当前位置:文档之家› 高中数学选修2-2教学设计5:简单复合函数求导教案

高中数学选修2-2教学设计5:简单复合函数求导教案

高中数学选修2-2教学设计5:简单复合函数求导教案
高中数学选修2-2教学设计5:简单复合函数求导教案

简单复合函数求导

教学目标 理解并掌握复合函数的求导法则.

教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积.

教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.

一.创设情景

(一)基本初等函数的导数公式表

(二)导数的运算法则 导数运算法则

1.[]'''()()()()f x g x f x g x ±=±

2.[]'''

()()()()()()f x g x f x g x f x g x ?=± 3.[]

'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ??-=≠????

(2)推论:[]''()()cf x cf x =

(常数与函数的积的导数,等于常数乘函数的导数)

二.新课讲授

复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可函数 导数 y c = '0y = *()()n y f x x n Q ==∈ '1n y nx -= sin y x = 'cos y x = cos y x = 'sin y x =- ()x y f x a == 'ln (0)x y a a a =?> ()x y f x e == 'x y e =

()log a f x x = '1()log ()(01)ln a f x xf x a a x a

==>≠且 ()ln f x x = '1()f x x =

以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。

复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=?,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

若()()y f g x =,则()()()()()y f g x f g x g x ''''==?????

三.典例分析

例1求y =sin (tan x 2)的导数.

【点评】

求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果. 例2求y =ax x a

x 22--的导数.

【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理.

例3求y =sin 4x +cos 4x 的导数.

【解法一】y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2cos 2x =1-

21sin 22 x =1-41(1-cos 4 x )=43+4

1cos 4 x .y ′=-sin 4 x . 【解法二】y ′=(sin 4 x )′+(cos 4 x )′=4 sin 3 x (sin x )′+4 cos 3x (cos x )′=4 sin 3 x cos x +4 cos 3 x (-sin x )=4 sin x cos x (sin 2 x -cos 2 x )=-2 sin 2 x cos 2 x =-sin 4 x

【点评】

解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步.

例4曲线y =x (x +1)(2-x )有两条平行于直线y =x 的切线,求此二切线之间的距离.

【解】y =-x 3 +x 2 +2 x y ′=-3 x 2+2 x +2

令y ′=1即3 x 2-2 x -1=0,解得 x =-

31或x =1. 于是切点为P (1,2),Q (-31,-27

14), 过点P 的切线方程为,y -2=x -1即 x -y +1=0.

显然两切线间的距离等于点Q 到此切线的距离,故所求距离为2

|1271431|++-=22716. 四.课堂练习

1.求下列函数的导数 (1) y =sin x 3+sin 33x ;(2)1

22sin -=

x x y ;(3))2(log 2-x a 2.求)132ln(2++x x 的导数

五.回顾总结六.布置作业

简单复合函数求导

简单复合函数的导数 一、基础知识梳理: (一)常用的求导公式 11.(),'()0;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();1 7.()log ,'()(0,1); ln 8.n n x x x x a f x c f x f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -========-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x == 则 (二)复合函数的求导数公式 若u=u(x),v=v(x)在x 处可导,则 2 )()()()(v v u v u v u u c cu v u v u v u v u v u '-'='' =''+'='?'±'='± (三)复合函数求导法则 1、二重复合:若)(u f y =, )(x u φ= 且)(x u φ=在点x 处可导。 则)()('?'='x u f y φ 2、多次复合函数求导法则类推 二、典型例题分析: 例1、求下列函数的导数; 1)、3 (23)y x =- 2)、ln(51)y x =+

练习:求下列函数的导数 1)、2 (23)y x =+ 2)、3 (13)y x =- 例2、求下列函数的导数; 1)、1 31 y x = - 2)、cos(12)y x =- 练习:求导数; 1)、1ln y x = 2)、2x y e = 3)、求曲线sin 2y x =在点P (,0π)处的切线方程。 例题3 已知(5)5,'(5)3,(5)4,'(5)1f f g g ==== ,根据下列条件 求(5)h 及'(5)h 1)、()3()2()h x f x g x =+ 2)、 ()()()1h x f x g x =+ 3)、()2 ()() f x h x g x +=

隐函数求导公式

第5节:隐函数的求导公式 教学目的:掌握由一个方程和方程组确定的隐函数求导公式,熟练计算隐函数的导函数。 教学重点:由一个方程确定的隐函数求导方法。 教学难点:隐函数的高阶导函数的计算。 教学方法:讲授为主,互动为辅 教学课时:2 教学内容: 一、一个方程的情形 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F

由于y F 连续,且0),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内0≠y F ,于是得 .y x F F dx dy -= 如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得 dx dy F F y F F x dx y d y x y x ???? ??-??+???? ??-??= 22 .23 2222y x yy y x xy y xx y x y x yy y xy y x yz y xx F F F F F F F F F F F F F F F F F F F F +--=???? ??-----= 例 1 验证方程012 2 =-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。 解 设=),(y x F 12 2-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此 由定理1可知,方程012 2 =-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。 下面求这函数的一阶和二阶导数 y x F F dx dy -==y x -, 00 ==x dx dy ; 22dx y d =,1) (3 32222y y x y y y x x y y y x y -=+-=---='-- 10 2 2-==x dx y d 。 隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函

高等数学-隐函数的求导法则

第五节 隐函数的求导法则 一、一个方程的情形 隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有 d d x y F y x F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入 (,)0F x y =,得恒等式 (,())0F x f x ≡, 等式两边对x 求导得 d 0d F F y x y x ??+=??, 由于0y F ≠ 于是得 d d x y F y x F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数: 22d d ()()d d x x y y F F y y x x F y F x ?? =-+-? ?? 2 2 ()x x y y x x x y y y y x x y y y F F F F F F F F F F F F --=- - - 22 32x x y x y x y y y x y F F F F F F F F -+=- . 例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个

单值可导的隐函数()y f x =,并求22 d d ,00 d d y y x x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠. 因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =. d 0d y x x =0x y F x F =-= e 10,0 cos x y x y y x -=-=-==-, 22d 0d y x x = d e () 0,0,1 d cos x y x y y x y x -=-'===-- 02 01 (e )(cos )(e )(sin 1) (cos )x x x y y y y x y y y y x =='=-''-----?-=- -3=-. 隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有 x z F z x F ?=-?,y z F z y F ?=-?. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入 (,,)0F x y z =, 得(,,(,))0F x y f x y ≡,

复合函数的求导法则(导案)

当堂检测 1.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)4 x x y = ; (2)1ln 1ln x y x -=+. (3)2(251)x y x x e =-+?; (4)sin cos cos sin x x x y x x x -=+ 解: (1)''''224(4)144ln 41ln 4()4(4)(4)4 x x x x x x x x x x x x x y ?-??-?-====, '1ln 44x x y -=。 (2)''''221 1ln 212()(1)2()21ln 1ln 1ln (1ln )(1ln ) x x y x x x x x x -==-+==?=+++++ '2 2(1ln )y x x =+ (3)'2'2'(251)(251)()x x y x x e x x e =-+?+-+? 22(45)(251)(24)x x x x e x x e x x e =-?+-+?=--?, '2(24)x y x x e =--?。 (4)''sin cos ()cos sin x x x y x x x -=+ '' 2(sin cos )(cos sin )(sin cos )(cos sin )(cos sin ) x x x x x x x x x x x x x x x -?+--?+=+ 2 (cos cos sin )(cos sin )(sin cos )(sin sin s )(cos sin )x x x x x x x x x x x x xco x x x x -+?+--?-++= + 2 sin (cos sin )(sin cos )s (cos sin )x x x x x x x x xco x x x x ?+--?=+ 2 2 (cos sin )x x x x =+。 2 ' 2(cos sin )x y x x x =+

最新复合函数求导练习题

复合函数求导练习题 一.选择题(共26小题) 1.设,则f′(2)=() A.B.C.D. 2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为() A.y=4x B.y=4x﹣8 C.y=2x+2 D. 3.下列式子不正确的是() A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2 C.(2sin2x)′=2cos2x D.()′= 4.设f(x)=sin2x,则=() A.B.C.1 D.﹣1 5.函数y=cos(2x+1)的导数是() A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1) C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1) 6.下列导数运算正确的是() A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 7.下列式子不正确的是() A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x C.D. 8.已知函数f(x)=e2x+1﹣3x,则f′(0)=() A.0 B.﹣2 C.2e﹣3 D.e﹣3 9.函数的导数是() A. B. C.D. 10.已知函数f(x)=sin2x,则f′(x)等于() A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x 11.y=e sinx cosx(sinx),则y′(0)等于() A.0 B.1 C.﹣1 D.2

12.下列求导运算正确的是() A. B. C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x 13.若,则函数f(x)可以是() A.B.C.D.lnx 14.设 ,则f2013(x)=() A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x) C.22012(cos2x+sin2x)D.22013(sin2x+cos2x) 15.设f(x)=cos22x,则=() A.2 B.C.﹣1 D.﹣2 16.函数的导数为() A.B. C.D. 17.函数y=cos(1+x2)的导数是() A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2) 18.函数y=sin(﹣x)的导数为() A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+) 19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是() A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是() A.y′=cos(2x2+x)B.y′=2xsin(2x2+x) C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x) 21.函数f(x)=sin2x的导数f′(x)=() A.2sinx B.2sin2x C.2cosx D.sin2x 22.函数的导函数是() A.f'(x)=2e2x B. C.D.

复合函数求导及应用

复合函数求导及应用 求y =(3x +2)2,f (u )=u 2,g (x )=3x +2的导数. 1.复合函数的概念 对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成 x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f (g (x )). 2.复合函数的求导法则 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 题型一 简单的复合函数求导问题 [例1] 求下列函数的导数: (1)y =1-2x 2;(2)y =e sin x ;(3)??? ? ?+=32sin πx y ;(4)y =5log 2(2x +1). [解] (1)设21u y =,u =1-2x 2,则y ′=(21u )′(1-2x 2 )′=2121-u ·(-4x ) =()21 2 2-121-x (-4x )=-2x 1-2x 2 . (2)设y =e u ,u =sin x ,则y x ′=y u ′·u x ′=e u ·cos x =e sin x cos x . (3)设y =sin u ,u =2x +π3,则y x ′=y u ′·u x ′=cos u ·2=2cos (2x+3 π). (4)设y =5log 2u ,u =2x +1,则y ′=5(log 2u )′(2x +1)′=10u ln 2= 102x +1ln 2 . 复合函数的求导步骤

复合函数求导方法和技巧

复合函数求导方法和技巧 毛涛 (陕西理工学院数计学院数学与应用数学专业2011级1班,陕西 汉中 723000) 指导老师:刘延军 [摘要]复合函数求导是数学分析中的一个难点,也是微积分中的一个重点和难点,因此本文先从复合函数的定义以及性质入手,在全面了解复合函数后再探讨复合函数的求导方法,分析复合函数求导过程中容易出现的问题,然后寻求能快速准确的对复合函数进行求导的方法,并进行归纳总结,最终进行推广,帮助学生的有效学习。 [关键词] 复合函数,定义,分解,方法和技巧,数学应用 1引言 复合函数求导是数学分析中的一个难点,也是高等数学三大基本运算中的关键,是学生深入学习高等数学知识,提高基本运算技能的基础,对学生后继课程的学习和思维素质的培养起着至关重要的作用,在各学科和现实生活中也发挥着越来越重要的作用,从而必须解决复合函数的求导问题。同时,在教学过程中,许多学生在进行求导时也犯各种各样的错误,有的甚至在学习复合函数求导之后做题时仍然不会进行求导,或者只能求导对一部分,而对另外一部分比较复杂的复合函数则还停留在一知半解的程度上,不知该求导哪一部分,也不知要对哪一部分得进行分解求导。复合函数求导方法是求导的重中之重,而且也是函数求导、求积分时不可缺少的工具,这个问题解决的好坏直接影响到换元积分法甚至以后的数学学习是否能够顺利进行。求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,然后由外层向内层逐层求导(或者也可以由内层向外层逐层求导),直到关于自变量求导,同时还要注意不能漏掉求导环节并及时化简计算结果。因此本文先给出了复合函数的定义和性质,在充分了解并且掌握复合函数的概念之后,根据其定义和性质对各种复合函数进行求导,通过对链式求导法、对数求导法、反序求导法、多元复合函数的一元求导法以及反函数求导法的分析,加以对各种对应例题的详细分解,分析每一步的步骤,比较各种求导方法,明确并且能够掌握各种题型的最佳解决方法,最终寻求一种能够既简便又准确的解决复合函数求导问题的方法,并总结技巧,方便在以后学习生活中的使用。 2复合函数的定义 如果y 是a 的函数,a 又是x 的函数,即()y f a =,()a g x =,那么y 关于x 的函数[] ()y f g x =

65 1.2.3 简单复合函数的导数 (文科:补充)教师版

反思感悟: 1.2.3 简单复合函数的导数 (文科:补充) 教师版 班级:高二( )班 姓名: 时间: 月 日 一、学习目标 1. 了解复合函数的概念; 2. 理解简单复合函数的求导法则; 3. 会求简单的复合函数的导数. 教学重、难点:简单复合函数的求导法则的理解与应用. 本课内容简析:本课从两个实例入手,归纳、总结出了简单复合函数的求导 法则. 在学习中,要注意对简单复合函数的求导法则的准确理解和应用. 二、自学内容 阅读选修2-2 P23(文科 见导学案附),然后尽可能...用多..种.方法.. 完成下列练习. 1. 已知sin 2y x =,求y '. (教材P23) 解:法一:[](sin 2)2(sin cos )2(sin )cos sin (cos )y x x x x x x x '''''===+ 222(cos sin )2cos2x x x =-=. 法二:sin 2y x =可由sin y u =及2u x =复合而成,从而cos 22cos2x y u x '=?=. 2. 已知2x y e =,求y '. 解:法一:22()()()()2x x x x x x x x y e e e e e e e e '''''==?=?+?=. 法二:2x y e =可由u y e =及2u x =复合而成, 从而2()222u u x x u x y y u e e e ''''=?=?==. 3. 已知2(23)y x =+,求y '. 解:法一:∵24129y x x =++,∴812y x '=+. 法二:[](23)(23)(23)(23)(23)(23)812y x x x x x x x ''''=++=+++++=+. 法三:2(23)y x =+可由2y u =及23u x =+复合而成,从而22812x y u x '=?=+. 三、问题探究 例1 求下列函数的导数: (1)3(23)y x =-; (2)ln(51)y x =+; 解:(1)3(23)y x =-可由3y u =及23u x =-复合而成, 从而322()266(23)x u x y y u u u x ''''=?=?==-. (2)ln(51)y x =+可由ln y u =及51u x =+复合而成, 从而55(ln )551x u x y y u u u x ''''=?=?==+.

隐函数的求导方法总结

百度文库- 让每个人平等地提升自我 河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

隐函数地求导方法总结材料

地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间确定 了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x 故 1=x dx dy = ) 1,(!y x =1

复合函数求导法则及其应用

习 题 4.4 复合函数求导法则及其应用 ⒈ 求下列函数的导数: ⑴ y x x =-+()2122; ⑵ y x x =e sin 23; ⑶ y x = +1 13 ; ⑷ y x x = ln ; ⑸ y x =sin 3; ⑹ y x =cos ; ⑺ y x x x =+-++11ln(); ⑻ y x =-arcsin (e )2 ; ⑼ ??? ? ?-=221ln x x y ; ⑽ y x x =+1 222(sin ); ⑾ y x x x = +-1122 ln ; ⑿ y x x = +12 csc ; ⒀ y x x = -++2213 31 23 34; ⒁ y x =-e sin 2 ; ⒂ y x a x x a x =-+-2 2 22. 解 (1))14)(12(2)'12)(12(2'222-+-=+-+-=x x x x x x x y 。 (2))3sin 23cos 3(3sin )'()'3(sin '222x x e x e x e y x x x +=+=。 (3)23 32323 3)1(2 3 )'1()1(21'--+-=++-=x x x x y 。 (4)2 12 ' 2 1 ln 2ln 1ln ln 21'?? ? ??-=?? ? ????? ??=x x x x x x x x y 。 (5)3233cos 3)'(cos 'x x x x y ==。 (6)x x x x y 2sin )'(sin '- =-=。

(7 )1'2y = 。 (8 )2 2 'x x y --= = 1 22 2--x e x 。 (9)44 2 4(1)'1'[ln(1)ln(]'21x y x x x x -=--=--=4422 (1)x x x +-。 (10)2232(2sin )''(2sin )x x y x x -+=+=3 2) sin 2() cos 4(2x x x x ++-。 (11 )'y == 2 322222)1() 21)(ln 1(ln )1(2x x x x x x - -+--。 (12 )2 ' '1csc x x y x =+ = 2222 322 1csc csc cot (1csc ) x x x x x ++= +。 (13 )'y =+ 452323 4112()(21)(4)3()(31)(9)34x x x x --=--+-+ 45 223 34827(21)(31)34 x x x x --=---+。 (14)2sin 2'e (sin )'x y x -=-2 sin sin 2x x e -=-?。

复合函数求导法-教案

1 2.2.2 复合函数求导法 教学要求: 理解并熟练掌握复合函数求导法,会用反函数求导数 教学内容: 一、复习提问: 1、导数的基本公式 2、导数的四则运算法则 上一节介绍了函数的定义、导数的四则运算法则、基本初等函数求导公式,并能求出了一些简单函数的导数。但是求常见的初等函数的导数时,往往需要借助于求导法则,本节就将介绍这些求导法则。 二、复合函数的求导法则 1、比如求函数x y 2sin =的导数。 错误解答:x y 2cos =' 正确解答:()()() x x x x x x y 2cos 2sin cos 2cos sin 22sin 22=-=' ='=' 对比一下,答案错误的原因是把x 2当成了自变量。 我们先把复合函数x y 2sin =进行分解为x u u y 2,sin ==。x u dx du du dy dx dy y 2cos 22cos =?=?== ' 1、 求复合函数的导数可分两步: 第一步(关键步骤):先将复合函数分为若干个简单函数,辨明各函数的中间变量和自变量。 第二步:逐一分步求导。 复合函数求导法则: 设函数()y f u =在点u 处可导,()u x ?=在点x 处可导,则复合函数[()]y f u ?=在点x 处可导,且有 ()()dy f u x dx ?''=? 或 dy dy du dx du dx =? 证明 设变量x 有改变量x ?,相应地,变量u 有改变量u ?,从而y 有改变量y ?. 由于u 可导,所以 0lim 0 =?→?u x , 即 x u x u y y '?'='. 现在利用复合函数求导法则求x y 2sin =的导数:u y sin =,x u 2=(中间变量为u ,自变量为x ),即 (对u 求导)(对x 求导) (回代) 可以推广到有限多个复合步骤构成的复合函数求导。 推论 设函数()y f u =,()u v ?=,()v x ψ=都是可导函数,则复合函数{[()]}y f x ?ψ=也可导,且 ()()()u v x dy f u v x y u v dx ?ψ''''''=??=?? 或 dy dy du dv dx du dv dx =?? 注意: {[()]}f x ?'表示复合函数y 对自变量x 的导数, 如 2 [sin(1)]y x '=+=2 2cos(1)x x +

隐函数的求导方法情况总结

河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (6) 1.公式法 (6) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有 y x y F F d d x - =。 例1:验证方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,

高中数学选修2-2教学设计5:简单复合函数求导教案

简单复合函数求导 教学目标 理解并掌握复合函数的求导法则. 教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积. 教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确. 一.创设情景 (一)基本初等函数的导数公式表 (二)导数的运算法则 导数运算法则 1.[]'''()()()()f x g x f x g x ±=± 2.[]''' ()()()()()()f x g x f x g x f x g x ?=± 3.[] '''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ??-=≠???? (2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 二.新课讲授 复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可函数 导数 y c = '0y = *()()n y f x x n Q ==∈ '1n y nx -= sin y x = 'cos y x = cos y x = 'sin y x =- ()x y f x a == 'ln (0)x y a a a =?> ()x y f x e == 'x y e = ()log a f x x = '1()log ()(01)ln a f x xf x a a x a ==>≠且 ()ln f x x = '1()f x x =

以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。 复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=?,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 若()()y f g x =,则()()()()()y f g x f g x g x ''''==????? 三.典例分析 例1求y =sin (tan x 2)的导数. 【点评】 求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果. 例2求y =ax x a x 22--的导数. 【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理. 例3求y =sin 4x +cos 4x 的导数. 【解法一】y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2cos 2x =1- 21sin 22 x =1-41(1-cos 4 x )=43+4 1cos 4 x .y ′=-sin 4 x . 【解法二】y ′=(sin 4 x )′+(cos 4 x )′=4 sin 3 x (sin x )′+4 cos 3x (cos x )′=4 sin 3 x cos x +4 cos 3 x (-sin x )=4 sin x cos x (sin 2 x -cos 2 x )=-2 sin 2 x cos 2 x =-sin 4 x 【点评】 解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步. 例4曲线y =x (x +1)(2-x )有两条平行于直线y =x 的切线,求此二切线之间的距离. 【解】y =-x 3 +x 2 +2 x y ′=-3 x 2+2 x +2 令y ′=1即3 x 2-2 x -1=0,解得 x =- 31或x =1. 于是切点为P (1,2),Q (-31,-27 14), 过点P 的切线方程为,y -2=x -1即 x -y +1=0. 显然两切线间的距离等于点Q 到此切线的距离,故所求距离为2 |1271431|++-=22716. 四.课堂练习 1.求下列函数的导数 (1) y =sin x 3+sin 33x ;(2)1 22sin -= x x y ;(3))2(log 2-x a 2.求)132ln(2++x x 的导数

高中数学复合函数的求导法则教案

§1.2.2复合函数的求导法则 教学目标 理解并掌握复合函数的求导法则. 教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积. 教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确. 一.创设情景 (一)基本初等函数的导数公式表 (2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)

二.新课讲授 复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。 复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=?,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 若()()y f g x =,则()()()()()y f g x f g x g x ''''==????? 三.典例分析 例1求y =sin (tan x 2)的导数. 【点评】 求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果. 例2求y =ax x a x 22--的导数. 【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理. 例3求y =sin 4x +cos 4x 的导数. 【解法一】y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2cos 2x =1- 21sin 22 x =1-41(1-cos 4 x )=43+4 1cos 4 x .y ′=-sin 4 x . 【解法二】y ′=(sin 4 x )′+(cos 4 x )′=4 sin 3 x (sin x )′+4 cos 3x (cos x )′=4 sin 3 x cos x + 4 cos 3 x (-sin x )=4 sin x cos x (sin 2 x -cos 2 x )=-2 sin 2 x cos 2 x =-sin 4 x 【点评】 解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步. 例4曲线y =x (x +1)(2-x )有两条平行于直线y =x 的切线,求此二切线之间的距离. 【解】y =-x 3 +x 2 +2 x y ′=-3 x 2+2 x +2 令y ′=1即3 x 2-2 x -1=0,解得 x =- 31或x =1. 于是切点为P (1,2),Q (-31,-27 14), 过点P 的切线方程为,y -2=x -1即 x -y +1=0. 显然两切线间的距离等于点Q 到此切线的距离,故所求距离为2 |1271431|++-=22716.

复合函数求导练习题及解答

复合函数求导练习题及解答 1. 简单函数的定义求导的方法求函数的增量?y?f?f; ?yf?f?。 ?x?x f?f 取极限求导数f’?lim ?x?0?x 求平均变化率 2.导数与导函数的关系:特殊与一般的关系。函数在某一点f’的导数就是导函数f,当x?x0时的函数值。.常用的导数公式及求导法则:公式 ①C?0,③’??sinx ‘ ②’?cosx ④’?nxn?1 ⑥’?ex ⑤’?axlna ⑦? ‘ 11’ ⑧? xlnax11’’ cotx)??⑨? ⑩法则:[f?g]?[f]?[g], [fg]’?f’g?g’f f’f’g?g’f [ ]?2 gg 例:

32 y?xx?4y? ?? sinx x y?3cosx?4sinx y??2x?3? y?ln?x?2? 2 复合函数的导数 如果函数?在点x处可导,函数f 在点u=?处可导,则复合函数y= f =f [?]在点x处也可导,并且 ])ˊ= 或记作熟记链式法则 若y= f ,u=?? y= f [?],则 f?????? ??u?y?x=yux y?x=f??? 若y= f ,u=?,v=? ? y= f [?)],则 ?? y?x=f??? 复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成 的,且要求这些中间变量均为基本初等函数或经过四

则运算而成的初等函数。在求导时要由外到内,逐层求导。 例1函数y? 1 的导数. 4 解:y? 1?4 . ?4 ,u?1?3x,则 设y?u ?4 y’x?y’u?u’x?’u?’x ??4u ?5 ??12u?5?12?5? 12 . 例2求y?x 的导数. 1?x 15

复合函数的求导法则教案

§1.2.3复合函数的求导法则 教学目标 理解并掌握复合函数的求导法则. 教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积. 教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确. 一.创设情景 (一)基本初等函数的导数公式表 导数运算法则 1.[]' ''()()()()f x g x f x g x ±=± 2.[]' ''()()()()()()f x g x f x g x f x g x ?=± 3.[] ' ''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ??-=≠???? (2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 函数 导数 y c = '0y = *()()n y f x x n Q ==∈ '1n y nx -= sin y x = 'cos y x = cos y x = 'sin y x =- ()x y f x a == 'ln (0)x y a a a =?> ()x y f x e == 'x y e = ()log a f x x = '1()log ()(01)ln a f x xf x a a x a ==>≠且 ()ln f x x = '1()f x x =

二.新课讲授 复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。 复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=?,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 若()()y f g x =,则()()()()()y f g x f g x g x ''''==????? 三.典例分析 例1求y =sin (tan x 2)的导数. 【点评】 求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果. 例2求y =ax x a x 22--的导数. 【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理. 例3求y =sin 4x +cos 4x 的导数. 【解法一】y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2cos 2x =1- 21sin 22 x =1-41(1-cos 4 x )=43+4 1cos 4 x .y ′=-sin 4 x . 【解法二】y ′=(sin 4 x )′+(cos 4 x )′=4 sin 3 x (sin x )′+4 cos 3x (cos x )′=4 sin 3 x cos x + 4 cos 3 x (-sin x )=4 sin x cos x (sin 2 x -cos 2 x )=-2 sin 2 x cos 2 x =-sin 4 x 【点评】 解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步. 例4曲线y =x (x +1)(2-x )有两条平行于直线y =x 的切线,求此二切线之间的距离. 【解】y =-x 3 +x 2 +2 x y ′=-3 x 2+2 x +2 令y ′=1即3 x 2-2 x -1=0,解得 x =- 31或x =1. 于是切点为P (1,2),Q (-31,-27 14), 过点P 的切线方程为,y -2=x -1即 x -y +1=0. 显然两切线间的距离等于点Q 到此切线的距离,故所求距离为2 |1271431|++-=22716.

相关主题
文本预览
相关文档 最新文档