,有三种刻度线.第一种刻度线将木棍分成10等份;第二种将木棍分成12等份;第三种将木棍分成15等份.如果沿每条刻度线将木棍锯断,那么木棍总共被锯成多少段?

【分析与解】 10,12,15的最小公倍数[10,12,15]=60,把这根木棍的1/60作为一个长度单位,这样,木棍10等份的每一等份长6个单位;12等份的每等份长5个单位;15等份的每等份长4单位.

不计木棍的两个端点,木棍的内部等分点数分别是9,11,14(相应于10,12,15等份),共计34个.

由于5,6的最小公倍数为30,所以10与12等份的等分点在30单位处相重,必须从34中减1.

又由于4,5的最小公倍数为20,所以12与15等份的等分点在20单位和40单位两处相重,必须再减去2.

同样,6,4的最小公倍数为12,所以15与10等份的等分点在12,24,36,48单位处相重,必须再减去4.

由于这些相重点各不相同,所以从34个内分点中减去1,再减去2,再减去4,得27个刻度点.沿这些刻度点把木棍锯成28段.

奥数数论完全平方数练习题一(含答案)

1、已知数x= 50,则()。

A、x是完全平方数

B、(x-50)是完全平方数

C、(x-25)是完全平方数

D、(x+50)是完全平方数

2、在十进制中,各位数字全由奇数组成的完全平方数共有()个。

A、0

B、2

C、超过2,但有限

3、试证数列49,4489,444889, 的每一项都是完全平方数。

4、用300个2和若干个0组成的整数有没有可能是完全平方数?

5、试求一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同(1999小学数学世界邀请赛试题)。

答案:

3、试证数列49,4489,444889, 的每一项都是完全平方数。

证明

=

=++1

=4+8+1

=4()(9+1)+8+1

=36 ()+12+1

=(6+1)

即为完全平方数。

4、用300个2和若干个0组成的整数有没有可能是完全平方数?

解:设由300个2和若干个0组成的数为A,则其数字和为600

3|600 ∴3|A

此数有3的因数,故9|A。但9|600,∴矛盾。故不可能有完全平方数。

5、试求一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同(1999小学数学世界邀请赛试题)。

解:设此数为

此数为完全平方,则必须是11的倍数。因此11|a + b,而a,b为0,1,2,9,故共有(2,9), (3,8), (4,7),(9,2)等8组可能。

直接验算,可知此数为7744=88。

奥数数论完全平方数练习题二(含答案)

1、一个自然数减去45及加上44都仍是完全平方数,求此数。

2、求证:四个连续的整数的积加上1,等于一个奇数的平方(1954年基辅数学竞赛题)。

3、求证:11,111,1111,这串数中没有完全平方数(1972年基辅数学竞赛题)。

4、求满足下列条件的所有自然数:

(1)它是四位数。

(2)被22除余数为5。

(3)它是完全平方数。

5、甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。为了平均分配,甲应该补给乙多少元(第2届“祖冲之杯”初中数学邀请赛试题)?

答案:

1、一个自然数减去45及加上44都仍是完全平方数,求此数。

解:设此自然数为x,依题意可得

x-45=m^2; (1)

x+44=n^2 (2)

(m,n为自然数)

(2)-(1)可得 :

n^2-m^2=89或: (n-m)(n+m)=89

因为n+m>n-m

又因为89为质数,

所以:n+m=89; n-m=1

解之,得n=45。代入(2)得。故所求的自然数是1981。

2、求证:四个连续的整数的积加上1,等于一个奇数的平方(1954年基辅数学竞赛题)。

分析设四个连续的整数为,其中n为整数。欲证

是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。

证明设这四个整数之积加上1为m,则

m为平方数

而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。这就证明了m是一个奇数的平方。

3、求证:11,111,1111,这串数中没有完全平方数(1972年基辅数学竞赛题)。

分析形如的数若是完全平方数,必是末位为1或9的数的平方,即

在两端同时减去1之后即可推出矛盾。

证明若,则

因为左端为奇数,右端为偶数,所以左右两端不相等。

若,则

因为左端为奇数,右端为偶数,所以左右两端不相等。

综上所述,不可能是完全平方数。

另证由为奇数知,若它为完全平方数,则只能是奇数的平方。但已证过,奇数的平方其十位数字必是偶数,而十位上的数字为1,所以不是完全平方数。

4、求满足下列条件的所有自然数:

(1)它是四位数。

(2)被22除余数为5。

(3)它是完全平方数。

解:设,其中n,N为自然数,可知N为奇数。

11|N - 4或11|N + 4

k = 1

k = 2

k = 3

k = 4

k = 5

所以此自然数为1369, 2601, 3481, 5329, 6561, 9025。

5、甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。为了平均分配,甲应该补给乙多少元(第2届“祖冲之杯”初中数学邀请赛试题)?

解:n头羊的总价为元,由题意知元中含有奇数个10元,即完全平方数的十位数字是

奇数。如果完全平方数的十位数字是奇数,则它的个位数字一定是6。所以,的末位数字为

6,即乙最后拿的是6元,从而为平均分配,甲应补给乙2元。

奥数数论余数问题练习题九(含分析解答)

1、今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物最少几何

2、(23+105k)2)一个数除以7余3,除以11余7,除以13余4,符合此条件的数最小是

________;如果它是一个四位数,那么最大可能是________;

解答:1、此数除以3余2,除以5余3,除以7余2,满足条件最小数是23

3、满足除以7余3,除以11余7的最小数为73,设此数为73+77a=13b+4, 69-a=13b.

a最小等于4.满足条件的最小数是381.

设最大的四位数为381+1001x,最大的四位数为9390.(1732)

4、今天周一,天之后是星期________;这个数的个位数字是________;

天之后是星期________;

解答:只要求出÷7的余数就可以知道天后是星期几.≡52007(mod7),56≡1(mod7)

2007≡3(mod6), ≡52007≡53≡6(mod7) s

所以天之后是星期日

2007的个位数字是7

20072的个位数字是9

20073的个位数字是3

20074的个位数字是1

20075的个位数字是1

5、一个三位数,被17除余5,被18除余12,那么它可能是________________;

一个四位数,被131除余112,被132除余98,那么它可能是________;

解答:设此三位数为17a+5=18b+12. 可得到17a=17b+b+7,所以b+7一定能被17整

除,b=10,27,44.这个三位数为192,498,804.

设此四位数为131x+112=132y+98,可得到131x=131y+y-14,所以y-14一定能被131整除,y=14,145(太大)

这个四位数是1946

6、甲,乙,丙三个数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.A是________;

解答:如果A除丙所得的余数是1份的话,那么A除乙所得余数就是2份,A除甲所得的余数就是4份.把2乙-甲,则没有余数,即2乙-甲使A的倍数;同理乙-2丙也同样没有余数,是A的倍数.

939×2-603=1275,939-393×2=153

A是1275和153的公约数,而1275与153的最大公约数是51,所以A可能是1,3,17,51

再实验得到A为17,余数分别为8,4,2.

奥数数论余数问题练习题八(含分析解答)

1、3,222……22除以13所得的余数是_____.

2000个

分析与解答:

因为222222=2111111

=21111001

=211171113

所以222222能被13整除.

又因为2000=6333+2

222…2=222…200+22

2000个 1998

2213=1 (9)

所以要求的余数是9.

2、求除以9,11,99,101,999,1001,13和91的余数分别是多少;

解答:

9: 除以9的余数是0,

11: 一个2007奇数位上数字和与偶数位上数字的和的差为5. 2007个2007奇数位上数字和与偶数位上数字的和的差为5×2007.

≡5×2007≡3(mod11),所以除以11的余数是3

99: 能被9整除,被11除余3的数最小是36,所以除以99余36

200720072007能被7,13,37整除.999=27×37 1001=7×11×13 91=7×13

13: ≡0(mod13) 除以13余0

91: ≡0(mod91) 除以91余0

所以除以13,91,999的余数都是0.

1001: 除以11余3,除以7,13余0,满足次条件的最小数是1092,1092除以1001余91.所以除以1001的余数是91.

101: 我们发现9999=101×99,所以

=0000+2007=×10000+2007

=×9999++2007≡+2007(mod101)

同样道理

+2007≡+2007×2(mod101)

以此类推≡2007×2007(mod101)=68

奥数数论问题奇偶分析练习题1(分析)

1、小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。试问,小丽所加得的和数能否为2000?

【分析】不可能。因为25个奇数相加的和是奇数,25个偶数相加是偶数,奇数加偶数=奇数

2、有98个孩子,每人胸前有一个号码,号码从1到98各不相同。试问:能否将这些

孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。

【分析】不可以。一名为98个数中有49个奇数,奇数加偶数等于奇数,奇数不是二的

倍数。

奥数数论问题奇偶分析练习题2(分析)

1、有20个1升的容器,分别盛有1,2,3,…,20立方厘米水。允许由容器A向容器B

倒进与B容器内相同的水(在A中的水不少于B中水的条件下)。问:在若干次倒水以后能否使其中11个容器中各有11立方厘米的水?

【分析】不可能,因为两个奇数相加等于偶数,两个偶数相加等于偶数,11是奇数,B 是偶数,偶数不等于奇数

2、一个俱乐部里的成员只有两种人:一种是老实人,永远说真话;一种是骗子,永远说假话。某天俱乐部的全体成员围坐成一圈,每个老实人两旁都是骗子,每个骗子两旁都是老实人。外来一位记者问俱乐部的成员张三:“俱乐部里共有多少成员?”张三答:“共有45人。”另一个成员李四说:“张三是老实人。”请判断李四是老实人还是骗子?

【分析】李四是骗子,老实人和说谎的人的人数相等,可是45是个奇数,所以张三是

骗子

奥数数论问题奇偶分析练习题3(分析)

1、围棋盘上有19×19个交叉点,现在放满了黑子与白子,且黑子与白子相间地放,并使黑子(或白子)的上、下、左、右的交叉点上放着白子(或黑子)。问:能否把黑子全移到原来的白子的位置上,而白子也全移到原来黑子的位置上?

【分析】不可以,因为不是白字多黑字一个,就是黑子多白字一个,不可能相等

2、某市五年级99名同学参加数学竞赛,竞赛题共30道,评分标准是基础分15分,答对一道加5分,不答记1分,答错一道倒扣1分。问:所有参赛同学得分总和是奇数还是偶数?

【分析】奇数,5*30+15=165 165-6N-4M=奇数减去偶数=奇数 99*奇数=奇数

奥数数论问题奇偶分析练习题4(分析)

现有足够多的苹果、梨、桔子三种水果,最少要分成多少堆(每堆都有苹果、梨和桔子三种

水果),才能保证找得到这样的两堆,把这两堆合并后这三种水果的个数都是偶数。

分析与解:当每堆都含有三种水果时,三种水果的奇偶情况如下表:

可见,三种水果的奇偶情况共有8种可能,所以必须最少分成9堆,才能保证有两堆的三种水果的奇偶性完全相同,把这两堆合并后这三种水果的个数都是偶数。

说明:这里把分堆后三种水果的奇偶情况一一列举出来,使问题一目了然。

奥数数论问题奇偶分析练习题5(分析)

有30枚2分硬币和8枚5分硬币,5角以内共有49种不同的币值,哪几种币值不能由上面38枚硬币组成?

解:当币值为偶数时,可以用若干枚2分硬币组成;

当币值为奇数时,除1分和3分这两种币值外,其余的都可以用1枚5分和若干枚2

分硬币组成,所以5角以下的不同币值,只有1分和3分这两种币值不能由题目给出的硬币组成。

说明:将全体整数分为奇数与偶数两类,分而治之,逐一讨论,是解决整数问题的常用方法。

若偶数用2k表示,奇数用2k+1表示,则上述讨论可用数学式子更为直观地表示如下:当币值为偶数时,2k说明可用若干枚2分硬币表示;

当币值为奇数时,

2k+1=2(k-2)+5,

其中k≥2。当k=0,1时,2k+1=1,3。1分和3分硬币不能由2分和5分硬币组成,而

其他币值均可由2分和5分硬币组成。

奥数数论问题奇偶分析练习题6(附解)

1、设标有A,B,C,D,E,F,G的7盏灯顺次排成一行,每盏灯安装一个开关。现在A,C,D,G这4盏灯亮着,其余3盏灯没亮。小华从灯A开始顺次拉动开关,即从A到G,再从A 开始顺次拉动开关,他这样拉动了999次开关后,哪些灯亮着,哪些灯没亮?

解:一盏灯的开关被拉动奇数次后,将改变原来的状态,即亮的变成熄的,熄的变成亮的;而一盏灯的开关被拉动偶数次后,不改变原来的状态。由于

999=7×142+5,

因此,灯A,B,C,D,E各被拉动143次开关,灯F,G各被拉动142次开关。所以,当小华拉动999次后B,E,G亮,而A,C,D,F熄。

2、桌上放有77枚正面朝下的硬币,第1次翻动77枚,第2次翻动其中的76枚,第3次翻动其中的75枚……第77次翻动其中的1枚。按这样的方法翻动硬币,能否使桌上所有的77枚硬币都正面朝上?说明你的理由。

分析:对每一枚硬币来说,只要翻动奇数次,就可使原先朝下的一面朝上。这一事实,对我们解决这个问题起着关键性作用。

解:按规定的翻动,共翻动1+2+…+77=77×39次,平均每枚硬币翻动了39次,这是奇数。因此,对每一枚硬币来说,都可以使原先朝下的一面翻朝上。注意到

77×39=77+(76+1)+(75+2)+…+(39+38),

根据规定,可以设计如下的翻动方法:

第1次翻动77枚,可以将每枚硬币都翻动一次;第2次与第77次共翻动77枚,又可将每枚硬币都翻动一次;同理,第3次与第76次,第4次与第75次……第39次与第40

次都可将每枚硬币各翻动一次。这样每枚硬币都翻动了39次,都由正面朝下变为正面朝上。

说明:(1)此题也可从简单情形入手(如9枚硬币的情形),按规定的翻法翻动硬币,从中获得启发。

(2)对有关正、反,开、关等实际问题通常可化为用奇偶数关系讨论。

奥数数论问题奇偶分析练习题7(附解)

在8×8的棋盘的左下角放有9枚棋子,组成一个3×3的正方形(如左下图)。规定每枚棋子可以跳过它身边的另一枚棋子到一个空着的方格,即可以以它旁边的棋子为中心作对称运动,可以横跳、竖跳或沿着斜线跳(如右下图的1号棋子可以跳到2,3,4号位置)。问:这些棋子能否跳到棋盘的右上角(另一个3×3的正方形)?

解:自左下角起,每一个方格可以用一组数(行标、列标)来表示,(自下而上)第i 行、(自左而右)第j列的方格记为(i,j)。问题的关键是考虑9枚棋子(所在方格)的列标的和S。

一方面,每跳一次,S增加0或偶数,因而S的奇偶性不变。另一方面,右上角9个方格的列标的和比左下角9个方格的列标之和大

3×(6+7+8)-3×(1+2+3)=45,

这是一个奇数。

综合以上两方面可知9枚棋子不能跳至右上角的那个3×3的正方形里。

奥数数论问题奇偶分析练习题8(附答案)

1.下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?

□+□=□□-□=□□×□=□□÷□=□

2.任意取出1234个连续自然数,它们的总和是奇数还是偶数?

3.一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每一个数都是前两个数的和。如下所示:

1,1,2,3,5,8,13,21,34,55,…

试问:这串数的前100个数(包括第100个数)中,有多少个偶数?

4.能不能将1010写成10个连续自然数之和?如果能,把它写出来;如果不能,说明理由。

答案:

1.至少有6个偶数。

2.奇数。解:1234÷2=617,所以在任取的1234个连续自然数中,奇数的个数是奇数,奇数个奇数之和是奇数,所以它们的总和是奇数。

3.33。提示:这串数排列的规律是以“奇奇偶”循环。

4.不能。

如果1010能表示成10个连续自然数之和,那么中间2个数的和应当是1010÷5=202。但中间 2个数是连续自然数,它们的和应是奇数,不能等于偶数202。所以,1010不能写

成10个连续自然数之和。

奥数数论问题奇偶分析练习题9(附答案

5.能否将1至25这25个自然数分成若干组,使得每一组中的最大数都等于组内其余各数的和?

6.在象棋比赛中,胜者得1分,败者扣1分,若为平局,则双方各得0分。今有若干个学生进行比赛,每两人都赛一局。现知,其中有一位学生共得7分,另一位学生共得20分,试说明,在比赛过程中至少有过一次平局。

7.在黑板上写上1,2,…,909,只要黑板上还有两个或两个以上的数就擦去其中的任意两个数a,b,并写上a-b(其中a≥b)。问:最后黑板上剩下的是奇数还是偶数?

8.设a1,a2,…,a64是自然数1,2,…,64的任一排列,令b1=a1-a2,b2=a3-a4,…,b32=a63-a64;

c1=b1-b2,c2=b3-b4,…,c16=b31-b32;

d1=c1-c2,d2=c3-c4,…,d8=c15-c16;

……

这样一直做下去,最后得到的一个整数是奇数还是偶数?

答案:

5.不能。提示:仿例3。

6.证:设得7分的学生胜了x1局,败了y1局,得 20分的学生胜了x2局,败了y2局。由得分情况知:

x1-y1=7,x2-y2=20。

如果比赛过程中无平局出现,那么由每人比赛的场次相同可得x1+y1=x2+y2,即

x1+y1+x2+y2是偶数。另一方面,由x1-y1=7知x1+y2为奇数,由x2-y2=20知x2+y2为偶数,推知x1+y1+x2+y2为奇数。这便出现矛盾,所以比赛过程中至少有一次平局。

7.奇数。解:黑板上所有数的和S=1+2+…+909是一个奇数,每操作一次,总和S减少了a+b-(a-b)=2b,这是一个偶数,说明总和S的奇偶性不变。由于开始时S是奇数,因此终止时S仍是一个奇数。

8.偶数。

解:我们知道,对于整数a与b,a+b与a-b的奇偶性相同,由此可知,上述计算的第二步中,32个数

a1-a2,a3-a4,…,a63-a64,

分别与下列32个数

a1+a2,a3+a4,…,a63+a64,

有相同的奇偶性,这就是说,在只考虑奇偶性时,可以用“和”代替“差”,这样可以把原来的计算过程改为

第一步:a1,a2,a3,a4,…,a61,a62,a63,a64;

第一步:a1+a2,a3+a4,…,a61+a62,a63+a64;

第三步:a1+a2+a3+a4,…,a61+a62+a63+a64;

……

最后一步所得到的数是a1+a2+...+a63+a64。由于a1,a2,...,a64是1,2, (64)

一个排列,因此它们的总和为1+2+…+64是一个偶数,故最后一个整数是偶数

五年级奥数:数的整除性试题

一、填空题

1.、四位数“3AA1”是9的倍数,那么A=_____.

2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.

3、能同时被2、3、5整除的最大三位数是_____.

4、能同时被2、

5、7整除的最大五位数是_____.

5、1至100以内所有不能被3整除的数的和是_____.

6、所有能被3整除的两位数的和是______.

7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.

8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.

9、42□28□是99的倍数,这个数除以99所得的商是_____.

10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.

二、解答题

11、 173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字, 所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?

12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?

13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?

———————————————答案——————————————————————

1、7

已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.

设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实

上,3771 9=419.

2、 1

这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1.

3、990

要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.

4、 99960

解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.

解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.

5.、3367

先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.

(1+2+3+...+100)-(3+6+9+12+ (99)

=(1+100)2100-(3+99)233

=5050-1683

=3367

6、 1665

能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下: 12,15,18,21,…,96,99

这一列数共30个数,其和为

12+15+18+…+96+99

=(12+99)302

=1665

7、96910或46915

五位数能被55整除,即此五位数既能被5整除,又能被11整除.所以B=0或5.当B=0时,能被11整除,所以(A+9+0)-(6+1)=A+2能被11整除,因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.

8、 90

因为105=3 57,根据数的整除性质,可知这个六位数能同时被3、5和7整除。

根据能被5整除的数的特征,可知这个六位数的个位数只能是0或5两种,再根据能被3整除的数的特征,可知这个六位数有如下七个可能:

199200,199230,199260,199290,199215,199245,199275.

最后用7去试除知,199290能被7整除.

所以,199290能被105整除,它的最后两位数是90.

[注]此题也可以这样思考:先把后面两个方框中填上0后的199200除以105,根据余数的大小来决定最后两个方框内应填什么.

199200105=1897 (15)

105-15=90

如果199200再加上90,199290便可被105整除,故最后两位数是90.

9、4316

因为99=9 11,所以42□28□既是9的倍数,又是11的倍数.根据是9的倍数的特点,这个数各位上数字的和是9的倍数.42□28□这个六位数中已知的四个数的和是4+2+2+8=16,因此空格中两个数字的和是2或11.我们把右起第一、三、五位看做奇位,那么奇位上已知两个数字的和是2+2=4,而偶位上已知两个数字的和是4+8=12,再根据是11的倍数的特点,奇位上数字的和与偶位上数的和之差是0或11的倍数,所以填入空格的两个数应该相差3或相差8.从以上分析可知填入的两个数字的和不可能是2,应该是11.显然它们的差不可能是8,应该是3,符合这两个条件的数字只有7和4.填入空格时要注意7填在偶位上,4填在奇位上,即原六位数是42 7 28 4 ,又427284 99=4316,所以所得的商是4316.

10、1331

第一次报数后留下的同学最初编号都是11倍数;

第二次报数后留下的同学最初编号都是121 的倍数;

第三次报数后留下的同学最初编号都是1331的倍数.

所以最后留下的只有一位同学,他的最初编号是1331.

11、∵能被9整除的四位数的各位数字之和能被9整除,

1+7+3+□=11+□

∴□内只能填7.

∵能被11整除的四位数的个位与百位的数字和减去十位与千位的数字和所得的差能被11整除.

∴ (7+□)-(1+3)=3+□能被11整除, ∴□内只能填8.

∵能被6整除的自然数是偶数,并且数字和能被3整除,

而1+7+3+□=11+□, ∴□内只能填4.

所以,所填三个数字之和是7+8+4=19.

12、设补上的三个数字组成三位数,由这个七位数能被2,5整除,说明c=0;

由这个七位数能被3整除知1+9+9+2+a+b+c=21+a+b+c能被11整除,从而a+b 能被3整除;

由这个七位数又能被11整除,可知(1+9+a+c)-(9+2+b)=a-b-1能被11整除; 由所组成的七位数应该最小,因而取a+b=3,a-b=1,从而a=2,b=1.

所以这个最小七位数是1992210.

[注]小朋友通常的解法是:根据这个七位数分别能被2,3,5,11整除的条件,这个七位数必定是2,3,5,11的公倍数,而2,3,5,11的最小公倍数是2 3511=330. 这样,1992000 330=6036…120,因此符合题意的七位数应是(6036+1)倍的数,即 1992000+(330-120)=1992210.

13、不可能.由于瓦夏原有100张票,最后还有100张票,所以他作了多少次“两换三”,那么也就作了多少次“三换两”,因此他一共出手了2k+3k=5k张票,而1991不是5的倍数.

奥数数论问题数的整除练习题一(附解)

1、在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?

234,789,7756,8865,3728,8064。

解:能被4整除的数有7756,3728,8064;

能被8整除的数有3728,8064;

能被9整除的数有234,8865,8064。

2、在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?

解:如果56□2能被9整除,那么

5+6+□+2=13+□

应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;

如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;

如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即

四位数是5612,5632,5652,5672,5692时能被4整除。

奥数数论余数问题练习题一(含分析解答)

1、(四中小升初选拔试题)被除数,除数,商与余数之和是2143,已知商是33,余数是52,求被除数和除数.

分析: 方法1:通过对题意的理解我们可以得到:被除数=除数×商+余数=除数×33+52;

又有被除数=2143-除数-商-余数=2143-除数-33-52=2058-除数;

所以除数×33+52=2058-除数;

则除数=(2058-52)÷34=59,被除数=2058-59=1999.

方法2:此题也可以按这个思路来解:从被除数中减掉余数52后,被除数就是除数的33倍了,所以可以得到:2143-33-52-52=(33+1)×除数,求得除数=59 ,被除数=33×

59+52=1999 .

转化成整数倍问题后,可以帮助理解相关的性质.

2、(美国长岛小学数学竞赛)写出所有的除109后余数为4的两位数.

分析:还是把带有余数的问题转化成整除性的问题,也就是要找出能整除(109-4)的所有的两位数.进一步,要找出能整除105的两位数,很简单的方法就是把105分解质因数,从所得到的质因子中去凑两位数.109-4=105=3×5×7.因此这样的两位数是:15;35;21.

3、有一个大于1的整数,除45,59,101所得的余数相同,求这个数.

分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.

101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可

能为2,7,14.

奥数数论余数问题练习题二(含分析解答)

1、数11…1(2007个1),被13除余多少

分析:根据整除性质知:13能整除111111,而2007÷6后余3,所以答案为7.

2、求下列各式的余数:

(1)2461×135×6047÷11 (2)2123÷6

分析:(1)5;(2)6443÷19=339……2,212=4096 ,4096÷19余11 ,所以余数是11 .

3、数11…1(2007个1),被13除余多少

分析:根据整除性质知:13能整除111111,而2007÷6后余3,所以答案为7.

4、求下列各式的余数:

(1)2461×135×6047÷11

(2)2123÷6

分析:(1)5;(2)找规律,2的n次方被6除的余数依次是

(n=1,2,3,4……):2 ,4 ,2 ,4 ,2 ,4……

因为要求的是2的123次方是奇数,所以被6除的余数是2.

奥数数论余数问题练习题三(含分析解答)

1、1013除以一个两位数,余数是12.求出符合条件的所有的两位数.

分析:1013-12=1001,1001=7×11×13,那么符合条件的所有的两位数有13,77,91 有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.

2、学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班

分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.

3、有一个大于1的整数,除45,59,101所得的余数相同,求这个数.

分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.

101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.

4、(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果

分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个

数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313—7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .

5、(第十三届迎春杯决赛) 已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .

分析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×

17,因此所求的两位数51或68或84.

奥数数论余数问题练习题四(含分析解答)

1.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.

分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.

101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.

2.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a 和b的值.

分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a 的可能取值是11,15,19,23,27.

3.除以99,余数是______.

分析:所求余数与19×100,即与1900除以99所得的余数相同,因此所求余数是19.

4.求下列各式的余数:

(1)2461×135×6047÷11

(2)19992000÷7

分析:(1)5;(2)1999÷7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次方除以7的余数的排列规律是4,2,1,4,2,1......这么3个一循环,所以由

2000÷3 余2 可以得到42000除以7 的余数是2,故19992000÷7的余数是2 .

奥数数论余数问题练习题五(含分析解答)

1、(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果

分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313—7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .

六年级奥数.数论.整除问题(ABC级).学生版

知识框架 」、整除的定义: 当两个整数a和b (b工0, a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a 叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b a. 二、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2. 一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整 除; 4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、 11或13整除; 5. 如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除; 6. 如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有 两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 7. 若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被 7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的 过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3X2 = 7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613 —9>2= 595 , 59- 5X2= 49,所以6139是7的倍数,余类推。 8. 若一个整数的个位数字截去,再从余下的数中,加个位数的4倍,如果和是13的倍数,则原数能被 13整除。如果和太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」 的过程,直到能清楚判断为止。 MSDC模块化分级讲义体系六年级奥数.数论.整除问题(ABC级).学生版Page 1 of 14

小学奥数数论专题

名校真题测试卷10 (数论篇一) 1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2、(05年101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是_____。 3 (05年首师附中考题) 1 21+ 202 2121 + 50513131313 21212121212121 =________。 4 (04年人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 (02年人大附中考题) 下列数不是八进制数的是( ) A、125 B、126 C、127 D、128 【附答案】 1 【解】:6 2 【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。 3 【解】:周期性数字,每个数约分后为1 21 + 2 21 + 5 21 + 13 21 =1 4 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。 5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。 第十讲小升初专项训练数论篇(一) 一、小升初考试热点及命题方向 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 二、考点预测 的小升初考试将继续以填空和大题形式考查数论,命题的方向可能偏向小题考察单方面的知识点,大题

六年级奥数-第十讲.数论之余数问题.教师版

第十讲:数论之余数问题 余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。 许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!” 余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。 知识点拨: 一、带余除法的定义及性质: 一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。这里: r=时:我们称a可以被b整除,q称为a除以b的商或完全商 (1)当0 r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商 (2)当0 一个完美的带余除法讲解模型: 如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在 要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了 c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且 可以看出余数一定要比除数小。 二、三大余数定理: 1.余数的加法定理 a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等 于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。 例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2. 2.余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。 当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 3.同余定理

(完整)小学六年级奥数基础知识——数论

行程问题 基本行程问题平均速度火车过桥流水行船接送问题电梯行程 数论问题 奇偶分析数的整除约数倍数进位制余数问题完全平方数 几何问题 小学几何五大模型勾股定理与弦图巧求周长立体图形的体积 计数问题 加法原理乘法原理容斥原理排列组合枚举法归纳法 应用题 鸡兔同笼问题年龄问题盈亏问题牛吃草问题工程问题浓度问题 计算问题 分数列项与整数列项繁分数的计算数学计算公式换元法找规律 其他 数阵图与数字谜操作与策略抽屉原理逻辑推理不定方程染色问题 小学六年级奥数基础知识——数论一 一质数和合数 (1)一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。 一个数除了1和它本身,还有别的约数,这个数叫做合数。 (2)自然数除0和1外,按约数的个数分为质数和合数两类。 任何一个合数都可以写成几个质数相乘的形式。 要特别记住:0和1不是质数,也不是合数。 (3)最小的质数是2 ,2是唯一的偶质数,其他质数都为奇数; 最小的合数是4。 (4)质数是一个数,是含有两个约数的自然数。 互质 是指两个数,是公约数只有一的两个数,组成互质数的两个数可能是两个质数(3和5),可能是一个质数和一个合数(3和4),可能是两个合数(4和9)或1与另一个自然数。 (5)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 (6)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97. 注意:两个质数中差为1的只有3-2 ;除2外,任何两个质数的差都是偶数。 二整除性 (1)概念 一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得

小学奥数9. 数论综合(二).

第十一讲 数论综合(二) 教学目标: 1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型; 2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想 例题精讲: 板块一 质数合数 【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来, 可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来. 【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三 张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31. 【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数. 【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨 记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=?=?=?,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11. 【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那 么这9个数字最多能组成多少个质数? 【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、 8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数 67.所以这9个数字最多可以组成6个质数. 【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位 数.求这两个整数分别是多少? 【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都 可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=?,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了. 把九个三位数分解:111373=?、222376743=?=?、333379=?、4443712746=?=?、5553715=?、6663718749=?=?、7773721=?、88837247412=?=?、9993727=?. 把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18. 板块二 余数问题 【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、 商与余数之和为2113,则被除数是多少? 【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除 数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.

六年级奥数.数论.整除问题(ABC级).学生版

一、整除的定义: 当两个整数a 和b (b≠0),a 被b 除的余数为零时(商为整数),则称a 被b 整除或b 整除a ,也把a 叫做b 的倍数,b 叫a 的约数,记作b|a ,如果a 被b 除所得的余数不为零,则称a 不能被b 整除,或b 不整除a ,记作b a. 二、常见数字的整除判定方法 1. 一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2. 一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整 除; 4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、 11或13整除; 5. 如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除; 6. 如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有 两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 7. 若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被 7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。 8. 若一个整数的个位数字截去,再从余下的数中,加个位数的4倍,如果和是13的倍数,则原数能被 13整除。如果和太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」知识框架 数的整除

完整版六年级奥数数论综合

第19讲数论综合 知识点精讲 特殊数的整除特征 1. 尾数判断法 1) 能被2整除的数的特征: 2) 能被5整除的数的特征: 3) 能被4 (或25)整除的数的特征: 4) 能被8 (或125)整除的数的特征: 2. 数字求和法: 3. 99的整除特性: 4. 奇偶位求差法: 5. 三位截断法: 特别地:7X11X13=1001, abcabc=abcX1001 二、多位数整除问题 技巧:1>目的是使多位数变短”途径是结合数的整除特征和整除性质 2>对于没有整除特性的数,利用竖式解决。 三、质数合数 1. 基本定义 【质数】一一 【合数】一一 注:自然数包括0、1、质数、合数. 【质因数】一一 【分解质因数】一一 用短除法和分拆相乘法分解质因数。任何一个合数分解质因数的结果是唯一的。 分解质因数的标准表示形式:N=a1Xa2Xa3X X n,其中a1、a2、a3 an都是合数N的质因数,且

a 1

【互质数】 【偶数】 【奇数】 2. 质数重要性质 1)100以内有25个质数: 2)除了2和5,其余的质数个位数字只能是: 3)1既不是质数,也不是合数 4)在质数中只有2是偶数,其他质数都是奇数 5)最小的质数是2?最小的奇质数是3 6)有无限多个 3. 质数的判断: 1)定义法:判断整除性 2)熟记100以内的质数 3)平方判断法: 例如:对2011,首先442<2011<452,然后用1至44中的全部质数去除2011,即可叛断出2011为质数.

4. 合数 1)无限多个 2)最小的合数是4 3)每个合数至少有三个约数 5. 互质数 1)什么样的两个数- -定是互质数? 注意:分解质因数是指一个合数写成质因数相乘的形式21=3 7,不能写成:3 7=21. 6. 偶数和奇数 1) 2) 偶数;个位数字是1,3,5,7,9的数是奇数 3) 4) 数是他们乘积的一半 5)?因此,要分解的合数应写在等号左边,如: 0属于偶数 十进制中,个位数字是0,2,4,6,8的数是 除2外所有的正偶数均为合数 相邻偶数的最大公约数为2,最小公倍 奇±奇=偶偶±禺=偶偶埼=奇

小学奥数专题之数论

1 (人大附中考题) 有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。1359 ,1935,3195,3915,9135,9315 2 (101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数45 是__。 3(人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 可以分析出甲甲是偶数,是135的倍数,且是完全平方数 而135=5*3*3*3,最小再乘以15即为完全平方数,若要为偶数则需再乘4 于是丙为60,甲为90,乙为4050 4 (人大附中考题) 下列数不是八进制数的是( D) A、125 B、126 C、127 D、128 预测 1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?4456 预测 2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。2004年元旦三个网站同时更新,下一次同时更新是在____月____日?4.14 预测 3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是____.1331 数论篇二 1 (清华附中考题) 有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.518=7=511 666-10=656 888,511,656除以这个数,余数相同 888-511=377 888-656=232 这个数为377与232的公因数,且大于10 377=13×29 232=8×29 所以这个自然数为29 2 (三帆中学考题)

六年级奥数.数论.整除问题

数的整除 知识框架 一、整除的定义: 当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a 叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b a. 二、常见数字的整除判定方法 1.一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2.一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整 除; 4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、 11或13整除; 5.如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除; 6.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有 两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 7.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被 7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是

六年级奥数-.数论综合.教师版

数论综合(二) 教学目标: 1、 掌握质数合数、完全平方数、位值原理、进制问题的常见题型; 2、 重点理解和掌握余数部分的相关问题,理解“将不熟悉转化成熟悉”的数学思想 例题精讲: 板块一 质数合数 【例 1】 有三张卡片,它们上面各写着数字1,2,3,从中抽出一张、二张、三张,按任意次序排列出来, 可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来. 【解析】 抽一张卡片,可写出一位数1,2,3;抽两张卡片,可写出两位数12,13,21,23,31,32;抽三 张卡片,可写出三位数123,132,213,231,312,321,其中三位数的数字和均为6,都能被3整除,所以都是合数.这些数中,是质数的有:2,3,13,23,31. 【例 2】 三个质数的乘积恰好等于它们和的11倍,求这三个质数. 【解析】 设这三个质数分别是a 、b 、c ,满足11abc a b c =++(),则可知a 、b 、c 中必有一个为11,不妨 记为a ,那么11bc b c =++,整理得(1b -)(1c -)12=,又121122634=?=?=?,对应的2b =、13c =或3b =、7c =或4b =、5c = (舍去),所以这三个质数可能是2,11,13或3,7,11. 【例 3】 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次, 那么这9个数字最多能组成多少个质数? 【解析】 要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、 8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数 67.所以这9个数字最多可以组成6个质数. 【例 4】 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位 数.求这两个整数分别是多少? 【解析】 两位数中,数字相同的两位数有11、22、33、44、55、66、77、88、99共九个,它们中的每个数都 可以表示成两个整数相加的形式,例如331322313301617=+=+=+==+L L ,共有16种形式,如果把每个数都这样分解,再相乘,看哪两个数的乘积是三个数字相同的三位数,显然太繁琐了.可以从乘积入手,因为三个数字相同的三位数有111、222、333、444、555、666、777、888、999,每个数都是111的倍数,而111373=?,因此把这九个数表示成一个两位数与一个一位数或两个两位数相乘时,必有一个因数是37或37的倍数,但只能是37的2倍(想想为什么?)3倍就不是两位数了. 把九个三位数分解:111373=?、222376743=?=?、333379=?、4443712746=?=?、5553715=?、6663718749=?=?、7773721=?、88837247412=?=?、9993727=?. 把两个因数相加,只有(743+)77=和(3718+)55=的两位数字相同.所以满足题意的答案是74和3,37和18. 板块二 余数问题 【例 5】 (2003年全国小学数学奥林匹克试题)有两个自然数相除,商是17,余数是13,已知被除数、除数、 商与余数之和为2113,则被除数是多少? 【解析】 被除数+除数+商+余数=被除数+除数+17+13=2113,所以被除数+除数=2083,由于被除数是除 数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968. 【例 6】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个? 【解析】 本题为一道余数与约数个数计算公式的小综合性题目.由题意所求的自然数一定是2008-10即1998 的约数,同时还要满足大于10这个条件.这样题目就转化为1998有多少个大于10的约数,319982337=??,共有(1+1)×(3+1)×(1+1)=16个约数,其中1,2,3,6,9是比10小的约数,所以符合题目条件的自然数共有11个. 【例 7】 有一个整数,除39,51,147所得的余数都是3,求这个数.

小学奥数数论专题精讲 六年级奥数-数论专题

小学奥数数论专题精讲六年级奥数-数论专题 导读:就爱阅读网友为您分享以下“六年级奥数-数论专题”的资讯,希望对您有所帮助,感谢您对的支持! 【例15】(难度级别※※※) 如图,相同的文字代表相同的数字,不同的文字代表不同的数字,并且已知和代表的五位数能被5整除。那么加数“华罗庚学校”代表的五位数最大是多少? 华罗庚学校+好好学习=中学数学好 【例16】(难度级别※※※)

在下面这个算式中,不同的汉字代表不同的数字,那么“5湖4海”代表的四位数最大是多少? 1塔湖图+3泉映月=5湖4海 【例17】(难度级别※※※) 下图是一个正确的加法算式,其中相同的字母代表相同的数字,不同的字母代表不同的数字,已知BAD不是3的倍数,GOOD不是8的倍数,那么ABGD代表的四位数是多少? B?G BO AAO DDD 【例18】(难度级别※※※)

在图19-2.所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立. 【例19】(难度级别※※※) 在图7-3所示的除法算式中,只知道一个数字“3”,且商是一个循环小数.问被除数是多少 ? 【例20】(难度级别※※※※) 已知p,q都是大于1的正整数,并且 2p?1q 和

2q?1p 都是整数,那么p+q的值是多少? 【例21】(难度级别※※※※) □□□÷□=□□+□-□ ,请将2、4、6、8分别填入算式左端的四个方框,将1、3、5、7分别填入右边的四个方框,使其成为正确的等式。 【作业】 1、老师在黑板上写了15个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是 11.92.老师说最后一位数字错了,其他的数字都对.正确答案应该是什么?

小学奥数之第10讲_数论综合(一)

数论综合 1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少? 2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么, (1)a+b的最小可能值是多少? (2)a+b的最大可能值是多少? 3.如果某整数同时具备如下3条性质: ①这个数与1的差是质数; ②这个数除以2所得的商也是质数; ③这个数除以9所得的余数是5. 那么我们称这个整数为幸运数.求出所有的两位幸运数. 4.在555555的约数中,最大的三位数是多少? 5.从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?

6.已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质.请写出所有可能的答案. 7.把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1.那么最少要分成多少组? 8.图10-1中两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A 出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?

9.设a与b是两个不相等的非零自然数. (1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值? (2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的数值? 10.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳 1 4 2 米,黄鼠狼每次跳 3 2 4 米,它们每秒钟都只跳一 次.比赛途中,从起点开始每隔 3 12 8 米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多 少米? 11.在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)

六年级奥数_数论教师版

数论问题本身范围很广,我们考察小学奥数的内容,完全平方数等知识点跟基础课内容结合很紧密, 但又是小奥的重难点,我们有必要加以重视.本讲需要学生掌握的知识点有:平方数性质、平方差公式、约数个数定理、约数和定理、辗转相除法等. 本讲内容中,平方数部分是数论中最基本的部分,学生应当学会熟练运用平方差公式,对于约数和倍数部分,老师应当更注重其中的逻辑过程,可以适当用一些代数的方法将题目讲的更明白和透彻. 【例 1】 一个5位数,它的各位数字和为43,且能被11整除,求所有满足条件的5位数. 【分析】 现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性 质的运用要有具体的数字,而现在没有,所以我们选择先从数字和入手. 5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8.这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989. 【例 2】 已知ABCA 是一个四位数,若两位数AB 是一个质数,BC 是一个完全平方数,CA 是一个质数与 一个不为1的完全平方数之积,则满足条件的所有四位数是_____________. 【分析】 本题综合利用数论知识,因为AB 是一个质数,所以B 不能为偶数,且同时BC 是一个完全平方 数,则符合条件的数仅为16、36,当1B =时,满足AB 是一个质数的数有11,31,41,61,71,时,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有3163符合; 当3B =,满足AB 是一个质数的数有13,23,43,53,73,83,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有8368符合. 【例 1】 2001个连续的自然数之和为a b c d ???,若a 、b 、c 、d 都是质数,则a b c d +++的最小值是 多少 【分析】 遇到等量关系的表述时,先将其转化为数学语言.设这2001个连续自然数中最小的一个是A ,则 最大的一个是2000A +(遇到多个连续自然数问题,转化时一般均采用假设法,自己需要的量,题目中没有时,可以设未知数),则它们的和是: 第 5讲 数论(一)

2018最新小学奥数专题之-数论专题典型结论汇总

数论专题典型结论汇总 整除 一、常见数字的整除判定方法 1.一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2.一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个 数能被11整除. 4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这 个数能被7、11或13整除. 5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则 拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 【备注】(以上规律仅在十进制数中成立.) 二、整除性质 性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,c ︱b ,那么c ︱(a ±b ). 性质2如果数a 能被数b 整除,b 又能被数c 整除,那么a 也能被c 整除.即如果b ∣a , c ∣b ,那么c ∣a . 用同样的方法,我们还可以得出: 性质3如果数a 能被数b 与数c 的积整除,那么a 也能被b 或c 整除.即如果bc ∣a ,那 么b ∣a ,c ∣a . 性质4如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b 与c 的乘积整除.即如果b ∣a ,c ∣a ,且(b ,c )=1,那么bc ∣a . 例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4)∣12. 性质5如果数a 能被数b 整除,那么am 也能被bm 整除.如果b |a ,那么bm |am (m 为 非0整数); 性质6如果数a 能被数b 整除,且数c 能被数d 整除,那么ac 也能被bd 整除.如果b | a ,且d |c ,那么bd |ac ;质数合数 一、判断一个数是否为质数的方法 根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=?,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数. 二、唯一分解定理 任何一个大于1的自然数n 都可以写成质数的连乘积,即: 312123k a a a a k n p p p p =????

小学奥数 数论问题 第八讲 提高篇之数论综合

第八讲提高篇之数论综合 课上习题 【例1】有一个正整数,它加上100后是一个完全平方数,加上168后也是一个完全平方数。这个正整数是多少? 【例2】已知甲、乙两个自然数的最大公约数是6,两数之和为1998。满足上述条件的数一共有多少组? 【例3】数学老师把一个两位数的约数个数告诉了小悦,聪明的小悦仔细思考了一下后算出了这个数。同学们,你们知道这个数可能是多少吗? 课后习题 基础篇 【闯关1】26460 的所有的约数中,6 的倍数有多少个?与6 互质的有多少个? 【闯关2】11 个连续两位数乘积的末4 位都是0,那么这11 个数的总和最小是多少? 提高篇 【闯关3】一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如23- 2 16 ,16 就是一个“智慧数”。请问:从1 开始的自然数数列中,第2008 个“智慧 5 数”是多少? 【闯关4】已知三个互不相等的正整数成等差数列,且三个数的乘积是完全平方数,那么这三个数的和最小是多少? 巅峰篇 【闯关5】有4 个互不相同的三位数,它们的首位数字相同,并且它们的和能被它们之中的3 个数整除。请写出这4 个数。

第八讲提高篇之数论综合 课后习题: 基础篇 【闯关1】26460 的所有的约数中,6 的倍数有多少个?与6 互质的有多少个? 解析:26460÷6=4410=2×3^2×5×7^2约数个数(1+1)(2+1)(1+1)(2+1)=36。 26460 除去2 与3 的因数,剩下为5×7^2,约数个数6 个,这6 个均与6 互质。 【闯关2】11 个连续两位数乘积的末4 位都是0,那么这11 个数的总和最小是多少? 解析:11 个连续两位数,至多3 个5 的倍数,那么还有1 个25 的倍数。把25 放最后一个是最小,这八个数为15~25。 提高篇 【闯关3】一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如23- 2 16 ,16 就是一个“智慧数”。请问:从1 开始的自然数数列中,第2008 个“智慧 5 数”是多少? 解析:所有的奇数均可,a^2-b^2=(a-b)(a+b),所有4 的倍数均可,所有除以4 余2 的均不行。2008÷3=669……1,669×4=2676,2676+4=2680 所以第2008个智慧树是2680 【闯关4】已知三个互不相等的正整数成等差数列,且三个数的乘积是完全平方数,那么这三个数的和最小是多少? 解析:假设三数为k,2k,3k,乘积是6k^3,只要令k=6 即满足 此时三数分别是6,12,18 巅峰篇 【闯关5】有4 个互不相同的三位数,它们的首位数字相同,并且它们的和能被它们之中的3 个数整除。请写出这4 个数。 解析:设为a、b、c、d,和是a、b、c 的倍数,且a

高斯小学奥数六年级上册含答案第16讲 数论综合提高二

第十六讲 数论综合提高二 本讲知识点汇总: 一、约数、倍数 1. 基本概念 (1) 如果a 能被b 整除(也就是),则b 是a 的约数(因数),a 是b 的倍数; (2) 约数具有“配对”性质:大约数对应小约数. 2. 约数个数 (1) 分解质因数,指数加1再相乘; (2) 平方数有奇数个约数,非平方数有偶数个约数. 3. 约数和公式 (1) 如果一个数的质因数分解式为,则约数和为; (2) 如果一个数的质因数分解式为,则约数和为; 二、公约数、公倍数 1. 基本概念 (1) 如果a 是若干个数公有的约数,则称a 是它们的公约数,其中最大的叫做最大公约数; (2) 如果b 是若干个数公有的倍数,则称b 是它们的公倍数,其中最小的叫做最小公倍数; (3) 公约数是最大公约数的约数,公倍数是最小公倍数的倍数. 2. 计算方法 (1) 短除法; (2) 分解质因数法; (3) 辗转相除法(只用于计算两个数的最大公约数). 3. 基本性质 (1) ; (2) 两个数的最大公约数是它们和或差的约数; (3) 已知两个未知数的最大公约数,可利用最大公约数把这两个数表示出来: 例如,甲、乙的最大公约数是5,则可以把甲乙分别设为5a 和5b ,其中a 、b 互质,此时甲乙的最小公倍数是5ab . 4. 两个最简分数的最大公约数、最小公倍数: ()[],,a b a b a b ?=? ()()()2111a b c c +?+?++ 2a b c ?? ()()22311a a b b b ++?+++ 23a b ? |b a

; 一、 约数、倍数 1. 约数的配对思想; 2. 约数个数与完全平方数的关系; 3. 求约数个数; 4. 求约数的和; 5. 利用约数个数反推原数的质因数分解形式. 二、 公约数、公倍数 1. 基本计算; 2. 带有应用题背景的公约数公倍数计算; 3. 有关最大公约数和最小公倍数的反求问题; 4. 最大公约数、最小公倍数的质因数的分配. 例1. 庆祝高思学校4周岁的生日,预计在12月5日高思成立日的当天举行大型的庆祝活 动,由编号1~100的100名高思小明星们组成的方阵,开始都面朝东方站立,第一次所有编号是1的倍数的向左转,第二次所有编号是2的倍数的小朋友再向左转,第三次编号是3的倍数的小朋友再向左转,……,最后一次所有编号是100的倍数的小朋友再向左转,最后所有小朋友中有多少名小朋友面朝南方? 「分析」首先分析出转几次的人会面朝南方,这些次数排成一列,找出这组数列的规律. 练习1、有2012盏灯,分别对应编号为1至2012的2012个开关.现在有编号为1至2012的2012个人来按动这些开关.已知第1个人按的开关的编号是1的倍数,第2个人按的开关的编号是2的倍数,第3个人按的开关的编号是3的倍数,……,依次做下去,第2012个人按的开关的编号是2012的倍数.如果最开始的时候,灯全是亮着的,那么这2012个人按完后,还有多少盏灯是亮着的? 经典题型 []()a c a c b d b d ??=????,,, ()[]a c a c b d b d ??= ???,,,

高斯小学奥数六年级上册含答案第15讲数论综合提高一

第十五讲数论综合提高 本讲知识点汇总: 一. 整除 1. 整除的定义 如果整数a除以整数b b 0,所得的商是整数且没有余数,我们就说a能被b整除,也可以说b能整除a,记作b|a . 如果除得的结果有余数,我们就说a不能被b整除,也可以说b不整除a. 2. 整除判定 (1)尾数判断法 能被2、5整除的数的特征:个位数字能被2或5整除; 能被4、25整除的数的特征:末两位能被4或25整除; 能被& 125整除的数的特征:末三位能被8或125整除. (2)截断求和法 能被9、99、999及其约数整除的数的特征. (3)截断求差法 能被11、101、1001及其约数整除的数的特征. (4)分解判定:一些复杂整数的整除性,例如63、72等,可以把它们分拆成互 质的整数,分别验证整除性. 3. 常用整除性质 (1)已知 a | b、a |c,则a | b c 以及a| b c . ( b>c) (2)已知ab |ac,则b |c . (3)已知 a | bc 且a,b 1,则 a | c ? (4)已知 a | c 且 b |c,贝V a, b c . 4. 整除的一些基本方法: (1)分解法: ①分解得到的数有整除特性; ②两两互质. (2)数字谜法: ①被除数的末位已知; ②除数变为乘法数字谜的第一个乘数.

(3)试除法: ①除数比较大; ②被除数的首位已知 (4) 同除法: ①被除数与除数同时除以相同的数; ②简化后的除数有整除特性? 二、质数与合数 1. 质数与合数的定义 质数是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除 的数. 2. 分解质因数 分解质因数是指把一个数写成质因数相乘的形式. 女口:100 225 , 28 0 235 7 ? 典型题型 一.整除 1. 基本整除问题:对各种整除的判别法要非常熟悉,尤其是9和11这种常见数字; (1)9的考点:乱切法; (2)11的考点:① 奇位和减偶位和;② 两位截断求和;③ 三位截断,奇段和减偶段 和. 2. 整除性质的使用; 3. 整除与位值原理; 4. 整除方法在数字谜中的应用. 二.质数合数 1. 质数合数填数字:注意2和5的特殊性; 2. 判断大数是否为质数:逐一试除法; 3. 末尾0的个数问题:层除法. 例1. ( 1)五位数3口6口5没有重复数字,如它能被75整除,那么这个五位数可能是多少?

六年级奥数数论题:整数的裂项与拆分

六年级奥数数论题:整数的裂项与拆分 若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子 里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放 到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子? 分析:设原来小球数最少的盒子里装有a只小球,现在增加了b只, 因为小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a 个小球的盒子,而这只盒子里原来装有(a+1)个小球. 同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球. 类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原 来那些盒子中装有的小球数是一些连续整数. 所以将42分拆成若干个连续整数的和,一共有多少种分法,每一种分 法有多少个加数,据此解答. 解:设原来小球数最少的盒子里装有a只小球,现在增加了b只,因 为小聪没有发现有人动过小球和盒子, 这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有 (a+1)个小球. 同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球. 类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等, 故原来那些盒子中装有的小球数是一些连续整数. 将42分拆成若干个连续整数的和,

因为42=6×7,故能够看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数; 又因为42=14×3,故可将42:13+14+15,一共有3个加数; 又因为42=21×2,故可将42=9+10+11+12,一共有4个加数. 所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子. 答:一共有7只、4只或3只盒子.

相关主题
文本预览
相关文档 最新文档