当前位置:文档之家› 时间序列分析-降水量预测模型

时间序列分析-降水量预测模型

时间序列分析-降水量预测模型
时间序列分析-降水量预测模型

课程名称: 时间序列分析

题目: 降水量预测

院系:理学院

专业班级:数学与应用数学10-1 学号: 87

学生姓名:戴永红

指导教师:__潘洁_

2013年 12 月 13日

1.问题提出

能不能通过以前的降水序列为样本预测出2002的降水量?

2.选题

以国家黄河水利委员会建站的山西省河曲水文站1952年至2002年51年的资料为例,以1952年至2001年50年的降水序列作为样本,建立线性时间序列模型并预测2002年的降水状态与降水量,并与2002年的实际数据比较说明本模型的具体应用及预测效果。资料数据见表1。

表1 山西省河曲水文站55年降水量时间序列

3.原理 模型表示

均值为0,具有有理谱密度的平稳时间序列的线性随机模型的三种形式,描述如下:

1、()AR p 自回归模型:1122t t t p t p t ωφωφωφωα-------=L 由2p +个参数刻画;

2、()MA q 滑动平均模型:1122t t t t q t q ωαθαθαθα---=----L 由2q +个参数刻画;

3、(,)ARMA p q 混和模型:

11221122t t t p t p t t t q t q ωφωφωφωαθαθαθα----------=----L L

(,)ARMA p q 混和模型由3p q ++个参数刻画; 自相关函数k ρ和偏相关函数kk φ

1、自相关函数k ρ刻画了任意两个时刻之间的关系,0/k k ργγ=

2、偏相关函数kk φ刻画了平稳序列任意一个长1k +的片段在中间值11,t t k ωω++-L 固定的条件下,两端t ω,t k ω+的线性联系密切程度。

3、线性模型k ρ、kk φ的性质

表2 三种线性模型下相关函数性质

模型识别

通常平稳时间序列t Z ,0,1t =±L 仅进行有限n 次测量(50)n ≥,得

到一个样本函数,且利用平稳序列各态历经性:1

1n

j j Z Z n μ=≈=∑做变

换,t t Z ω=,1,t n =L ,将1,,n Z Z L 样本换算成为样本1,,n ωωL ,然后再确定平稳时间序列{,0,1}t t ω=±L 的随机线性模型。 3.3.1 样本自相关函数

平稳序列21012,,,,,ωωωωω--L L , ()0t E ω=,对于样本,定义自协

方差函数:

11221

1?n k

k k n k n

k j k j j n

n ωωωωωωγωω-++-+=+++=

=∑L ,0???/k k ρ

γγ=。同时为了保证?k k γγ=,?k k ρ

ρ=一般取50,/4n k n ><。常取/10k n =。 3.3.2 确定模型类别和阶数

在实际应用中,我们常用有一个样本算出的?k k ρρ=,?kk kk

φφ=判别k ρ,kk φ是拖尾还是截尾的。随机线性模型的三种形式的判别分别如下:

1、若k ρ拖尾,kk φ截尾在k p =处,则线性模型为()AR p 模型。k

ρ拖尾可以用的点图判断,只要样本自相关函数的绝对值愈变愈小;

当k p >时,平均20

个样本偏相关函数中至多有一个使?2/kk

φ≥,则认为kk φ截尾在k p =处。

2、若kk φ截尾,k ρ在k p =处截尾,那么线性模型为()MA q 滑动平均模型。kk φ拖尾可以根据样本偏相关函数的点图判断,只要?kk φ愈变愈小。当k q >时,若平均20

个样本自相关函数中至多有一个使

?2k ρ

≥ 3、若样本自相关函数和样本偏相关函数都是拖尾的,则线性模

型可以看成混和模型。 模型参数估计

1、()AR p 模型参数估计:

()AR p 模型有2p +个参数:2

12,,,,,p p α

φφφσL 。利用Yule-Walker 方程,利用Toeplitz 矩阵求逆和作矩阵乘法的方法算样本偏相关函数

kk φ。()AR p 模型的参数值不必作专门的计算,只要在样本偏相关函

数计算的记录中取出样本参数值即可。此时12,,,p φφφL ,都已经确定了,经过推理我们可以得到:2

01p

j j j ασγφγ==-∑。

2、()MA q 滑动平均模型参数估计:

2222122

1+1????(1),0???????(),1q

k k k q k q k k q αασθθθγσ

θθθθθ-?++++=?=?-+++≤≤??L L 可得1q +个方程,求212????,,q

αθθθσL ,即解这个非线性方程组。 3、(,)ARMA p q 混和模型参数估计

对于满足一个条件:

1111......t t p t p t t p t q a a a ωφωφωθθ-------=---采用先计算 12???,,,p φφφL ,在计算212????,,q αθθθσL 的方法,具体如下:1)可利用Toeplitz 矩阵和作矩阵乘法的方法求出12???,,,p φφφL 。2)令

'11...t t t p t p ωωφωφω--=---混和模型化为:'11...t t t p t q a a a ωθθ--==---这是

关于't ω的()MA q 模型,用't ω的样本协方差函数估计212????,,q

αθθθσL 的值。 4. 步骤

采用MATLAB 处理数据。

1、对一个时间序列做n 次测量得到一个样本函数12,,n Z Z Z L 。实

验采用表1中的降水量数据,50n =。

图1 山西省河曲水文站55年降水量时间序列

2、数据预先处理:做变换t t Z Z ω

=-,其中50

1

150j j Z Z ==∑

图2 将时间序列变为期望为0的平稳时间序列

3、计算样本自协方差函数k γ,样本自方差函数k ρ。 0???/k k ρ

γγ=,其中0,1,2,3,4,5k =,11221

1?n k

k k n k n

k j k j j n n ωωωωωωγωω-++-+=+++=

=∑L 。由图-3数据可得:随着k 的增大,k ρ越来越小,具有拖尾性。

图3 计算样本自相关函数

接下来计算偏相关函数kk φ(1k ≥)。利用Y ule-Walker 方程,利用

Toeplitz 矩阵求逆和作矩阵乘法的方法算样本偏相关函数kk φ。

2/

500.283=,由图-4得到的数据可得,2k p >=时,只有一个偏相

关函数大于。所以确定阶数为:2p =。

图4计算偏相关函数

5、由上综述:确定模型为(2)AR 模型。下面进行(2)AR 模型参数

的估计。

111??0.1695φφ==-,222

??0.0190φφ==-,由图-3的,0? 1.6320e+004γ=,由公式2

01

p

j j j ασγφγ==-∑得:2

? 1.5855e+004ασ

=

图5 噪声方差的计算

由上可知模型为:120.16950.0190t t t t ωωωα--++=,又知

1

1402.82

n

j j Z Z n ===∑,

12402.820.1695(402.82)0.0190(402.82)t t t t Z Z Z α---+-+-=,2? 1.5855e+004ασ=。

最后确定(2)AR 模型为:

120.16950.0190478.75t t t t Z Z Z α--++=+,2

? 1.5855e+004ασ

= 6、通过确定的模型估计2002年的降水量

一步估计公式:1

???(1)(1)0.16950.0190478.75k k k Z Z k Z Z -=+=--+。其中,2001年的降水量为234.4mm ,2001年的降水量为289.6mm 。 20020.1695*234.40.0190*389.6478.75431.62Z =--+=mm

一步预报误差为79.66=mm ,而2002年实际降水量为487.3mm 。为了提高预报准确度,可以提供更多样本点,进行预报估计。

5.部分程序代码及注释

rainfall=[ ……];

b=length(rainfall);

z=sum(rainfall)/b; ………………………………计算均值

w=rainfall-z; ………………………………由t Z 构造t ω序列 sumw=zeros(1,6); sumw1=0; for j=1:50

sumw1=sumw1+w(j)^2; ..……………………………..计算0γ end

for k=0:5 for i=1:(b-k)

sumw(k+1)=sumw(k+1)+w(i)*w(i+k); …………….......计算k γ end end

r=sumw/b; r0=sumw1/b;

p=r/r0; ……………………….计算自相关函数k ρ kk11=p(2); ………………………计算11φ a2=[1,p(2);p(2),1] a22=inv(a2);

kk2=a22*p(1,2:3)'; ………………………计算22φ kk22=kk2(2,1);

M

a5=[1,p(2),p(3),p(4),p(5);p(2),1,p(2),p(3),p(4);p(3),p(2),1,p(2),p(3);p(4),p(3),p(2),1,p(2);p(5),p(4),p(3),p( 2),1];

a55=inv(a5);

kk5=a55*p(1,2:6)';

φ

kk55=kk5(5,1); ………………..计算55

kk=zeros(1,5);

kk=[kk11,kk22,kk33,kk44,kk55];

σ

D=r0-kk11*r(2)-kk22*r(3) ………………..计算2α

应用时间序列分析习题答案解析整理

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ?? ? ??=-====015.06957.033222111φφφρφ

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

时间序列预测模型

时间序列预测模型时间序列是指把某一变量在不同时间上的数值按时间先后顺序排列起来所形成的序列,它的时间单位可以是分、时、日、周、旬、月、季、年等。时间序列模型就是利用时间序列建立的数学模型,它主要被用来对未来进行短期预测,属于趋势预测法。一、简单一次移动平均预测法例1.某企业1月~11月的销售收入时间序列如下表所示.取n 4,试用简单一次移动平均法预测第12月的销售收入,并计算预测的标准误差. 二、加权一次移动平均预测法简单一次移动平均预测法,是把参与平均的数据在预测中所起的作用同等对待,但参与平均的各期数据所起的作用往往是不同的。为此,需要采用加权移动平均法进行预测,加权一次移动平均预测法是其中比较简单的一种。三、指数平滑预测法 1、一次指数平滑预测法一元线性回归模型 * 项数n的数值,要根据时间序列的特点而定,不宜过大或过小.n过大会降低移动平均数的敏感性,影响预测的准确性;n过小,移动平均数易受随机变动的影响,难以反映实际趋势.一般取n的大小能包含季节变动和周期变动的时期为好,这样可消除它们的影响.对于没有季节变动和周期变动的时间序列,项数n的取值可取较大的数;如果历史数据的类型呈上升或下降型的发展趋势,则项数n的数值应取较小的数,这样能取得较好的预测效果. 1102.7 1015.1 963.9 892.7 816.4 772.0 705.1 649.8 606.9 574.6 533.8 销售收入 11 10 9 8 7 6 5 4 3 2 1 月份 t 158542.7 993.6 12 12950.4 19016.4 17662.4 24617.6 27989.3

典型时间序列模型分析

实验1典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型: AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对 对上述三种模型进行统计特性分析,通过对2阶模型的仿真分析,探讨几种模型的适用范围, 并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有AR(2)模型, X( n)=-0.3X( n-1)-0.5X( n-2)+W( n) 其中:W(n)是零均值正态白噪声,方差为 4。 (1 )用MATLAB 模拟产生X(n)的500观测点的样本函数,并绘出波形 (2) 用产生的500个观测点估计X(n)的均值和方差 (3) 画出理论的功率谱 (4) 估计X(n)的相关函数和功率谱 【分析】给定二阶的 AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, 可以看出, FX w 完全由两个极点位置决定。 对于AR 模型的自相关函数,有下面的公式: \(0) 打⑴ 匚⑴… ^(0) ■ 1' G 2 W 0 JAP) 人9-1)… 凉0) _ 这称为Yule-Walker 方程,当相关长度大于 p 时,由递推式求出: r (r) + -1) + -■ + (7r - JJ )= 0 这样,就可以求出理论的 AR 模型的自相关序列。 H(z) 二 1 1 0.3z , P x w +W 1 1 a 才 a 2z^

1. 产生样本函数,并画出波形 2. 题目中的AR过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为 2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2阶AR过程 plot(x,'r'); ylabel('x(n)'); title(' 邹先雄——产生的AR随机序列'); grid on; 得到的输出序列波形为: 邹先雄——产生的AR随机序列 2. 估计均值和方差 可以首先计算出理论输出的均值和方差,得到m x =0 ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

【经济预测与决策】时间序列分析预测法

经济预测与决策第四章时间序列分析预测法时间序列分析预测法时间序列分析预测法是将预测目标的历史数据按照时间的顺序排列成为时间序列,然后分析它随时间的变化趋势, 外推预测目标的未来值。本章学习目的与要求通过本章的学习,了解时间序列的概念;掌握移动平均法和指数平滑法。本章学习重点和难点重点是移动平均法;难点是指数平滑法。本章内容提示第一节时间序列第二节移动平均法第三节指数平滑法第一节时间序列一、时间序列二、时间序列的影响因素三、时间序列因素的组合形式四、时间序列预测的步骤一、时间序列时间序列是指某种经济统计指标的数值,按时间先后顺序排列起来的数列。时间序列是时间t 的函数,若用Y 表示,则有:Y=Y(t )。时间序列时间序列按其指标不同,可分为绝对数时间序列、相对数时间序列和平均数时间序列三种。 绝对数时间序列是基本序列。可分为时期序列和时点序列两种。时期序列是指由反映某种社会经济现象在一段时期内发展过程的总量指标所构成的序列。如各个年度的国民生产总值。时点序列是指由反映某种社会经济现象在一定时点上的发展状况的指标所构成的序列。如各个年末的人口总数。 二、时间序列的影响因素一个时间序列是多种因素综合作用的结果。这些因素可以分为四种:1. 长期趋势变动2. 季节变动3. 循环变动4. 不规则变动1. 长期趋势变动长期趋势变动又称倾向变动,它是指伴随着经济的发展,在相当长的持续时间内,单方向的上升、下降或水平变动的因素。它反映了经济现象的主要 变动趋势。长期趋势变动是时间t 的函数,它反映了不可逆转的倾向的变动。长期趋势变动通常用T表示,T=T( t )。2.循环变动循环变动是围绕于

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

时间序列分析ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期内(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

(整理)Excel时间序列预测操作.

时间序列分析预测EXCEL操作 一、长期趋势(T)的测定预测方法 线性趋势→:: 用回归法 非线性趋势中的“指数曲线”:用指数函数LOGEST、增长函数GROWTH(针对指数曲线) 多阶曲线(多项式):用回归法 (一)回归模型法-------长期趋势(线性或非线性)模型法: 具体操作过程:在EXCEL中点击“工具”→“数据分析”→“回归”→分别在“Y值输入区域”和“X值输入区域”输人数据和列序号的单元格区域一选择需要的输出项目,如“线性拟合图”。回归分析工具的输出解释: 计算结果共分为三个模块: 1)回归统计表: Multiple R(复相关系数R):R2的平方根,又称为相关系数,它用来衡量变量xy之间相关程度的大小。R Square(复测定系数R2 ):用来说明用自变量解释因变量变差的程度,以测量同因变量y的拟合效果。Adjusted R Square (调整复测定系数R2):仅用于多元回归才有意义,它用于衡量加入独立变量后模型的拟合程度。当有新的独立变量加入后,即使这一变量同因变量之间不相关,未经修正的R2也要增大,修正的R2仅用于比较含有同一个因变量的各种模型。 标准误差:又称为标准回归误差或叫估计标准误差,它用来衡量拟合程度的大小,也用于计算与回归有

关的其他统计量,此值越小,说明拟合程度越好。 2)方差分析表:方差分析表的主要作用是通过F检验来判断回归模型的回归效果。 3)回归参数:回归参数表是表中最后一个部分: ?Intercept:截距a ?第二、三行:a (截距) 和b (斜率)的各项指标。 ?第二列:回归系数a (截距)和b (斜率)的值。 ?第三列:回归系数的标准误差 ?第四列:根据原假设Ho:a=b=0计算的样本统计量t的值。 第五列:各个回归系数的p值(双侧) 第六列:a和b 95%的置信区间的上下限。 (二)使用指数函数LOGEST和增长函数GROWTH进行非线性预测 在Excel中,有一个专用于指数曲线回归分析的LOGEST函数,其线性化的全部计算过程都是自动完成的。如果因变量随自变量的增加而相应增加,且增加的幅度逐渐加大;或者因变量随自变量的增加而相应减少,且减少的幅度逐渐缩小,就可以断定其为指数曲线类型。 具体操作过程: 1.使用LOGEST函数计算回归统计量 ①打开“第3章时间数列分析与预测.xls”工作簿,选择“增长曲线”工作表如下图所示。 ②选择E2:F6区域,单击工具栏中的“粘贴函数”快捷键,弹出“粘贴函数”对话框,在“函数分类”中选择 “统计”,在“函数名”中选择“LOGEST”函数,则打开LOGEST对话框,如下图11.20所示。

数学建模时间序列分析

基于Excel的时间序列预测与分析 1 时序分析方法简介 1.1时间序列相关概念 1.1.1 时间序列的内涵以及组成因素 所谓时间序列就是将某一指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。如经济领域中每年的产值、国民收入、商品在市场上的销量、股票数据的变化情况等,社会领域中某一地区的人口数、医院患者人数、铁路客流量等,自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。人们希望通过对这些时间序列的分析,从中发现和揭示现象的发展变化规律,或从动态的角度描述某一现象和其他现象之间的内在数量关系及其变化规律,从而尽可能多的从中提取出所需要的准确信息,并将这些知识和信息用于预测,以掌握和控制未来行为。 时间序列的变化受许多因素的影响 ,有些起着长期的、决定性的作用 ,使其呈现出某种趋势和一定的规律性;有些则起着短期的、非决定性的作用,使其呈现出某种不规则性。在分析时间序列的变动规律时,事实上不可能对每个影响因素都一一划分开来,分别去作精确分析。但我们能将众多影响因素,按照对现象变化影响的类型,划分成若干时间序列的构成因素,然后对这几类构成要素分别进行分析,以揭示时间序列的变动规律性。影响时间序列的构成因素可归纳为以下四种: (1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳的变化或移动。这一变化通常是许多长期因素的结果。 (2)周期性(Cyclic),指时间序列表现为循环于趋势线上方和下方的点序列并持续一年以上的有规则变动。这种因素是因经济多年的周期性变动产生的。比如,高速通货膨胀时期后面紧接的温和通货膨胀时期将会使许多时间序列表现为交替地出现于一条总体递增 地趋势线上下方。 (3)季节性变化(Seasonal variation),指现象受季节性影响 ,按一固定周期呈现出的周期波动变化。尽管我们通常将一个时间序列中的季节变化认为是以1年为期的,但是季节因素还可以被用于表示时间长度小于1年的有规则重复形态。比如,每日交通量数据表现出为期1天的“季节性”变化,即高峰期到达高峰水平,而一天的其他时期车流量较小,从午夜到次日清晨最小。

什么是时间序列预测法

什么是时间序列预测法? 一种历史资料延伸预测,也称历史引伸预测法。是以所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。 时间序列,也叫时间数列、历史复数或。它是将某种的数值,按时间先后顺序排到所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。 时间序列预测法的步骤 第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成。时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3);(4)不规则变动。 第二步分析时间序列。时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。 第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。对于数学模式中的诸未知参数,使用合适的技术方法求出其值。 第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的值T和季节变动值s,在可能的情况下预测不规则变动值I。然后用以下模式计算出未来的时间序列的预测值Y: 加法模式T+S+I=Y 乘法模式T×S×I=Y 如果不规则变动的预测值难以求得,就只求和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。但要注意这个预测值只反映现象未来的发展趋势,即使很准确的在按时间顺序的观察方面所起的作用,本质上也只是一个的作用,实际值将围绕着它上下波动。 []

时间序列模型的建立与预测

第六节时间序列模型的建立与预测 ARIMA过程y t用 Φ (L) (Δd y t)= α+Θ(L) u t 表示,其中Φ (L)和Θ (L)分别是p, q阶的以L为变数的多项式,它们的根都在单位圆之外。α为Δd y t过程的漂移项,Δd y t表示对y t 进行d次差分之后可以表达为一个平稳的可逆的ARMA 过程。这是随机过程的一般表达式。它既包括了AR,MA 和ARMA过程,也包括了单整的AR,MA和ARMA过程。 可取 图建立时间序列模型程序图 建立时间序列模型通常包括三个步骤。(1)模型的识别,(2)模型参数的估计,(3)诊断与检验。

模型的识别就是通过对相关图的分析,初步确定适合于给定样本的ARIMA模型形式,即确定d, p, q的取值。 模型参数估计就是待初步确定模型形式后对模型参数进行估计。样本容量应该50以上。 诊断与检验就是以样本为基础检验拟合的模型,以求发现某些不妥之处。如果模型的某些参数估计值不能通过显著性检验,或者残差序列不能近似为一个白噪声过程,应返回第一步再次对模型进行识别。如果上述两个问题都不存在,就可接受所建立的模型。建摸过程用上图表示。下面对建摸过程做详细论述。 1、模型的识别 模型的识别主要依赖于对相关图与偏相关图的分析。在对经济时间序列进行分析之前,首先应对样本数据取对数,目的是消除数据中可能存在的异方差,然后分析其相关图。 识别的第1步是判断随机过程是否平稳。由前面知识可知,如果一个随机过程是平稳的,其特征方程的根都应在单位圆之外;如果 (L) = 0的根接近单位圆,自相关函数将衰减的很慢。所以在分析相关图时,如果发现其衰减很慢,即可认为该时间序列是非平稳的。这时应对该时间序列进行差分,同时分析差分序列的相关图以判断差分序列的平稳性,直至得到一个平稳的序列。对于经济时间序列,差分次数d通常只取0,1或2。 实际中也要防止过度差分。一般来说平稳序列差分得到的仍然是平稳序列,但当差分次数过多时存在两个缺点,(1)序列的样本容量减小;(2)方差变大;所以建模过程中要防止差分过度。对于一个序列,差分后若数据的极差变大,说明差分过度。 第2步是在平稳时间序列基础上识别ARMA模型阶数p, q。表1给出了不同ARMA模型的自相关函数和偏自相关函数。当然一个过程的自相关函数和偏自相关函数通常是未知的。用样本得到的只是估计的自相关函数和偏自相关函数,即相关图和偏相关图。建立ARMA模型,时间序列的相关图与偏相关图可为识别模型参数p, q提供信息。相关图和偏相关图(估计的自相关系数和偏自相关系数)通常比真实的自相关系数和偏自相关系数的方差要大,并表现为更高的自相关。实际中相关图,偏相关图的特征不会像自相关函数与偏自相关函数那样“规范”,所以应该善于从相关图,偏相关图中识别出模型的真实参数p, q。另外,估计的模型形式不是唯一的,所以在模型识别阶段应多选择几种模型形式,以供进一步选择。

时间序列分析方法第章预测

第四章 预 测 在本章当中我们讨论预测的一般概念和方法,然后分析利用),(q p ARMA 模型进行预测的问题。 §4.1 预期原理 利用各种条件对某个变量下一个时点或者时间阶段内取值的判断是预测的重要情形。为此,需要了解如何确定预测值和度量预测的精度。 4.1.1 基于条件预期的预测 假设我们可以观察到一组随机变量t X 的样本值,然后利用这些数据预测随机变量1+t Y 的值。特别地,一个最为简单的情形就是利用t Y 的前m 个样本值预测1+t Y ,此时t X 可以描述为: 假设*|1t t Y +表示根据t X 对于1+t Y 做出的预测。那么如何度量预测效果呢?通常情况下,我们利用损失函数来度量预测效果的优劣。假设预测值与真实值之间的偏离作为损失,则简单的二次损失函数可以表示为(该度量也称为预测的均方误差): 定理4.1 使得预测均方误差达到最小的预测是给定t X 时,对1 +t Y 的条件数学期望,即: 证明:假设基于t X 对1+t Y 的任意预测值为: 则此预测的均方误差为: 对上式均方误差进行分解,可以得到: 其中交叉项的数学期望为(利用数学期望的叠代法则): 因此均方误差为: 为了使得均方误差达到最小,则有: 此时最优预测的均方误差为: 211*|1)]|([)(t t t t t X Y E Y E Y MSE +++-= End 我们以后经常使用条件数学期望作为随机变量的预测值。 4.1.2 基于线性投影的预测 由于上述条件数学期望比较难以确定,因此将预测函数的范围限制在线性函数当中,我们考虑下述线性预测: 如此预测的选取是所有预测变量的线性组合,预测的优劣则体现在系数向量的选择上。 定义4.1 如果我们可以求出一个系数向量值α,使得预测误差)(1t t X Y α'-+与t X 不相关: 则称预测t X α'为1+t Y 基于t X 的线性投影。 定理4.2 在所有线性预测当中,线性投影预测具有最小的均方误差。

多因素时间序列的灰色预测模型

第 39卷 第 2期 2007年 4月 西 安 建 筑 科 技 大 学 ( 学 报 ( 自然科学版) ) V ol.39 No.2 Apr . 2007 J 1Xi ’an Univ . of Arch . & Tech . Natural Scie nce Editio n 多因素时间序列的灰色预测模型 苏变萍 ,曹艳平 ,王 婷 (西安建筑科技大学理学院 ,陕西 西安 710055) 摘 要:对于传统的单因素时间序列预测法在实际应用中的不足之处 ,提出采用灰色 DGM (1 ,1) 模型和多元 线性回归原理相结合的方法 ,综合各种因素建立多因素时间序列的灰色预测模型。它首先利用 DGM (1 ,1) 模 型对影响事物发展趋势的各项因素进行预测 ;然后利用多元线性回归法将各种因素综合起来 ,以预测事物的 发展趋势。最后将该模型应用于预测分析陕西省的就业状况 ,取得了较好的预测效果 ,同时也验证了此模型 的可行性。 关键词: 时间序列 ;单因素 ;多因素 ;预测模型 中图分类号:TB114 文献标识码:A 文章编号 :100627930 2007 022******* ( ) 多年以来 ,对时间序列的预测研究 ,大多是停留在对单因素时间序列上 ,对其预测通常采用的是趋 势外推法 ,而且该方法适合于原始时间序列规律性较好的情况 ,若时间序列中包含了随机因素的影 响 ,再采用这种方法得出的预测结果可能会失真. 同时 ,客观世界又是复杂多变的 ,事物的发展通常不 是由某个单个因素决定 ,往往是许多错综复杂的因素综合作用的结果 ,为了对某项事物的发展做出更加 符合实际的预测 ,这就需要来探讨多因素时间序列的预测问题 ,正是基于这些 ,本文在应用灰色 D GM (1 ,1)模型对单因素时间序列预测的基础上 ,结合多元回归原理 ,提出建立多因素时间序列的灰色预测 模型 ,这样就充分发挥了二者的优点 ,既克服了时间序列的随机因素影响 ,又综合考虑了影响事物发展 的多种因素 ,从而达到提高预测精度和增加预测结果可靠性的效果. 1 模型的建立 设 Y = (y (1) , y (2) , …, y( n)) 表示事物发展的特征因素时间序列, X i = (x i (1) , x i (2) , …, x i ( n)) (i = 1 ,2 , …, p) 表示影响事物发展的单因素时间序列. 1.1 单因素时间序列的 DGM(1 ,1) 模型 对于单因素原始时间序列{ X i } (i = 1 ,2 , …, p) ,根据灰色系统理论建模方法 ,得 D GM (1 ,1) 模 型 : x i (1) a (1 - a) + a b ,t > 1 1.2 多因素时间序列的预测模型 为了能将影响事物发展的众多因素结合起来进行综合预测和相关因素的预测分析 ,在经过多次研 究与比较后,采用多元回归的原理建立多因素时间序列的灰色预测模型: y t = a 0 + a 1 x 1 t + a 2 x 2 t + …+ a p x p t 2 式中 y t 为该事物在 t 时刻的预测值;x i t i = 1 ,2 , …, p 为第 i 个单因素 ,通过应用上述的灰色 3收稿日期 :2005201209 修改稿日期:2006204212 基金项目 :陕西省教育厅专项基金项目 01J K133( ) 作者简介 :苏变萍 19632( ) ,女 ,山西忻州人 ,副教授 ,博士研究生 ,研究方向为计量经济学. [122] (0) (0) (0) ( ) ( ) [4] (0) x (1) = x (1) ^ x (t) = (1) ( ) ^ ^ ^ ^ ^ ^

时间序列分析简介与模型

第二篇 预测方法与模型 预测是研究客观事物未来发展方向与趋势的一门科学。统计预测是以统计调查资料为依据,以经济、社会、科学技术理论为基础,以数学模型为主要手段,对客观事物未来发展所作的定量推断和估计。根据社会、经济、科技的预测结论,人们可以调整发展战略,制定管理措施,平衡市场供求,进行各种各样的决策。预测也是制定政策,编制规划、计划,具体组织生产经营活动的科学基础。20世纪三四十年代以来,随着人类社会生产力水平的不断提高和科学技术的迅猛发展,特别是近年来以计算机为主的信息技术的飞速发展,更进一步推动了预测技术在国民经济、社会发展和科学技术各个领域的应用。 预测包含定性预测法、因果关系预测法和时间序列预测法三类。本篇对定性预测法不加以介绍,对后两类方法选择以下几种介绍方法的原理、模型的建立和实际应用,分别为:时间序列分析、微分方程模型、灰色预测模型、人工神经网络。 第五章 时间序列分析 在预测实践中,预测者们发现和总结了许多行之有效的预测理论和方法,但以概率统计理论为基础的预测方法目前仍然是最基本和最常用的方法。本章介绍其中的时间序列分析预测法。此方法是根据预测对象过去的统计数据找到其随时间变化的规律,建立时间序列模型,以推断未来数值的预测方法。时间序列分析在微观经济计量模型、宏观经济计量模型以及经济控制论中有广泛的应用。 第一节 时间序列简介 所谓时间序列是指将同一现象在不同时间的观测值,按时间先后顺序排列所形成的数列。时间序列一般用 ,,,,21n y y y 来表示,可以简记为}{t y 。它的时间单位可以是分钟、时、日、周、旬、月、季、年等。

一、时间序列预测法 时间序列预测法就是通过编制和分析时间序列,根据时间序列所反应出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年可能达到的水平。其容包括:收集与整理某种社会现象的历史资料;将这些资料进行检查鉴别,排成数列;分析时间序列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模型,以此模型去预测该社会现象将来的情况。 二、时间序列数据的特点 通常,时间序列经过合理的函数变换后都可以看作是由三个部分叠加而成,这三个部分是趋势项部分、周期项部分和随机项部分。 1. 趋势性 许多序列的一个最主要的特征就是存在趋势。这种趋势可能是向下的也可能是向上的,也许比较陡,也许比较平缓,或者是指数增长,或者近似线性。总之,时间序列的趋势性是依据时间序列进行预测的本质所在。 2. 季节性/周期性 当数据按照月或季观测时,通常的情况是这样的:时间序列会呈现出明显的季节性。对季节性也不存在一个非常精确的定义。通常,当某个季节的观测值具有与其它季节的观测值明显不同的特征时,就称之为季节性。 3. 异常观测值 异常观测值指那些严重偏离趋势围的特殊点。异常观测值的出现往往是由于某些不可抗 1958 年自然灾害和1966年左右“文化大革命”对我国经拒的外部条件的影响。如1960 济的影响,造成经济指标陡然下降现象;1992年,我国银行紧缩政策造成的房地产业泡沫破灭,而使得房地产业的经济数据发生突然变化的例子等等。 4. 条件异方差性 所谓条件异方差性,表现出来就是异常数据观测值成群地出现,故也称为“波动积聚性”。由于方差是风险的测度,因此波动存在的积聚性的预测对于评估投资决策是很有用的,对于期权和其它金融衍生产品的买卖决策也是有益的。 5. 非线性 对非线性的最好定义就是“线性以外的一切”。非线性常常表现为“机制转换”(regime witches)或者“状态依赖”(State pendence)。其中状态依赖意味着时间序列的特征依赖于其现时的状态;不同的时刻,其特征不一样。当时间序列的特征在所有的离散状态都不一样时,就成为机制转换特性。 三、时间序列的分类 1. 按研究的对象的多少可分为单变量时间序列和多变量时间序列。 如果所研究的对象是一个变量,如某个国家的国生产总值,即为单变量时间序列。果所研究的对象是多个变量,如按年、月顺序排列的气温、气压、雨量数据,为多变量时间序列。多变量时间序列不仅描述了各个变量的变化规律,而且还表示了各变量间相互依存关系的动态规律性。 2. 按时间的连续性可将时间序列分为离散时间序列和连续时间序列。 如果某一序列中的每一个序列值所对应的时间参数为间断点,则该序列就是一个离散时间序列。如果某一序列中的每个序列值所对应的时间参数为连续函数,则该序列就是一个连续时间序列。 3. 按序列的统计特性可分为平稳时间序列和非平稳时间序列两类。

典型时间序列模型分析

实验1 典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有 AR(2)模型, X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) 其中:W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 【分析】给定二阶的AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 1 2 1 ()10.30.5H z z z --= ++ 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, ()() 2 2 12 12exp 11x w z jw P w a z a z σ--==++ 可以看出, () x P w 完全由两个极点位置决定。 对于 AR 模型的自相关函数,有下面的公式: 这称为 Yule-Walker 方程,当相关长度大于p 时,由递推式求出: 这样,就可以求出理论的 AR 模型的自相关序列。

1.产生样本函数,并画出波形 2.题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程 plot(x,'r'); ylabel('x(n)'); title('邹先雄——产生的AR 随机序列'); grid on; 得到的输出序列波形为: 2.估计均值和方差 可以首先计算出理论输出的均值和方差,得到 x m ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列分析-降水量预测模型

课程名称: 时间序列分析 题目: 降水量预测 院系:理学院 专业班级:数学与应用数学10-1 学号: 87 学生姓名:戴永红 指导教师:__潘洁_ 2013年 12 月 13日

1.问题提出 能不能通过以前的降水序列为样本预测出2002的降水量? 2.选题 以国家黄河水利委员会建站的山西省河曲水文站1952年至2002年51年的资料为例,以1952年至2001年50年的降水序列作为样本,建立线性时间序列模型并预测2002年的降水状态与降水量,并与2002年的实际数据比较说明本模型的具体应用及预测效果。资料数据见表1。 表1 山西省河曲水文站55年降水量时间序列

3.原理 模型表示 均值为0,具有有理谱密度的平稳时间序列的线性随机模型的三种形式,描述如下: 1、()AR p 自回归模型:1122t t t p t p t ωφωφωφωα-------=L 由2p +个参数刻画; 2、()MA q 滑动平均模型:1122t t t t q t q ωαθαθαθα---=----L 由2q +个参数刻画; 3、(,)ARMA p q 混和模型: 11221122t t t p t p t t t q t q ωφωφωφωαθαθαθα----------=----L L (,)ARMA p q 混和模型由3p q ++个参数刻画; 自相关函数k ρ和偏相关函数kk φ 1、自相关函数k ρ刻画了任意两个时刻之间的关系,0/k k ργγ= 2、偏相关函数kk φ刻画了平稳序列任意一个长1k +的片段在中间值11,t t k ωω++-L 固定的条件下,两端t ω,t k ω+的线性联系密切程度。 3、线性模型k ρ、kk φ的性质 表2 三种线性模型下相关函数性质 模型识别

时间序列分析与建模简介

时间序列分析与建模简介 Prepared on 22 November 2020

第五章时间序列分析与建模简介时间序列建模( Modelling via time series )。时间序列分析与建模是数理统计的重要分支,其主要学术贡献人是Box 和 Jenkins。本章扼要介绍吴宪民和 Pandit的工作,仅要求一般了解当前时间序列分析与建模的一些主要结果。参考书:“时间序列及系统分析与应用(美)吴宪民,机械工业出版社(1988)TP13/66。 引言 根据对系统观测得出的按照时间顺序排列的数据,通过曲线拟合和参数估计或者谱分析,建立数学模型的理论与方法,理论基础是数理统计。有时域和频域两类建模方法,这里概括介绍时域方法,即基于曲线拟合与参数估计(如最小二乘法)的方法。常用于经济系统建模(如市场预测、经济规划)、气象与水文预报、环境与地震信号处理和天文等学科的信号处理等等。 §5—1 ARMA模型分析 一、模型类 把具有相关性的观测数据组成的时间序列{ x k }视为以正态同分布白噪声序列{ a k }为输入的动态系统的输出。用差分模型 ARMA (n,m) 为(z-1) x k = (z-1) a k式(5-1-1) 其中: (z-1) = 1-1 z-1-…-n z-n (z-1) = 1-1 z-1-…-m z-m

式(5-1-2) 为与参考书符号一致,以下用B 表示时间后移算子 即: B x k = x k-1 B 即z -1,B 2即z -2… (B)=0的根为系统的极点,若全部落在单位园内则系统稳定;(B)=0的根为系统的零点,若全部在单位园内则系统逆稳定。 二、关于格林函数和时间序列的稳定性 1.格林函数G i 格林函数G i 用以把x t 表示成a t 及a t 既往值的线性组合。 式(5-1-3) G I 可以由下式用长除法求得: 例1.AR(1): x t - 1x t-1 = a t 即: G j = 1j (显示) 例2.ARMA (1,1): x t - 1x t-1 = a t - 1a t G 0= 1 ; G j = (1- 1) 1j-1 ,j 1 (显示) 例3.ARMA (2,1) (1 - 1B - 2 B 2)x t = (a t - 1 B ) a t 得出:G 0= 1 G 1 = 0G 0- 1 G 2 = 1G 1+ 2G 0 ∑∞ =-=0j j t j t a G x

相关主题
文本预览
相关文档 最新文档