当前位置:文档之家› 挤出设备计算与选型

挤出设备计算与选型

挤出设备计算与选型
挤出设备计算与选型

第4章挤出设备计算与选型

挤出生产线的设备计算

依据设计任务书,要求要设计年产量25万吨PUC-U塑钢型材生产车间,生产时间设置为6744 小时。

选择的挤岀机为TSH-135双螺杆挤岀机,其生产能力为5000kg/h,则所需挤岀机台数为:+ 5 - 6774=台,实际中取为8台。即能完全符合产量要求,且留有增大产量空间,可减少机器满负荷运转的时段。并且该PVC-U型材推拉框生产线,自动化程度高,性能稳定,变频调速等多项特

点。所以选用TSH-135双螺杆挤岀机设备,其技术参数见表4-1[15]

混合机组的设备计算

高速混合机的选取与计算

每年需要高混的物料量为:

每天需要高混的物料量为:281 =

每小时需要高混的物料量:24=

每10分钟可以混一锅料,则每小时混6锅料,则每锅混料量:6= PVC-U粉料的表观密度为m3,每锅可装粉料量:=;

则需要高混机的最小容积为。

所以选用WLD-H-35高速加热/冷却混合机组,其技术参数见表4-2 表4-2 WLD-H-35热混机技术参数

高混机的有效容积取15m3, PVC-U粉料的表观密度为m3,每锅可装粉料量:

X 15= t

每10分钟可以混一锅料,则每小时混6锅料,则每小时混料量:

X 6= t/h

需要高混机:X 6744)台

所以选用2台WLD-H-35热混机。

冷混机的选取与计算

与WLD-H-35热混机配套的冷混机可选用WLD-H-35冷却机。WLD-H-35冷却机技术参数见表

4-3

表4-3 WLD-H-35冷混机技术参数

所以选用2台WLD-H-35冷混机

其它设备计算

粉碎机(技术参数见表4-4 )及磨粉机(技术参数见表4-5)因只在回收粉碎废品时使用,年需破碎、磨粉量为吨,全年需要破碎下脚料为吨,选用PE-200X 300型破碎机,每小时破碎量为

3-6t/h,因此选用大型的PE-200X 300型粉碎机和同规格的磨粉机即可满足生产;这些设备

生产线选用一台机器就可满足生产要求。

表4-4粉碎机设备技术参数

续表4-4粉碎机设备技术参数

根据设备的耗水量技术参数:混合机组:5m3/h ;PVC-U型材生产线:4m3/h。根据冷水机的技术参数(见表4-10):h,1台设备满足生产条件。

生产车间平面布置和工艺流程

生产工艺要求

(1)生产车间布置合理按照生产顺序布置设备,各条通道用途归置要合理避免相互交叉,车间内总体上要符合国家安全防火与环境保护的规定[16]。

(2)原材料取用要方便,运输路线合理布置,成品的堆放运输也要本着方便易行的原则。

(3)配电设备应尽可能靠近用电量大的设备,以减少电压降低和电能损耗;

伺服电机的选型和计算

电机的选择: (1)电机扭矩的计算 负载扭矩是由于驱动系统的摩擦力和切削力所引起的可用下式表达: FL M =π2 式中 M-----电动机轴转距; F------使机械部件沿直线方向移动所需的力; L------电动机转一圈(2πrad )时,机械移动的距离 2πM 是电动机以扭矩M 转一圈时电动机所作的功,而FL 是以F 力机械移动L 距离时所需的机械功。 实际机床上,由于存在传动效率和摩擦系数因素,滚珠丝杠克服外部载荷P 做等速运动所需力矩,应按下式计算: z z M h h F M B sp SP ao P K 2 11122? ??? ??++=ηππ M 1-----等速运动时的驱动力矩(N.mm) π 2h F sp ao K ---双螺母滚珠丝杠的预紧力矩(N.mm) F ao ------预紧力(N),通常预紧力取最大轴向工作载荷 F m ax 的1/3,即 F ao = 3 1 F m ax 当F m ax 难于计算时,可采用F ao =(0.1~0.12))(N C a ; C a -----滚珠丝杠副的额定载荷,产品样本中可查: h sp -----丝杠导程(mm); K--------滚珠丝杠预紧力矩系数,取0.1~0.2; P---------加在丝杠轴向的外部载荷(N),W F P μ+=; F---------作用于丝杠轴向的切削力(N); W--------法向载荷(N),P W W 11+=; W 1-----移动部件重力(N),包括最大承载重力; P 1 -------有夹板夹持时(如主轴箱)的夹板夹持力; μ --------导轨摩擦系数,粘贴聚四氟乙烯板的滑动导轨副09.0=μ,有润滑条件时,05.0~03.0=μ,直线滚动导轨004.0~003.0=μ; η 1 -------滚珠丝杠的效率,取0.90~0.95; M B ----支撑轴承的摩擦力矩,即叫启动力矩(N.m),可以从滚珠丝杠专用轴 承样本中得到,见表2-6(这里注意,双支撑轴承有M B 之和的问题) z 1--------齿轮1的齿数 z 2 --------齿轮2的齿数 最后按满足下式的条件选择伺服电机 M M s ≤1 M s -----伺服电机的额定转距

设备设计计算与选型

第三部分 设备设计计算与选型 3.1苯∕甲苯精馏塔的设计计算 通过计算D=1.435kmol/h , η=F D F D x x ,设%98=η可知原料液的处理量为F=7.325kmol/h ,由于每小时处理量很小,所以先储存在储罐里,等20小时后再精馏。故D=28.7h koml ,F=146.5kmol/h ,组分为18.0x =F ,要求塔顶馏出液的组成为90.0x D =,塔底釜液的组成为01.0x W =。 设计条件如下: 操作压力:4kPa (塔顶表压); 进料热状况:自选; 回流比:自选; 单板压降:≤0.7kPa ; 全塔压降:%52=T E 。 3.1.1精馏塔的物料衡算 (1) 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量 11.78M A =kg/kmol 甲苯的摩尔质量 13.92M B =kg/kmol 18.0x =F 90.0x D = 01.0x W = (2) 原料液及塔顶、塔底产品的平均摩尔质量 =F M 0.18×78.11+(1-0.18)×92.13=89.606kg/kmol =D M 0.9×78.11+(1-0.9)×92.13=79.512kg/kmol =W M 0.01×78.11+(1-0.01)×92.13=91.9898kg/kmol (3) 物料衡算 原料处理量 F=146.5kmol/h 总物料衡算 146.5=D+W 苯物料衡算 146.5×0.18=0.9×D+0.01×W 联立解得 D=27.89kmol/h W=118.52kmol/h

3.1.2 塔板数的确定 (1)理论板层数T N 的求取 苯—甲苯属理想物系,可采用图解法求理论板层数。 ①由物性手册查得苯—甲苯物系的气液平衡数据,绘出x —y 图,见下图3.1 图3.1图解法求理论板层数 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e (0.45,0.45)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 667.0y q = 450.0x q = 故最小回流比为 1.1217 .0233 .045.0667.0667.09.0x y y x q q q min ==--= --= D R 取操作回流比为 R=22.21.12min =?=R ③求精馏塔的气、液相负荷 L=RD=2.2×27.89=61.358kmol/h

第五章设备选型及计算.

第五章设备平衡计算 设备选型的主要依据是物料平衡,根据由浆水平衡计算出来的生产1t风干浆所需要的物料的两来计算通过每一设备的物料量(通过量),然后用通过量来校核或计算每一设备所应具有的生产能力,最终确定同种设备的台数。 5.1设备平衡的原则 1.主要设备的确定:确定主要设备的生产能力时,要符合设备本身的要求, 既不能过大的超出设计能力的要求,又要适当的留有 余地。 2.设备数量的确定:对于需要确定台数的设备,其数量要考虑该设备发生 事故或检修时仍有其他设备做备用维持生产。 3.备品的确定 4.公式计算法的选择 5.避免大幅度波动 5.2设备台数的确定方法: 设备台数的确定,是通过理论或经验公式计算设备生产能力。根据我国现有纸厂的实践经验和理论建设,确定设备的生产能力或按设备产品目录查取其生产能力后,则可以用下列的公式计算出所需的台数。

式中 N——选用台数 Q——生产中需该种设备处理的物料量(t/d) G——该设备的生产能力(t/d) K——设备利用系数,其大小随不同设备,以及设备所处的生产位置不同 而不同,打浆,漂白筛选设备的取0.7,蒸煮设备的 K值取0.8等 5.3设备台数的确定方法 5.3.1备料工段 由备料段物料平衡计算可知,每天处理玉米秆料量 2551.3817×10-3×50=127.5691 t/d 则每小时处理苇料的数量=5.3154 t/h 1. 带式运输机:(1台) 已知:设定皮带运输机运输玉米秆的速度为1.4m/s。 带式运输机的生产能力可由公式: G=3600F·v·r ○1采用平行带运输,则物料层的截面积按三角形面积求得: F=b·h/2 ○2 式中: F——带上物料层的截面积,m2; r——物料表观重度,t/m3取值0.13 t/m3; v——运输机的速度; b——物料层宽度,m 取值0.8B( B为带宽); h——物料层的高度, h=b·tgα/2 α=30°(物料堆积角)

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

学生专用计算器使用说明书

目录 取下和装上计算器保护壳 (1) 安全注意事项 (2) 使用注意事项 (3) 双行显示屏 (7) 使用前的准备 (7) k模式 (7) k输入限度 (8) k输入时的错误订正 (9) k重现功能 (9) k错误指示器 (9) k多语句 (10) k指数显示格式 (10) k小数点及分隔符 (11) k计算器的初始化 (11) 基本计算 (12) k算术运算 (12) k分数计算 (12) k百分比计算 (14) k度分秒计算 (15) kMODEIX, SCI, RND (15) 记忆器计算 (16) k答案记忆器 (16) k连续计算 (17) k独立记忆器 (17) k变量 (18) 科学函数计算 (18) k三角函数/反三角函数 (18) Ch。6 k双曲线函数/反双曲线函数 (19) k常用及自然对数/反对数 (19) k平方根﹑立方根﹑根﹑平方﹑立方﹑倒数﹑阶乘﹑ 随机数﹑圆周率(π)及排列/组合 (20) k角度单位转换 (21) k坐标变换(Pol(x, y)﹐Rec(r, θ)) (21) k工程符号计算 (22) 方程式计算 (22) k二次及三次方程式 (22) k联立方程式 (25) 统计计算 (27) 标准偏差 (27) 回归计算 (29) 技术数据 (33) k当遇到问题时 (33)

k错误讯息 (33) k运算的顺序 (35) k堆栈 (36) k输入范围 (37) 电源(仅限MODEx。95MS) (39) 规格(仅限MODEx。95MS) (40) 双行显示屏 双行显示屏可同时显示计算公式及其计算结果。 ?上行显示计算公式。 ?下行显示计算结果。 当尾数的整数部分多于三数字时﹐每隔三位便会有一个分隔符。使用前的准备 模式 在开始计算之前﹐您必须先进入下表所列的适当的模式。 ?下表所示的模式及所需的操作仅适用于MODEx。95MS。其他型号的用户请参阅“用户说明书2(追加功能)”之手册来 寻找有关其模式及模式选择方法的说明。 MODEx。95MS 型号的模式 按键两次以上将调出追加设置画面。有关设置画面的 说明将在其实际需要使用以改变计算器设置的章节里进行 阐述。 ?在本说明书中﹐有关为进行计算而需要进入的各模式的说

伺服电机选型计算

电机: 电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。电机在电路中是用字母M表示,它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源,发电机在电路中用字母G表示,它的主要作用是利用机械能转化为电能。 伺服电机: 伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。 伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 工作原理: 1、伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就

会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 2、交流伺服电机也是无刷电机,分为同步和异步电机,运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 3、伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 交流伺服电机和无刷直流伺服电机在功能上的区别:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。

运输设备选型计算

盘县石桥老洼地煤矿 运输设备设计选型计算书

二零一四年 运输设备设计选型计算 一、概述 1、矿井设计生产能力 矿井设计生产能力为30t/年;主干系统包括通风、提升、运输。 2、井下运输 112运输石门和113运输石门用CDXT-2.5T型特殊防爆型蓄电池机车牵引1t固定箱式矿车运煤和矸石。其他运输为皮带、溜子运输。 运输方式的选择 一、运输方式

本矿井为高瓦斯突出矿井,112运输石门和113运输石门选用2.5t 特殊防爆型蓄电池机车牵引运输。煤、矸石采用2.5t固定式矿车装载,设备、材料用平板车或材料车装载,蓄电池机车牵引运输。 二、主要运输巷道断面、支护方式、坡度及钢轨型号 1、矿井巷道断面及支护方式 矿井下元炭煤层运输大巷采用料石砌碹支护方式,大白炭煤层运输大巷采用料石砌碹支护方式。 2、坡度 矿井主要运输巷道和石门的轨道运输坡度,均取千分之三的坡度。 3、钢轨型号 矿井主要运输斜井及石门敷设22㎏/m钢轨,600㎜轨距,木料轨枕。主平硐敷设30㎏/m钢轨,600㎜轨距,石料轨枕。 矿车 一、矿车选型 本矿井运载原煤的矿车选用600㎜轨距、MG1.1-6A型,1t固定式矿车。 二、各类矿车的数量 1、一吨固定式矿车 按排列法计算矿井达到设计生产能力时需用MG1.1-6A型1t固定式矿车6辆。 2、1t材料车

矿井运送材料采用MG1.1-6A 型一吨材料车,材料车数量为矿车, 为4辆。 3、1t 平板车 矿井运送设备采用MP1.1-6A 型1t 平板车,平板车数量为5辆。 运输蓄电池机车选型 一、设计依据 本矿井属高瓦斯矿井,井下运输选用CDXT-2.5T 型,600轨距, 特殊防爆型蓄电池机车牵引矿车。 本矿井在主平洞开拓113运输石门,113运输石门的材料、煤、 矸石需经主平洞运输,输距离均为1000m ,112回风石门前期运输距 离为210m 矸石率 20% 装运容器 MG1.1-6A 大巷轨道坡度 3‰ 二、设计选型计算 1、机车牵引能力 t 4.315 .1304.0110312224.01000=++++??=Q 蓄电池机车牵引MG1.1-6A 型1t 固定式矿车数量取4辆。 2、机车电机过热能力校核 (1)蓄电池机车牵引空车时的牵引力

计算器按键的使用说明

计算器按键的使用说明. 1、电源开关键:ON、OFF 2、输入键:0—9、. +/—:正负转换键 3、运算功能键:+ - * / (注意:加、减、乘、除键在计算时都可能代替等号键) √:开平方键,用来进行开平方运算。先输入数字,再按下此键,不必按等号键 即可得出结果。 4、等号键:= 5、清除键: ①C:清除键。在数字输入期间,第一次按下此键将清除除存储器内容外的所 有数值.如果是太阳能计算器,在计算器关闭状态下,按此键则开启电源,显示 屏显示出“0”。 ②AC或CA键:全部清除键,也叫总清除键,作用是将显示屏所显示的数字 全部清除。 ③→:右移键。其功能是荧屏值向右位移,删除最右边的尾数。 ④CE:部分清除键,也叫更正键。其功能是清除当前输入的数字,而不是清 除以前输入的数。如刚输入的数字有误,立即按此键可清除,待输入正确的数字后,原运算继续进行。如5+13,这时发现“13”输入错了,则按“CE”键就可 以清除刚才的“13”,但还保留“5”这个数。值得注意的是,在输入数字后,按“+”、“-”、“/”、“*”键的,再按“CE”键,数字不能清除。 ⑤MC:累计清除键,也叫记忆式清除键。其功能是清除储存数据,清除存储 器内容,只清除存储器中的数字,内存数据清除,而不是清除显示器上的数字。6、累计显示键: (1)M+:记忆加法键,也叫累加键。是计算结果并加上已经储存的数;用 作记忆功能,它可以连续追加,把目前显示的值放在存储器中(也就是将显示的 数字与内存中已有的任何数字相加,结果存入存储器,但不显示这些数字的和)。 如先输入“5×1.6”→按“M+”键(把“5×1.6”的结果计算出来并储存起来)→然后输入“10×0.8”→按“M+”键(把“10×0.8”的结果计算出来并和 前面储存的数相加)→接着输入“15×0.4”→按“M+”键(把“15×0.4”的结 果计算出来并和前面储存的数相加)→最后按“MR”键(把储存的数全部取出来)→则出结果“22” (2)M-:记忆减法键,也叫累减键。是计算结果并用已储存的数字减去目 前的结果;从存储器内容中减去当前显示值(也就是将显示的数字与内存中已有 的任何数字相减,结果存入存储器,但不显示这些数字的差). 计算“50-(23+4)”时→先输入“50”→按“M+”(把“50”储存起来)→ 再输入“23+4”→按“M-”键(计算结果是“27”)→再按“MR”(用储存的“50”减去目前的结果“27”)→则出结果“23” 7、存储读出键:MR MRC GT ①MR:存储读出键。表示用存储器中数值取 代显示值。按下此键后,可使存储在“M+”或“M-”中的数字显示出来或同时 参加运算,数字仍保存在存储器中,在未按“MC”键以前有效。MR调用存储器 内容,读取储存的数据。如有三组数字不连续在一起相加的时候,则用这个“MR”键。举例:如输入“3+2”时,按“M+”键,再输入“6+7”时,按“M+”键,再 输入“8+9”时按“M+”键,然后再按“MR”,则三组数字的总和“35”就出来了。 ②MRC:MR和MC功能的组合,即存储读出和清除键。按一次为MR功能,即 显示存储数,按第二次为MC功能,即清除存储数。

伺服电机的选定与选择计算

伺服电机的选定 伺服电机的选定软件 可用电脑进行伺服电机选定的 「选定的电机 (Motor Selection Programmer)选定程序 for Windows 版」 「伺服电机的选定中,由于计算复杂而比较困难」,您是否一直苦恼于此? 手工计算的方法,虽然在1314~1320页有「计算公式」,在1321~1322页有「计算举例」,但如果使用本软件,任何人都可以简单地进行电机的选定。 工作模式的设定画面 电机选择?判定画面 驱动器选择画面

伺服电机的选定 ?使用电机的机械系统的结构要按照标准进行准备。 标准机械组合举例:滚珠丝杆、齿条及齿轮、台车等或者,还有将机械要素分别逐个组合的方法。 机械要素举例:减速机、齿轮、传送带、辊轴、直接作用负荷、偏心圆板负荷、外力等?可以容易地完成动作模式的设定。 此外,在选择电机后,可以用图形显示旋转数及转矩。?因为伺服电机/驱动器的机型数据是作为数据库编入的、 因此不是仅输出每个机型的数据,而是可以自动地选定出最适合的电机。?可自动地显示出可与选定的电机组合的驱动器一览、并可自动地进行驱动器的再生能力的判定。 ?OS :Microsoft Windows 98/2000/XP 日语版?处理器:486DX/66MHz 以上(推荐Pentium 处理器)?内存:16MB 以上(推荐32MB 以上) ?硬盘:安装时,需要有10MB 以上的未使用空间 ?显示器:可使用分辨率为640×480以上的设备(推荐800×600以上)?碟片装置 :CD-ROM 驱动器(仅安装时需要) ?备有方便电机选定的「电机选定程序」。请务必使用。请从欧姆龙的Industrial Web 访问。http://www.fa.omron.co.jp/ ※ 进入I-Web 成员目录。请登录后再使用。 特 长 运行环境 获得方法

论文中的设备选择及参数计算

一. 设备选择 1.电液比例方向阀:4WRE6V16-2X/G24型直动式电液比例方向阀; 表1 4WRE6V16-2X/G24型直动式电液比例方向阀参数表 2.比例放大器:与阀配套的VT –VRPA2–1–1X/V0/T1; 表2 VT-MRPA2-1模块化模拟式比例放大器参数表 3.液压马达:宁波中意液压马达有限公司的BM3-80摆线液压马达 表3 BM3-80摆线式液压马达参数表 2阀控液压马达系统数学建模 为了对阀控液压马达系统进行动态分析,需要建立阀控液压马达的数学模型。 2.1 电液比例方向阀数学建模 系统采用博世力士乐4WRE6V16-2X/G24型直动式电液比例方向阀,阀芯运动直接由比例电磁铁产生的电磁力驱动,在电磁力的作用下产生位移输出;根据电液比例方向阀的节流特性,产生与放大器输入控制电压相对应的流量输出。因此本节根据比例放大器的特性方程,比例电磁铁的稳态控制特性,阀芯的力平衡方程,阀的线性化流量方程。建立电液比例方向阀的数学模型。 1) 比例放大器 比例放大器将系统输入的电压转变成电流输出,以驱动比例电磁铁动作。系统采用的阀配套的VT-MRPA2-1型模块化模拟比例放大器,其频带比液压固有频率宽很多,可视为一阶比例环节,即 )()(s s I U K e a = (1) 式中 K a ----比例放大器增益; )(s I ----比例放大器输出电流; U e ----系统输入的偏差电压。 2) 比例电磁铁稳态控制方程

比例电磁铁输出的轴向驱动力 F d 与电流I 成正比,即: )()(s I s K F I d = (2) 式中 K I ----比例电磁铁的电流-力增益 3) 阀芯的力平衡方程 比例电磁铁产生的电磁力需要克服的负载力包括滑阀组件的的惯性力,滑阀阀芯的阻尼力及弹簧的弹性力等,则阀芯的力平衡方程为: )()()()(2 2 t dt t d d t m t x K x B t x d F v SF v p v d ++= 对上式进行拉普拉斯变换得: )()()()(2 s s s s m s X K X B X s F v SF v p v d ++= (3) 式中 m----滑阀阀芯组件的质量; X v ----阀芯位移; B p ----阀的阻尼系数; K SF ----弹簧刚度。 根据式(1)(2)(3)可以得到电液比例方向阀的负载流量Q L 与输入偏差电压 U e 的传递 函数: 1 2)() ()(2 2 ++= = s s s s v v v q e v v s K U X G ω ξ ω (4) 其中 m K SF v = ω K B SF p v m 2 = ξ ωv ----阀的等效无阻尼自振频率; ξv ----阀的阻尼系数; s----拉普拉斯算子。

设备选型

5.设备计算及选型 5.1设备选型的目的、依据及基准 1.设备选型的目的 化工生产是原料通过一系列的化学、物理变化的过程,其变化的条件是化工设备提供的。因此,选择适当型号的设备、设计符合要求的设备,是完成生产任务、获得良好效益的重要前提。 2.设备选型的依据 设备的选择是根据物料衡算、热量衡算的结果进行的,根据物料衡算的数据可以从《化工工艺设计手册》上查取并选择所需的设备型号,在根据其所对应的参数结合热量衡算的数据对所选设备进行校核,使其经济上合理,技术上先进,投资少,加工方便,采购容易,水电汽消耗少,操作清洗方便,耐用易维修。 3.设备选型的基准 根据各单元操作反应的周期,计算出生产批次,在由总体积计算出单批生产体积,以此数据查找《化工工艺设计手册》,对设备进行选择。 5.2不同设备的选型计算 1.储罐的选型 储罐用以存放酸碱、醇、气体、液态等提炼的化学物质。其种类有很多,大体上有:滚塑储罐,玻璃钢储罐,陶瓷储罐、橡胶储罐、焊接塑料储罐等。就储罐的性价比来讲,现在以玻璃钢储罐最为优越,其具有优异的耐腐蚀性能,强度高,寿命长等,外观可以制造成立式,

卧式,运输,搅拌等多个品种。本次工程中需要用到的储罐有3-N-吗啡啉丙磺酸缓冲溶液储罐,四氢呋喃储罐,甲醇储罐,以及树脂预处理所用到的重生树脂所要用的溶剂乙醇的储罐。 (1)3-N-吗啡啉丙磺酸缓冲溶液储罐 缓冲溶液的体积:V= ρ 水 m = 1 1899 .1061=1061.1899L 圆整容积2500L ,选用V111钢衬塑储罐Φ1200*2240*4,材料纯聚乙烯,不锈钢304,容积2500L 面积1.1304m 2。 (2)四氢呋喃储罐 四氢呋喃的体积:V= 四氢呋喃 四氢呋喃 m ρ= 89 .0 1011.6276=1136.66L 选用V112玻璃钢卧式罐Φ1200*1400*5,材料不锈钢304,容积1583L ,面积1.1304m 2。 (3)甲醇储罐 甲醇的体积:V= 甲醇 甲醇 m ρ= 79 .0 149.9410=189.80L 选用V113 立式储罐Φ500*1000,材料不锈钢304,容积196.25L ,面积0.19625m 2 。 (4)浓缩储罐 浓缩储罐里面的物料是四氢呋喃和甲醇 甲醇的体积: V 甲醇= 甲醇 甲醇 m ρ= 79 .02706 .85=107.94L 四氢呋喃的体积:V 四氢呋喃= 四氢呋喃 四氢呋喃 m ρ= 89 .0 644.9393=724.65L 总的体积: V 总=107.94+724.65=832.59L

科学计算器的使用方法

一、计算器使用的状态 对于两类计算器来说,使用的是数值计算,所采用的状态是十进制状态: 1、学生计算器(KDT科灵通科学计算器):按模式键 第一次屏幕显示 第二次屏幕显示 按2次,再按1,则进入十进制计算状态,这时在屏幕上会出现D的标志。 2、普通计算器(价格10元以内):按键 直接按键,依次在屏幕上会分别显示:DEG、RAD、GRAD,表示十进制、弧度、百分率。要选择DEG,即在屏幕上看到DEG的标志。 二、角度的输入与计算 两种计算器都可以进行角度的运算以及转换: 1、学生计算器(KDT (1 例如输入129°59′26″,操作如下: 输入1295926

这时屏幕的第二行显示:129°59°26°,说明已经将角度输入 (2)角度经过三角函数的计算之后,显示的角度是十进制,即129°59′26″屏幕上显示129.353336,这时需要将十进制的角度转换回六十进制。 按129.353336→129°59°26°。 2 (1)角度的输入:输入角度要以六十进制输入,度和分秒以小数点隔开, 可将六十进制的角度值转换成十进制,用于角度计算或三角函数计算。 具体操作如下:输入129.5926 这时屏幕上显示结果129.9905556,可以进行角度的加减或三角函数计算。 (2)计算结果显示:当角度计算完毕后,需要显示角度的结果,即六十进制的角度结果, 按 具体操作如下:129.9905556→按 这时屏幕上显示计算结果129.592600,可以将成果记录下来。 三、测量误差的精度评定(统计计算) 两种计算器都可以进行标准偏差统计计算: 1、学生计算器(KDT科灵通科学计算器):在标准偏差统计模式下 (1)进入标准偏差统计计算模式:按 显示 ) 其中n x x2m,即中误差。

机电设备选型

《机电设备选型》学习领域课程标准 学习领域名称:机电设备选型 代码:Z020401027 学时:60 学分:4 适用专业:矿山机电 一、学习领域课程描述 (一)课程定位 《机电设备选型》课程是矿山机电专业进行岗位能力培养的一门核心课程,它集理论与实践与一体,是学生将来直接用于生产实践的实用技术,本课程构建于《运输与提升设备安装维修》、《井下电气设备安装维修》《煤矿生产与安全法律法规案例分析》等课程的基础上,围绕机电设备选型内容,本着企业需求组织教学内容,为进行煤矿生产一线工程技术人员提供技能训练,为岗位需求提供职业能力,为培养高端技能型专门人才提供保障。 (二)课程设计思路 《机电设备选型》课程采用以行动为向导、基于工作过程的课程开发方法进行设计,整个学习领域,由2个学习模块,即采区运输系统设备选型学习模块和采区供电系统设备选型学习模块,其中采区运输系统设备选型学习模块由6个情境组成,采区供电系统设备选型学习模块由7个情境组成。学习情境的设计要主要考虑以下因素: 1.学习情境的设计要符合基于工作过程的教学设计思想的要求。学习情境是在职业学校实训场地对真实工作的教学化加工,以完成具体的工作任务为目标。 2.学习情境的前后排序要符合学生认知规律,可以考虑从简单到复杂、从单一到综合的排序方法。 (三)课程特色 本课程采用以行动为向导、基于工作过程的课程开发方法进行设计,按照机电技术组的工作任务作为整个学习领域,由采区运输系统设备选型、采区供电系统设备选型2个模块组成;模块之间即相互独立,又为同一个采区而相互联系。每个模块先以系统拟定为学习情境,之后以系统中各设备的选型为学习情境。 二、学习领域目标 通过本课程的学习,培养学生的系统拟定、方案比较、选型计算等专业能力,以及学习和应用机电、采煤、通风等专业知识解决机电设备选型中实际问题的能力、自学和探索采区机电新设备和新技术的能力、收集查找资料和编写设计说明书的能力、创新能力等职业发展能力。 (一)专业知识目标 (1)明白机电设备选型设计所需收集的原始资料,熟悉采掘工程图及工作面作业规程相关知识; (2)熟悉采区运输系统、采区供电系统的拟定原则、拟定步骤;掌握系统方案技术比较方法; (3)熟悉采区运输及采区供电设备的选择原则、选择方法及步骤; (4)熟悉采区运输系统图、采区供电系统图、采区变电所硐室布置图、采区电缆敷设图的绘制方法及要求;

化工设备设计基础课程设计计算说明书

化工设备设计基础课程设计计算说明 书 1

2

<化工设备设计基础>课程设计计算说明书 学生姓名:学号: 所在学院: 专业: 设计题目: 指导教师: 月日 目录

一.设计任务 书 (2) 二.设计参数与结构简 图 (4) 三.设备的总体设计及结构设 计 (5) 四.强度计 算 (7) 五.设计小 结 (13) 六.参考文 献 (14) 1

一、设计任务书 1、设计题目 根据<化工原理>课程设计工艺计算内容进行填料塔(或板式塔)设计。 设计题目: 各个同学按照自己的工艺参数确定自己的设计题目:填料塔(板式塔)DNXXX设计。 例:精馏塔(DN1800)设计 2、设计任务书 2.1设备的总体设计与结构设计 (1)根据<化工原理>课程设计,确定塔设备的型式(填料塔、板式 塔); (2)根据化工工艺计算,确定塔板数目 (或填料高度); (3)根据介质的不同,拟定管口方位; (4)结构设计,确定材料。 2

2.2设备的机械强度设计计算 (1)确定塔体、封头的强度计算。 (2)各种开孔接管结构的设计,开孔补强的验算。 (3)设备法兰的型式及尺寸选用;管法兰的选型。 (4)裙式支座的设计验算。 (5)水压试验应力校核。 2.3完成塔设备装配图 (1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。 (2)编写技术要求、技术特性表、管口表、明细表和标题栏。 3、原始资料 3.1<化工原理>课程设计塔工艺计算数据。 3.2参考资料: [1] 董大勤.化工设备机械基础[M]. 北京:化学工业出版社, . [2] 全国化工设备技术中心站.<化工设备图样技术要求> [S]. [3] GB150-1998.钢制压力容器[S]. [4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社, . [5] JB/T4710- .钢制塔式容器[S]. 4、文献查阅要求 设计说明书中公式、内容等应明确文献出处;装配图上应写明引用标准号。 3

关于伺服电机与步进电机性能比较及选型的计算方法

关于伺服电机与步进电机性能比较及选型的计算方法 内容来源于 https://www.doczj.com/doc/9a16465382.html,/%C5%C9%BF%CB%D6%B1%C1%F7%B5%F7%CB%D9%C6%F7/blog/i tem/61656f385baf28de7c1e7129.html 步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。 1、伺服电机和步进电机的性能比较 步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般为0.72°、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如山洋公司(S A N Y O D E N K I)生产的二相混合式步进电机其步距角可通过拨码开关设置为 1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072 =0.0027466°,是步距角为 1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

设备断路器选型计算方法

设备断路器选型计算方 法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

设备断路器选型计算方法 当用电回路发生故障和短路时,断路器能够切断用电回路,保护用电设备。如何选择合适的断路器,其计算方法如下: 一、计算计算电流: 1)三相负荷时: 1.52/cos js js I P φ=?; js e P P Kx =?; 其中,cos φ为功率因数, Kx 为需要系数,可根据《建筑电气常用数据》附表(P 23-27)查出。 由回路的计算电流大小,根据《施耐德电气配电产品选型手册》选择断路器。依据计算电流从小到大,常用的断路器如下: C65断路器,计算电流不超过40A 的可选用该系列的,具体选型查手册8-16,8-17,8-18; 例1: 12js P KW =,cos 0.8φ=; 12 1.52/0.822.8js I =?=, 选断路器时,其额定电流 1.25js I I >; 因此,选择的断路器的型号为:C65N-D32A/4P+30mA 。 Compact NS 塑壳断路器,计算电流在450A 以下的,可选用该系列断路器,常用的是NSX100,NSX160,NSX250系列的; 例2: 40,cos 0.8js P KW φ==, 40 1.52/0.876js I =?=, NSX100的满足要求; 选断路器时,其额定电流 1.25js I I >, 因此,选定的断路器型号为NSX100NTM100A/4P 。 注:1、断路器选择应注意按照负荷类型选取特性曲线。计算机插座回路 剩余电流动作装置选用A 型,其他的插座回路选C 型曲线;开水器断路器选

校园网设备选型与设计说明书

校园网设备选型与设计说明书 第一章校园网概述 校园网是在学校范围内,在一定的教育思想和理论指导下,为学校教学、科研和管理等教育提供资源共享、信息交流和协同工作的计算机网络。校园网除了需要有必备的硬件设备和操作系统平台外,利用全面的校园网络管理软件、网络教学软件,实现学校多媒体教学资源、教师备课系统、电子图书阅览检索、多媒体教学软件开发平台、校园网站和教学资源网站建设等功能。为学校提供教学、管理和决策三个不同层次所需要的数据、信息和知识的一个覆盖全校管理机构和教学机构的基于Internet/Intranet技术的大型网络系统。校园网应该具有较先进的水平,体现现代教育思想,要把建设校园网的规划与学校的长远发展规划统一起来,同时把服务教学作为网络建设的着眼点和落脚点。校园网还应具有教务、行政、总务管理功能,可以进行课程管理、学生成绩与学籍管理、图书资料管理等教学教务管理,也可以进行档案管理(含人事、教师档案等)、处室管理等行政事务管理,总务后勤管理包括财务管理、设备、房产等。 校园网是不以盈利为目的的。校园网上提供大量的免费资源,供广大师生工作学习之用,它所涉及的范围并不局限于校园内部。有些人认为:校园网就是大学校园围墙里面的网,即围墙里面的就是校园网,围墙外面的就是公网。这种看法是错误的。校园网的界限,并不是以用户终端所处的地理位置范围来的界定的,而是以校园网提供的接入服务范围来界定的。在校园围墙内可以有公网,在校园围墙外也可以有校园网,应满足对内对外的通信功能。

第二章校园网设备选型 2.1校园网设备选型对校园网建设的重要意义 一个完整的校园网建设主要包括两个内容:技术方案设计;应用信息系统资源建设。 技术方案设计主要包括:结构化布线与设备选择、网络技术选型等。 应用信息系统资源建设主要包括:内部信息资源建设、外部信息资源建设等。 在这里我重点说一下设备选择的重要意义。设备选择这一环节做的好的话首先可以为学校节约大笔的校园网建设费用,其次为校园网网络规模的扩大和校园网服务的扩展提供了较大空间,最后可以为综合布线节约大部分时间。 2.2校园网设备的分类 校园网的网络设备分为交换机,路由器,网络服务器,专业网管软件等。 2.3校园网设备选型的原则 校园网设备我简单的把它总结为需要硬件设备和软件设备,硬件设备包括交换机,路由器,网络服务器等.软件设备包括专业网管软件. 对于中小规模的网络,设备选型时应遵循以下一些基本原则 (1) 标准化原则:所选择的设备必须基于国际标准或行业标准。因为只有基于标准的产品才有可能和其他厂商的产品互连互通(需要指出的是,并非只要基于标准的产品,彼此之间才能够互连互通)。 (2) 技术简单性原则:对网络需求必须十分明确。对于普通用户而言,在满足需求的前提下,尽可能选择简单实用的技术和设备。否则,今后的运行管理、故障诊断等,都需要请专业人员,开销巨大,运行效果不见得好。 (3) 环境适应性原则:不要轻信外国某些机构的评测报告,其中不乏商

伺服电机计算选择应用实例

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2 ) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

相关主题
文本预览
相关文档 最新文档