当前位置:文档之家› 木聚糖酶在大肠杆菌中的表达

木聚糖酶在大肠杆菌中的表达

木聚糖酶在大肠杆菌中的表达
木聚糖酶在大肠杆菌中的表达

嗜热内切木聚糖酶基因xyn10B 克隆及其在大肠杆菌中的表达

食品科学093

谢江英

2009016513 自 Horflcoshi 于 1973 年首次报道了来自细菌中的木聚糖酶以来,国外科研工作者已分离出百余种不同微生物来源的木聚糖酶,并将其基因在各种宿主菌中得到活性表达。由于高产野生的微生物生产木聚糖酶时,释放出的产物较为复杂,往往产生大量的纤维素酶,导致在应用中产生不必要的麻烦。如在纸浆预漂白时,纤维素会被意外降解。并且这些酶的性质极为相近,分离纯化的成本较高,不利于木聚糖酶的推广使用,通过基因工程的方法来构建一些高效表达或胞外分泌的工程菌株,将有助于解决木聚糖酶的大量收集和纯化问题。我国对木聚糖酶的研究最近十几年才开始,大多限于天然木聚糖酶高产菌株的筛选,木聚糖酶的分离、纯化及性质分析,仅克隆和表达了少数木聚糖酶基因,而运用基因工程手段产业化生产木聚糖酶制剂在国内还刚刚起步。本研究从Caldicellulosiruptor bescii DSM 6725 分离出木聚糖酶基因 xyn10B,连接于表达载体 pET-28a(+)的NcoⅠ和XhoⅠ酶切位点之间,构建重组表达质粒pET28a-xyn10B,转化大肠杆菌 E.coli BL21(DE3)codon plus-RIL,构建基因工程菌,实现木聚糖酶高效表达。

1 实验材料

1.1 菌株和质粒

(1)热解纤维素菌Caldicellulosiruptor bescii DSM 6725;

(2)质粒 pET-28a;

(3)大肠杆菌 E.coli BL21(DE3)codonplus-RIL;

1.2 实验材料及主要试剂

1.2.1抗生素

氨苄青霉素,卡那霉素

1.2.2 试剂

胰化蛋白胨、酵母提取物、琼脂糖;PCR引物合成;DNA测序;不同来源底物;

其他常用化学试剂。

1.2.3 工具酶

限制性内切酶Nco I、Xho I、T4DNA连接酶、Taq DNA聚合酶、DNA Marker(DL2000 DNA Marker 和λ-HindⅢ digest DNA Marker)。

1.2.4 试剂盒

PCR产物回收试剂盒,质粒小提试剂盒,细菌基因组提取试剂盒,DNA凝胶回收试剂盒,

Ni-柱纯化柱料。

2.培养基及主要试剂配制

(1)TAE buffer:核酸电泳缓冲液

Tris-乙酸 0.04 mol/L

EDTA 0.001 mol/L

(2)5×Tris-甘氨酸电泳缓冲液:

Tris碱 15.1 g

甘氨酸 94 g

SDS 5 g

去离子水补齐至1000ml。

(3)考马斯亮蓝染色液配方

甲醇/水(1 :1,v/v) 90 ml

冰醋酸 10 ml

考马斯亮蓝R250 0.25 g

应用What man1号滤纸过滤,除去杂质,室温;备用。

(4)考马斯亮蓝脱色液

乙醇 100mL

乙酸 50mL

蒸馏水定容至1L。

(5)8×bindingbuffer(连接缓冲液)

NaCl 4 M

Tris-HCl(pH 7.9) 160 mM

(6)8×charge buffer

NiSO4 800 mM

(7)8×washbuffer(洗涤缓冲液)

咪唑 800 mM

NaCl 4 M

Tris-HCl(pH 7.9) 160 mM

(8)4×strip buffer

EDTA 400 mM

NaCl 2 M

Tris-HCl(pH 7.9) 80 mM

(9)蛋白质 SDS-PAGE 凝胶的配制

溶液成分分离胶 12%(5mL)浓缩胶 5%(2mL)

H2O 1.6 1.4

30%丙烯酰胺溶液 2.0 0.33

1.5mol/L Tris-HCl(pH8.8) 1.3 ---

1.0mol/L Tris-HCl(pH6.8) --- 0.25

10%SDS 0.05 0.02

10%过硫酸铵 0.05 0.02

TEMED 0.005 0.002

(10)宽范围缓冲液

乙酸 100mM

N-2-羟乙基哌嗪-N-2-乙磺酸(HEPS) 100mM

N-三(羟甲基)甲基-3-氨基丙磺酸(TAPS) 100mM

3-环已胺基丙磺酸(CAPS) 100mM

2-码啉乙磺酸(MES) 100mM

分别在60℃,70℃下精确配制100mM不同pH的缓冲液,使用1M NaOH调节

至所需的pH值。

3.实验仪器

振荡培养箱、无菌操作台、0.22μm无菌滤器、冷冻高速离心机、2550 紫外分光光度计、Gene pulser Xcell、实验室水纯化系统、超滤管 Ultrafreet-MC 10kDa、垂直电泳仪、无油真空抽滤仪、AKTA prime plus 蛋白层析仪、聚合酶链式反应器

⑴.Caldicellulosiruptor bescii DSM 6725 的液体培养

按照 DSMZ 的配方,配置厌氧培养基,分装于厌氧试管中,每管 5ml,培养基封闭后用

真空泵将试管中的空气抽干,并充入一定量的氮气和二氧化碳的混合气体(80%N2和20%CO2)。在厌氧箱中用培养基1m溶解购买于 DSMZ的 Caldicellulosiruptor bescii DSM 6725,按照 1%的接菌量接种于5ml 试管中,混匀,75℃静置培养数天,直至细菌开始生长

起来。然后转移至装有100ml培养基的锥形瓶中 75℃培养数天,-80℃保存菌体备用。

⑵.基因组 DNA 的提取

取5ml小试管培养的 Caldicellulosiruptor bescii DSM 6725,用细菌基因组 DNA 小

量提取试剂盒提取细菌的基因组,所得染色体 DNA 溶液放 4℃冰箱备用。

⑶. Caldicellulosiruptor bescii DSM 6725 xyn10B 基因的序列分析

⑶.Caldicellulosiruptor bescii DSM 6725 xyn10B 基因的克隆

以嗜热细菌 Caldicellulosiruptor bescii DSM 6725 xyn10B的基因组 DNA为模板,通过上游引物和下游引物进行嗜热木聚糖酶基因(xyn10B)的扩增。

上游引物:5’CCAGTC CCATGG AGAGCGAAGATTATTATGAAAA 3’,划线部分为NcoⅠ酶切位点;

下游引物:5’CGACGA CTCGAG AAAGTCAATTATTCTGAAAAATGCC 3’,划线部分为XhoⅠ酶切位点;

xyn10B 基因全长 1014bp,在 50 ul PCR 反应体系中,以基因组 DNA 第一链为模板,在无菌微量离心管中依次加入下述试剂(表 2-1)。

轻轻混匀后迅速离心,95℃预变性3 min,94℃变性30s,60℃退火30s,72℃,延伸 90s,进行32个循环,然后72℃延伸 20min,4℃保存。PCR 完成后,取 2u1扩增产物进行琼脂

糖凝胶电泳,ChampGel 1000 型凝胶成像系统中进行图像采集与分析。

通过 PCR 发现在退火温度梯度 50-60℃内都有产物,其中55℃产物的浓度及纯度最好(图 2-3),电泳结果表明 PCR 产物与理论长度相符。PCR 产物使用 PCR 清洁试剂盒回收,双酶切后电泳鉴定并估计浓度,-20℃保存,备用。

⑷.载体制备及重组质粒的构建

使用NcoⅠ和XhoⅠ酶切质粒载体pET-28a,去磷酸化后使用 PCR 产物纯化试剂盒回收,电泳鉴定并估计浓度,-20℃保存,备用。

xyn10B 与 pET-28a 连接反应,将下列试剂加入标记的无菌微量离心管中(表 2-4)。加完试剂,轻轻混匀后迅速离心,16℃孵育 2 h;4℃水浴中过夜连接。

通过目的基因与载体的连接,构建重组表达质粒,构建的流程如图2-4 所示。

⑸.重组质粒转化大肠杆菌及阳性转化子的筛选

通过 PCR 方法鉴定随机挑取的 10 个重组子,将经过 PCR 鉴定的阳性重组子基因进行测序,经测序确认序列完全正确,证明 xyn10B 基因克隆成功。提取阳性质粒,转化到表达宿主大肠杆菌中,并表达目标蛋白。

⑹.重组蛋白的诱导表达、鉴定以及纯化

以 pET-28a 为载体,大肠杆菌为宿主细胞菌进行优化表达。将重组菌按 1%接种量接种于 5ml 含 100μg/ml 卡那霉素的2YT 培养基,在37℃下震荡培养过夜。然后按 1%的接

达到 1.0 左右时,加入诱导剂 IPTG 种量转接 1000ml 2YT 培养基,37℃震荡培养至OD

600

至终浓度 1mM,27℃诱导 18-24h后,在 5000rpm 离心 20min 收集菌体,菌体重悬于6倍体积 50mMTris-HCl(pH8.0)缓冲液中,超声破碎后离心得到可溶性的上清组分和沉淀组分。上清组分56℃热处理 20 分钟后离心即得粗酶液;SDS-PAGE 结果显示(图2-5),在预测的 xyn10B 理论分子量(40.2kDa)处出现一条明显的蛋白条带,占总蛋白量约 50%,说明目的蛋白表达成功。

将粗酶液进行 Ni 柱纯化,由于粗酶本身的纯度就很高,尤其上清组分纯度能达到 80%以上,所以经过一步 Ni 柱处理后就能得到 95%以上纯度的目的蛋白(图 2-5),可以用于各种酶学性质表征等实验。

纯化过程中,在 pH7.2,温度56℃条件下,以 Beechhood xylan 为底物测定不同处理后的酶活力以及相应的蛋白浓度,得到不同处理后的蛋白纯化表(如表2-5)。由图和表格知,经过热失活和亲和层析,几乎不含有任何杂蛋白,在SDS-PAGE 上呈现出清晰的单一条带,酶蛋白的纯化倍数为 2.47 倍,酶蛋白的回收率高达 79.2%,重组嗜热木聚糖酶 xyn10B 的蛋白分泌量高达 1370mg/ml。纯酶调整蛋白浓度为 10mg/ml 左右后,-20℃保存备用。

参考文献:

[1]田东升.嗜热内切木聚糖酶的克隆、表达及其酶学性质的研究[D].上海交通大学生命科学技术学院,2012:18-30.

[2]高海有,刘正初,段盛文,成莉凤.β-甘露聚糖酶和木聚糖酶基因在大肠杆菌中共表达[J]. 微生物学通报,2012,39(3):344-347.

[3]莫毅.木聚糖酶产生菌的筛选鉴定及木聚糖酶基因(Xyn B)的克隆[J].中国饲料,2011(3):20-23.

[4]杨然,李秀婷.微生物木聚糖酶的研究进展[J].中国食品科学技术学会第七届年会论文摘要集:61-64.

木聚糖酶研究进展

木聚糖酶研究进展 刘亮伟 河南农业大学生命科学学院 郑州 450002 文化路 95 号llw321@https://www.doczj.com/doc/9a2819673.html, 科学技术的进步给21世纪的人类带来了便利,也给人类带来了前所未有的压力:人口膨胀、能源危机、环境污染、资源匮乏,所有这些问题的本源是能源危机。与能源匮乏相矛盾,自然界通过光合作用赋予人类大量可再生资源:如纤维素和半纤维素,作为继纤维素后第一大生物资源的半纤维素在农业和木材工业中是常见的废弃物,它作为可再生资源的一个有利条件是它比纤维素更易于提取和水解。秸秆中半纤维素含量占其总干重的25~50%,其化学结构较纤维素复杂得多,由D-木糖通过β-1,4-糖苷键相连成的主链和少量L-阿拉伯糖侧链所组成[1],这种D-木糖单元在硬木和软木中平均聚合度分别是150-200和70-130,要得到能够利用的单糖必须通过以木聚糖酶为主的半纤维素酶系协同作用进行水解而完成[2]。 内切-1,4-β-木聚糖酶(E.C 3.2.1.8)是一种内切糖苷酶,能够水解木聚糖这类自然界中最丰富的半纤维素,同自然界中五碳糖的循环相联系,在能量循环中占有重要地位。在古代人们就已经在生产过程中间接地利用各种酶进行生产:如酿酒、制作奶酪、烘焙面包、修饰淀粉等。1986年,Viikarri发现了木聚糖酶在纸浆漂白和造纸工业中能够降低环境污染物品的用量[3],伴随着人类对于可持续性发展和环境的重视,木聚糖酶在工业上的应用明显增加,在1997-2002年间的5年中,纸浆造纸业用酶由1.0亿美元增加到1.92亿元,增长率为16.2%,是所有酶制品行业中增长率最快的。 1木聚糖酶的应用 1.1在纸浆造纸工业中应用 木聚糖酶最重要的用途是在纸浆造纸工业中对于纸浆的漂白。因为环境污染最大的来源是纸浆造纸工业中的废水。根据资料显示仅仅美国每年用于纸浆漂白的氯化物或次生氯化物用量就有200多万吨[4]。因为纸浆漂白污水中含有有毒物质,并且这些物质能在生态系统的生物和非生物组成中积累,如氯苯、氯二苯和其它氯化木质素次生物[5; 6]。这些化学物质对环境危害很大,据有关研究显示既便是远离造纸厂10公里以外的鱼群都会受到纸浆漂白污水中有害物质的负面影响[7],这种受到污染的鱼可以直接或间接地影响人类的身体健康。木聚糖酶的作用就是对木聚糖进行水解从而加快了纸浆中木质素的释放,色素物质所以能够比较容易地从纤维素中释放出来。经实验证实,木聚糖酶的漂白效果比木质素降解酶好得多,这是因为木质素大部分交联在半纤维素上,而半纤维素比木质素更容易解聚[8]。利用木聚糖酶相应地比其它酶进行多聚物降解时,碳水化合物水解速度要快2-3倍[9]。经木聚糖酶处理后的纸浆漂白可以降低20%-40%漂白剂用量 [10]。

木聚糖酶及其应用

木聚糖酶及其应用 姓名:程婷婷学号:20083768 班级:食品科学与工程专业08级本科2班摘要:木聚糖是一种多聚五碳糖,是植物半纤维素的主要成分,是仅次于纤维素的第二丰富的可再生资源。木聚糖木聚糖结构复杂,完全降解需要多种酶的参与,其中β-1,4-内切木聚糖酶能够以内切方式作用于木聚糖主链产生不同长度的木寡糖和少量的木糖,是木聚糖降解酶系中最关键的酶。木聚糖酶是可将木聚糖降解成低聚木糖和木糖的水解酶,在食品、制浆造纸、饲料等行业上有着广阔的应用前景.本文主要从木聚糖酶的分类、特性及其应用等方面进行阐述。 关键词:木聚糖酶;分类;特性;应用 木聚糖是以木吡喃糖为单位的由β-1, 4键连接的半纤维素,富含于阔叶树和大多数一年生植物体内,是一种重要的可再生资源,仅次于纤维素。它多为异聚多糖,结构变化范围很大,从β-1,4糖苷键相连接的多聚木糖线性分子到高度分枝的异质多糖。目前,木聚糖酶主要由微生物生产,已报道能生产木聚糖酶的微生物有丝状真菌、细菌和链霉菌等。微生物产生的木聚糖酶具有多样性,即常常产生不止一种类型的木聚糖酶,而且这些木聚糖酶的特性也存在差异。木聚糖酶可广泛应用于食品、制浆造纸、饲料等行业。 1木聚糖酶的分类 1.1木聚糖酶 木聚糖酶是指能够降解半纤维素木聚糖的一组酶的总称,主要包括三类:内切-β-1,4一木聚糖酶,作用于木聚糖和长链木寡糖,从β-1,4一木聚糖主链的内部切割木糖苷链,从而使木聚糖降解为木寡糖,其水解产物主要为木二糖与木二糖以上的寡聚木糖,也有少量的木糖和阿拉伯糖;外切-β-1,4一木聚糖酶,作用于木聚糖和木寡糖的非还原端,产物为木糖; β-木糖苷酶,该酶通过切割木寡糖末端而释放木糖残基[1]。 1.2根据所水解的木聚糖苷键类型 木聚糖酶可分为β-1,4糖苷键木聚糖酶和β-1,3糖苷键木聚糖酶两类。陆上植物的木聚糖酶均属β-1,4糖苷键木聚糖酶,而β-1,3糖苷键木聚糖酶大都

酶制剂在工业上的应用现状与展望

《酶工程》课程论文 学院:材料与化工学院 专业班级:2011级生物工程(2)班 姓名:李丹丹 学号:20110412310047 评阅意见 评阅成绩 评阅教师: 2014年6月12日

酶制剂在工业上的应用现状与展望 姓名:李丹丹 学院和专业:材料与化工生物工程2班 摘要:酶制剂是一类特殊的食品添加剂,具有催化高效性,专一性等显著特点。文章综述了食品工业中酶制剂利用及新动向,包括淀粉糖、油脂、蛋白质加工、面包、啤酒、饮料工业以及改善苦味的酶类的应用。并介绍了酶与食品的关系、酶制剂在食品生产中用于保藏、改善质量和增加营养价值、增加品种种类、提高便捷性和提高食品生产效率等作用,还介绍了酶制剂在饲料中的应用。并对酶制剂在食品工业中和在动物饲料方面的发展方向进行展望。关键词:酶制剂食品工业饲料工业应用 1.酶制剂的简介 酶是一类具有专一性生物催化能力的蛋白质。而从生物体中提取的具有酶活力的制品,称为酶制剂。酶制剂主要用于食品加工和制造业方面,它在对提高食品生产效率和产量、改进产品风味和质量等方面有着其它催化剂所无法替代的作用。另外,酶制剂在日化、纺织、环境保护和饲料等行业也有着较广泛的应用。随着发酵工业的发展,酶制剂的主要来源已被微生物所取代,它具有不受季节、地区和数量等因素影响的特性,还具有种类多、繁殖快、质量稳定和成本低等特点。随着微生物育种技术的发展,酶制剂的种类越来越多,分类也越来越细。目前我国已工业化生产的、且用于食品工业的酶制剂主要有:淀粉酶、异淀粉酶、果胶酶和蛋白酶等,它们在食品加工中都起着十分重要的作用。当然,尽管目前我国酶制剂行业的发展已有了长足进步,但与发达国家相比,还有很大差距。为进一步加快酶制剂产业技术的进步,今后应注重在调整产品结构、增加新品种、提高产品质量和竞争力、实现规模化经营和拓宽应用领域等方面作深入的研究。 2.酶制剂在食品工业中的应用 利用淀粉酶可以将淀粉水解为葡萄糖或不同DE值的淀粉糖浆,再经过葡萄糖异构酶的作用产生果葡糖浆;果胶酶用于果汁的加工和澄清,可提高果酒的得率,改善澄清效果,加快过滤速度;乳糖酶可分解牛奶中的乳糖,提高人体对牛奶的消化性;脂肪酸可改进食品风味;蛋白酶可用于蛋白胨和氨基酸混合液的制造,生产糖果使用的蛋白发泡剂,用在面包、糕点和通心粉的生产上可缩短揉面时间、增强面团延伸性和改进产品质量,用在肉类加工上可嫩化肉类、软化肠衣和提高质量,用在乳酪制造上可缩短生产时间等。 2.1用于保藏 溶酶菌现已广泛地被用作水产品、肉食品、蛋糕、酒精、料酒、饮料以及日用化妆品的防腐剂。由于食品中的羟基和酸会影响溶酶菌的活性,因此,它一般与酒、植酸、甘氨酸等物质配合使用。目前与甘氨酸配合食使用的溶酶菌制剂,应用于面食、水产、熟食及冰淇淋等食品的防腐。在低度酒中添加20mg/kg的溶酶菌不仅对酒的风味无任何不良影响,还可防止产酸菌的生产,同时受酒类澄清剂的影响很小,是低度酒类较好的防腐剂,如日本就把溶酶菌用于清酒的防腐。 乳制品保险牛乳中含有13mg/dl的溶酶菌,在人乳中含量为40mg/ml。在鲜乳或奶粉中加入一定量溶酶菌,不但可起到防腐作用,而且还有强化作用,能增进婴儿健康。 将各种肉类和水产熟制品(如鱼丸、香肠及红肠等),用含1%明胶和0.05%溶酶菌的混合液浸渍后再包装保存,可延长其保质期。各类糕点特别是奶油蛋糕是容易腐败变质的食品,在制作过程中加入溶酶菌就具有一定的防腐、保鲜作用。此外,溶酶菌还可应用于pH值为6.0~7.5的饮料的防腐。 海产品及水产品如虾、鱼和蛤蜊等在含甘氨酸、溶酶菌和食盐的溶液中浸渍5min后,沥干,在5℃下保存9d后,无异味、无色泽变化。 3.2提高食品质量和增加营养价值

食品生物化学 木聚糖酶及其应用

附件一: 新疆农业大学 专业文献综述 题目: 木聚糖酶及其应用 姓名: 全莉 学院: 食品科学与药学学院 专业: 食品科学与工程 班级: 食科112班 学号: 114031226 指导教师: 蓬焕明职称: 副教授 20012 年12 月20 日 新疆农业大学教务处制

木聚糖酶及其应用 姓名:全莉指导老师:蓬焕明 摘要:木聚糖是一种多聚五碳糖,是植物半纤维素的主要成分,是仅次于纤维素的第二β-1,4-内切木聚糖酶能够以内切方式作用于木聚糖主链产生不同长度的木寡糖和少量的木糖,是木聚糖降解酶系中最关键的酶。木聚糖酶是可将木聚糖降解成低聚木糖和木糖的水解酶,在食品、制浆造纸、饲料等行业上有着广阔的应用前景.本文主要从木聚糖酶的分类、特性及其应用等方面进行阐述。 关键词:木聚糖酶;分类;特性;应用 引言:丰富的可再生资源。木聚糖木聚糖结构复杂,完全降解需要多种酶的参与,其中木聚糖是以木吡喃糖为单位的由β-1, 4键连接的半纤维素,富含于阔叶树和大多数一年生植物体内,是一种重要的可再生资源,仅次于纤维素。它多为异聚多糖,结构变化范围很大,从β-1,4糖苷键相连接的多聚木糖线性分子到高度分枝的异质多糖。目前,木聚糖酶主要由微生物生产,已报道能生产木聚糖酶的微生物有丝状真菌、细菌和链霉菌等。微生物产生的木聚糖酶具有多样性,即常常产生不止一种类型的木聚糖酶,而且这些木聚糖酶的特性也存在差异。木聚糖酶可广泛应用于食品、制浆造纸、饲料等行业。 正文: 1 木聚糖酶的分类 1.1木聚糖酶 木聚糖酶是指能够降解半纤维素木聚糖的一组酶的总称,主要包括三类:内切-β-1,4一木聚糖酶,作用于木聚糖和长链木寡糖,从β-1,4一木聚糖主链的内部切割木糖苷链,从而使木聚糖降解为木寡糖,其水解产物主要为木二糖与木二糖以上的寡聚木糖,也有少量的木糖和阿拉伯糖;外切-β-1,4一木聚糖酶,作用于木聚糖和木寡糖的非还原端,产物为木糖; β-木糖苷酶,该酶通过切割木寡糖末端而释放木糖残基[1]。 1.2 根据所水解的木聚糖苷键类型 木聚糖酶可分为β-1,4糖苷键木聚糖酶和β-1,3糖苷键木聚糖酶两类。陆上植物的木聚糖酶均属β-1,4糖苷键木聚糖酶,而β-1,3糖苷键木聚糖酶大都存在于海藻及海洋生物中。按木聚糖酶的序列同源性和疏水族,木聚糖酶分别属于糖苷水解酶的两个家族,即F家族(10家族)和G家族(11家族),属于同一家族的木聚糖酶催化区域具有同源性,可以根据已知家族的酶来推测未知酶的催化特性[2]。F家族的木聚糖酶分子量高,结构复杂,通常生成较小的低聚糖,该家族的木聚糖酶可以作用于对硝基苯和对硝基苯纤维二糖,与底物结合需要较少数量的点;G家族的木聚糖酶则对木聚糖有很高的特异性。 1.3 依据木聚糖酶对底物的特异性 木聚糖酶可分为特异性木聚糖酶和非特异性木聚糖酶。特异性木聚糖酶特异作用于木聚糖底物,非特异性酶除作用于木聚糖外,还能作用于纤维素及人工底物,称双功能酶。

蛋白类木聚糖酶研究进展

蛋白类木聚糖酶抑制剂研究进展 专业:09生物工程班级:09级1班作者:许斌指导老师:龚妍春 摘要:木聚糖酶已广泛应用于饲料、食品加工、纸浆漂白等领域, 然而近年研究小麦等谷物中存在一种能抑制木聚糖酶活性的蛋白质性质的成分, 称为木聚糖酶抑制蛋白。木聚糖酶抑制蛋白具有多型性, 但不同类型抑制蛋白都只作用于外源木聚糖酶,而对谷物内源性木聚糖酶没有抑制作用。这就对木聚糖酶应用领域中酶功效的发挥提出了挑战: 抑制蛋白的存在是否影响外加木聚糖酶的作用? 本文综述了三类木聚糖酶抑制蛋白的分子结构抑制特性,阐明蛋白类抑制剂与木聚糖酶之间的互作机理, 为最大限度的发挥木聚糖酶功效奠定理论基础。简要介绍了木聚糖酶抑制蛋白对谷物的影响作用。 关键词:木聚糖酶;木聚糖酶抑制蛋白;抑制特性 1.引言 木聚糖作为植物中的一种主要的非淀粉多糖,含量仅次于纤维素,是自然界中第二大丰富的多聚糖。木聚糖是植物细胞壁多糖中半纤维素的主要成分,主链由D- 吡喃型木糖残基通过B-1, 4-糖苷键连接而成,主链上一般还带有少量的乙酰基、葡萄糖醛酸基、阿拉伯糖基等侧链取代基[1]。内切B-1-4木聚糖酶(EC3.2.1.2,简称木聚糖酶) 是专一性水解木聚糖主链的酶,将大分子木聚糖降解成低聚木糖、木二糖及少量的木糖,木聚糖酶主要由微生物产生,但一些藻类、原生动物、甲壳类动物和植物等也能产生木聚糖酶。根据催化结构域氨基酸的同源性和疏水簇分析法,木聚糖酶可分为GH10家族(包括植物酶类、真菌酶类和细菌酶类等)和GH11家族(包括真菌酶类和细菌酶类)2个家族。已知的禾谷类所产的木聚糖酶都属于GH10 家族,而微生物产生的木聚糖酶则属于F10 或G11 两个家族[2]。木聚糖除了在饲料工业中应用之外,在造纸制浆、食品加工等领域均有涉及。然而, 近年的研究发现微生物木聚糖酶的活性在体外试验中会被来自小麦等谷物的一种蛋白质性质的成分所抑制, 这种成分即木聚糖酶抑制蛋白。由于实验室应用试验所加木聚糖酶的量总是大于实际应用过程中的酶用量, 因此可以推测实际应用中外加的木聚糖酶也会受到基质中抑制蛋白的抑制作用, 从而影响用酶工艺过程[3]。许多有益微生物产生的木聚糖酶已经广泛应用于饲料面包焙制淀粉加工纸浆生物漂白等领域,而植物病原菌的木聚糖酶有方面作用:

木聚糖酶

木聚糖酶 本品精选优良菌株,经液体深层发酵精制而成的高效浓缩酶制剂。适用于饲料、食品、酿造、果蔬汁加工、纺织等行业。 作用原理 木聚糖是一种多聚五碳糖,为半纤维素的主要成分之一。木聚糖酶是一类降解木聚糖分子中β-1,4-木糖苷键的酶系,主要包括内切β- 1,4-木聚糖酶和β-木糖苷酶。内切β-1,4-木聚糖酶以内切方式作用于木聚糖主链内部的β-1,4-木糖苷键,其主要水解产物为低聚木糖和少量木糖。β-木糖苷酶通过水解低聚木糖的末端来催化释放木糖残基。木聚糖彻底降解为木糖需要这两种酶的共同参与。 理化性质 外观:黄色或白色粉剂及黄色液体. 作用pH范围:pH3.0-7.0,最适pH为5.0 作用温度范围:30-75℃,最适温度为50℃。 产品酶活 木聚糖酶酶活:1~30万u/g 酶活单位(U)定义:在50℃、pH5.0条件下,每分钟水解木聚糖产生1μg还原糖所需要的酶量定义为1个酶活力单位。 使用方法 本品可应用于饲料、食品、酿造、果蔬汁加工,植物提取、纺织等行业。因应用领域和生产条件等不同用量与用法而有所改变。用户也可以结合自己的工艺条件通过试验确定最佳使用方案。 5.包装规格

25kg/桶。 6.运输与贮存 运输时应避免日晒,贮存于阴凉干燥环境中(25℃以下可保存18个月)。 中性蛋白酶 中性蛋白酶采用枯草芽孢杆菌经深层发酵提炼而成。广泛应用于酒精、啤酒、味精、淀粉糖、发酵工业的液化以及纺织、印染退浆等. 一、产品性状: 1 、产品规格: 固体型分为 50000--100000u/g 。. 2、 1g固体酶粉在30℃,pH7.5条件下,1min水解酪素产生1ug酪氨酸所需的酶 量为1个酶活力单位,以u/g表示。 二、产品特性: 1 、热稳定性:最适作用温度40℃~50℃ 。 2 、 PH 稳定性:最适作用pH6.5~7.5,PH5.0 以下失活严重。 三、应用工艺(根据试验情况进行调整) 1、饲料用酶:该酶与a-淀粉酶、酸性蛋白酶、纤维素酶、糖化酶等复合使用。可以广泛应用于仔猪、育成猪、禽类、鱼类饲喂。参考用量为3-10u/g。 2、用于皮革脱毛:酶脱毛(35-42℃,pH7.5,20-25u/ml)→水洗→浸酸→揉制。 3、用于胶片回收:45℃,pH7.0-7.5,用20-23u/ml进行回收。 4、用于丝绸脱胶:预处理→脱水→酸处理(蛋白酶18-24u/ml,肥皂0.75%, 48-50℃,30-60分钟,pH 7-8)→脱水→扯皮→冲洗→脱水→抖松→烘干→抖松。 5、医药工业:含中性蛋白酶的药物,可起到消炎、利胆、止痛、助消化的功效。 6、焙烤行业的应用:改善成品的光泽,结构均匀一致,口感松爽酥脆。 四、注意事项 1、此产品可完全溶于水,使用安全可靠。操作时请勿直接与酶制剂接触,若有

木聚糖酶分子结构与重要酶学性质关系的研究进展

21卷1期2005年1月 生 物 工 程 学 报 Chinese Journal o f Biotechnology V ol.21 N o.1 January 2005   Received :July ,13,2004;Accepted :September ,16,2004. This w ork was supported by G rant from Chinese National Programs for H igh T echnology Research and Development (863)(N o.2001AA214041). 3C orresponding author.T el :86210268975126;E 2mail :yaobin @https://www.doczj.com/doc/9a2819673.html,. cn 国家高技术研究与发展计划(863计划)项目资助(N o.2001AA214041)。 木聚糖酶分子结构与重要酶学性质关系的研究进展 R ecent Advances in Structures and R elative E nzyme Pro 2 perties of X ylanase 杨浩萌1 ,姚  斌 13 ,范云六 2 Y ANG Hao 2Meng 1,Y AO Bin 13and FAN Y un 2Liu 2 11中国农业科学院饲料研究所, 北京 10008121中国农业科学院生物技术研究所,北京 100081 11F eed Research Institute ,Chinese Academy o f Agricultural Sciences ,Beijing 100081,China 21Biotechnology Research Center ,Chinese Academy o f Agricultural Sciences ,Beijing 100081,China 摘 要 木聚糖是一种多聚五碳糖,是植物细胞中主要的半纤维素成分。木聚糖酶是可将木聚糖降解成低聚木糖和木糖的水解酶,它在饲料、造纸、食品、能源工业和环境科学上有着广阔的应用前景。随着分子生物学、结构生物学的发展及蛋白质工程的应用,对木聚糖酶结构和功能的研究不断深入。这里重点阐述与酶的活性、热稳定性、作用pH 、等电点、底物亲和性及催化效率等重要性质相关的分子结构研究进展,讨论了其进一步的研究发展方向。研究木聚糖酶结构与功能的关系,对进一步加深木聚糖酶作用机制的了解、指导木聚糖酶的分子改良有重要意义。关键词 木聚糖酶,结构与功能,催化残基,热稳定性,pH 性质,底物亲和性中图分类号 Q556 文献标识码 A 文章编号100023061(2005)0120006206 Abstract X ylanase can hydrolyze xylans into xyloolig osaccharides and D 2xylose ,and has great prospect for applications in feed industry ,paper and pulp industry ,food industry and environment science.The study of xylanase had been started in 1960’s.W ith the development and application of the new technologies ,such as m olecular biology ,structural biology and protein engi 2neering ,many progresses have been made in the research of structures and functions of xylanase.This paper reviews the research progress and trend in the structure correlating with the im portant properties of xylanase.Analyses of three 2dimensional structures and properties of mutants have revealed that glutam ine and aspartic acid residues are inv olved in the catalytic mechanism.The therm ostability of xylanase correlated with many factors ,such as disulfide bridges ,salt bridges ,aromatic interactions ,cotent of arginine and proline ,and some multidomain xylanase have therm ostability domains in N or C term inal.But no single mechanism is responsible for the remarkable stability of xylanase.The isoelectic points and reaction pH of xylanase are in fluenced by hydropho 2bicity and content of electric charges.M any researches had dem onstrated that aromatic am ino acid ,histidine ,and tryptophan play an im portant role in im proving enzyme 2substrate affinity.The researches of structures and functions of xylanase are of great signifi 2cance in understanding the catalytic mechanism and directing the im provement of xylanase properties to meet the application requirement. K ey w ords xylanase ,structure and function ,catalytic residures ,therm ostability ,pH properties ,substrate affinity

文献综述木聚糖酶的研究及应用前景

木聚糖酶的研究及应用前景 (张海珍1吴萍2) (张海珍江苏省灌云县伊山高级中学 222200 吴萍安徽科技学院生命科学院 233100) 摘要:对木聚糖酶的特性及其在国内外的研究进展作了介绍,详细阐述了木聚糖酶在造纸、食品、饲料、酿酒、烘烤等工业及其在生产单细胞蛋白、生物制药、液体或气体燃料、糖浆、饮料等方面的巨大潜力及十分诱人的应用前景。 关键词:木聚糖酶特性研究进展应用前景 木聚糖酶(endo—1,4—β—D—xylan xylanohydrolase, EC. 3. 2. .1. 8)是一类以内切方式降解木聚糖分子中的β—1 ,4--木糖苷键的水解酶类。该酶在造纸工业上可用于预漂纸张,提高木素溶出率,改善纸张性能且减少环境污染。在食品工业中利用木聚糖酶降解半纤维素的主要成分,木聚糖生产低聚木糖具高附加的产品。在饲料工业中可提高饲料的能量值和禽。畜对饲料的利用率,并且在饮料和制药,溶剂,糖浆,气体或液体燃料等行业中也具有巨大潜力,其前景十分诱人。因此,木聚糖酶的开发具有重要的经济和社会价值意义。 1.木聚糖酶的特性 木聚糖酶(endo—1,4—β—D—xylan xylanohydrolase,EC·3·2·1·8)是一类以内切方式讲解木聚糖分子中的β—1,4—木糖苷键的水解酶类。包括内切β—木聚糖酶、外切β—木聚糖酶和β—木二糖苷酶。其主要水解产物为木二糖和木二糖以上的低聚木糖,还有少量木糖和阿拉伯糖。[1] 木聚糖酶按其序列同源性和疏水族分析属于糖苷水解酶的两个家族,即F家族(10家族)和G家族(11家族),属于同一家族的木聚糖酶催化区域具有同源性,可根据已知家族的酶来推测未知酶的催化特性。F家族的木聚糖酶分子量高,复杂,通常产生较小的聚糖;F家族则具有较高的特异性[4,10]。 木聚糖酶体(xylanosome)是在微生物表面分离到的多酶复合体。[2]这些复合体在半纤维素的降解中起重要作用。现在已知能够产木聚糖酶的微生物包括细菌、真菌、黑曲霉、木霉等。不同来源的木聚糖酶催化特性是有差异的,它们各自有其不同的PH值和最适温度。已证实放线菌和细菌的最适生长和产酶PH 接近于中性;耐碱性杆菌PH值在9—10;而真菌却较适合酸性条件[15],且能分泌胞外木聚糖酶的水平高于酵母菌[10,11,12]和细菌[2,13],从而格外引起研究人员的关注。

木聚糖酶作用机理

木聚糖酶作用机理及区分木聚糖内外切酶测定方法探讨2007-08-01 13:01:27 作者:汤海鸥来源:挑战部文字大小:【大】【中】【小】 近年来,木聚糖酶以其特有降解阿拉伯木聚糖,消除阿拉伯木聚糖对动物的抗营养作用,已成为一种在养殖业中广泛应用的酶制剂。特别是基因工程菌株性木聚糖酶以其稳定性好,降解效率高等特点引起了人们的广泛关注。然而木聚糖酶是降解半纤维素木聚糖的一组酶的总称,要想很好的应用木聚糖酶制剂产品,必须对木聚糖酶的作用机理有较深的了解。同时,在实际生产应用中木聚糖内切酶和外切酶的协同作用对木聚糖降解至关重要,但对于如何应用检测方法去区分木聚糖内外切酶的性质却很少关注。由此,本文首先从分子角度对木聚糖酶的作用机理进行了论述,然后对区分木聚糖酶系中内切酶和外切酶的检测方法进行了探讨,意欲对木聚糖酶制剂产品在生产上更好的应用提供帮助。 1. 木聚糖酶作用机理 木聚糖是由β-1,4或β-1,3糖苷键连接的一种杂合多聚分子。主链由多个吡喃木糖基通过木糖苷键相连,侧链上连着多种不同大小的短的取代基,主要有乙酰基、4-甲基-D-葡糖醛酸残基、L-阿拉伯糖残基等。这些侧链与植物细胞中其它几种结构性多糖(如木质素、纤维素、果胶、葡聚糖等)以共价或非共价键连接,组成植物细胞重要的结构——细胞壁。木聚糖主要存在于植物细胞的次生壁中,处于木质素及其它多聚糖之间,起着连接作用。也正由于这些侧链的不同,使得木聚糖的结构变化范围很大,从仅由β-1,4-糖苷键连接的多聚木糖线性分子到高度分枝的异质多糖。因此,要使木聚糖完全降解则需要多种水解酶的协同作用,这其中包括主链水解酶β-D -1,4内切木聚糖酶、β-D-1,4外切木糖苷酶和侧链水解酶a-L-阿拉伯呋喃糖苷酶、a-葡萄糖醛酸酶和乙酰木聚糖酯酶等。 木聚糖降解时,起主要作用的酶是β-D-1,4内切木聚糖酶和β-D-1,4外切木糖苷酶。β-D-1,4内切木聚糖酶以内切方式作用于木聚糖主链内部的β- 1,4木糖苷键,其主要水解产物为低聚木糖、木寡糖、木二糖等;β-D-1,4外切木糖苷酶通过水解低聚木糖、木寡糖等的非还原性末端来催化释放木糖残基。另外, 参与彻底降解木聚糖的还有a-L-阿拉伯呋喃糖苷酶、α-葡萄糖醛酸苷酶、乙酰木聚糖酯酶及能降解木聚糖上阿拉伯糖侧链残基与酚酸(如阿魏酸或香豆酸)形成的酯键酚酸酯酶等侧链水解酶,它们作用于木糖与侧链取代基之间的糖苷键,协同主链水解酶的作用最终将木聚糖转化为它的组成单糖。

F_10木聚糖酶研究进展

第28卷第6期 2009年11月 食品与生物技术学报 Journal of Food Science and Biotechnology V ol.28 N o.6N ov. 2009 文章编号:1673 -1689(2009)06-0727-06 收稿日期:2008-02-17 基金项目:河南省科技攻关资助项目(072102220001),江苏省自然科学基金资金项目(BK2007067). 作者简介:刘亮伟(1967-),男,河南长葛人,工学博士,副教授,主要从事微生物酶学理性改造方面的研究。 Email:llw 321@y https://www.doczj.com/doc/9a2819673.html, F /10木聚糖酶研究进展 刘亮伟1 , 杨海玉1 , 胡瑜1 , 李相前 2 (1.河南农业大学生命科学学院,河南郑州45002;2.淮阴工学院生命科学与化学工程学院,江 苏淮安223001) 摘 要:木聚糖酶广泛应用在食品加工、纸浆漂白、饲料添加剂、工业乙醇的生产,生物转化等领域。相对于G/11木聚糖酶,F/10家族在稳定性、耐酸性和耐碱性方面更有优越性,本文综述了该家族木聚糖酶的相关基因,酶分子空间结构及催化机理等基本特性,特别对热稳定性属性及基因 工程改造其稳定方面进行了详细说明,为进一步进行酶分子改造和应用提供借鉴。关键词:木聚糖酶;热稳定性;空间结构;基因工程中图分类号:Q 55 文献标识码:A A Review of F/10Xylanase LIU Liang -w ei 1 , YANG H a-i yu 1 , H U Yu 1 , LI Xiang -qian 2 (Colleg e of L ife Sciences o f Henan A g riculat rual U niver sity,Zheng zhou 450002,China; 2.H uaiyin Institute of T echno log y ,H uaian 450003,China) Abstract:Xy lanase is w idely used in biotechnolog y related areas,such as food processing,pulp bio -bleaching,anim al feed additive,ethanol pr oduction,bio -conversio n,and so https://www.doczj.com/doc/9a2819673.html, pared w ith G/11x ylanase,F/10xy lanase is mo re advantageous in thermostability,acidic resistance and alkaliphilic ability.T his manuscript review ed the related genes,enzy me 3D structure,cataly sis mechanism of this family,especially abo ut its therm ostability and g enetic engineering,w hich is useful for further investigatio n of property and deeper usage in industries. Key words:F/10x ylanase,therm ostability,structure,genetic engineering,catalysis m echanism 木聚糖酶(EC 3.2.1.8)水解木聚糖的 -1,4-糖苷键,与自然界中第二大能源物质-半纤维素的降解和五碳糖的循环利用相联系。现在木聚糖酶广泛应用于工业生产中:啤酒酿造、面包烘焙、动物饲料、生物漂白、乙醇生产、生物转化等。由于环境多样性,造成不同生物来源的木聚糖酶在理化特性,结构,催化模式和底物特异性等方面具有多样性。已经发现木聚糖酶分布在5,7,8,10,11,43等家族 的糖苷水解酶中。根据催化结构域的氨基酸组成,大部分木聚糖酶属于F/10和G/11木聚糖酶两大家族。G/11木聚糖酶多为单结构域,相对分子质 量一般小于30000,产物中寡聚糖含量较多,而单糖成分较少,酶最适温度50~60 ,在空间结构上呈 右手半握状 。F/10木聚糖酶则含有较多结构域,不仅有催化结构域,还存在纤维素结合结构域(Ce-l lulo se Binding Domain:CBD),相对分子质量一般

木聚糖酶在工业上的应用

真菌中的木聚糖酶:性能及其在工业上的应用 摘要:木聚糖是半纤维素的主要类型。这是一个由木二糖通过1,4位糖苷键连接的线性聚合物。在自然界中,多糖的分子骨干可以被4-O-甲基-α-D-吡喃葡糖醛酸、乙酰基、α-L-阿拉伯呋喃糖基等比例添加。木聚糖的水解主要是酶的复合物承担,但主要参与的酶是内切β-1,4-D-木聚糖酶和β-D-木糖苷。这些酶可由真菌、细菌、酵母、海洋藻类、原生动物、蜗牛、甲壳类动物、昆虫、种子等产生,但是主要商业来源是丝状真菌。最近,有很多工业对木聚糖及其其水解酶感兴趣,主要是其可用于补充动物饲料、生产面包、食物和饮料、纺织品、纤维素纸浆的漂白、乙醇和木糖醇的生产。本文描述了一些木聚糖的特性和它的新陈代谢,木聚糖酶的生化特性以及其商业应用。

一、木聚糖结构 阿拉伯木聚糖已确定在小麦、黑麦、大麦、燕麦、大米、高粱、以及其他一些植物中发现,如:盘固草、竹笋和黑麦草。尽管这些多糖是次要部分对于的整体的谷物,但它们是构成植物细胞壁的重要组成部分(Izydorczyk和Biliaderis 1995)。葡糖醛酸和葡糖苷酸阿拉伯木聚糖主要位于二层膜结构中,他是一种粘合剂,使非共价键结构与木质素、纤维素和其他聚合物形成一种共价键而粘合,对细胞壁的完整性起到至关重要作用。木聚糖在被子植物中是半纤维素的主要类贡献者,占总干重的15-30%,但在裸子植物中木聚糖的含量会少点,含有7- 12%(Haltrich 1996年)。 图1 O-乙酰基-4-O-甲基葡糖醛酸(a),硬木和阿拉伯-4-O-甲基葡糖醛酸(b),柔软木头的结构。木聚糖酶参与分解木聚糖的有:乙酰酯酶、α-葡萄糖醛酸酶、切木聚糖酶和α-L-阿拉伯呋喃。β-木糖苷酶(c)实现了水解;数据显示碳原子被Ac乙酰基群替换

ad木聚糖酶(XYNB)的分离纯化与性质研究

南京工业大学 硕士学位论文 耐热木聚糖酶(XYNB)的分离纯化与性质研究 姓名:孙雷 申请学位级别:硕士 专业:生物化工 指导教师:韦萍;李环 20060601

摘要 木聚糖是植物半纤维素的重要组成部分,在自然界中是继纤维素之后含量第二丰富的再生物质资源。木聚糖结构复杂,它的完全降解需要多种水解酶的共同作用。内切-β-1,4-木聚糖酶(1,4-β-D-木聚糖水解酶,EC3.2.1.8)以内切的方式作用于木聚糖的主链,产生不同链长的寡糖及少量的木糖,是木聚糖降解酶系中关键的酶。木聚糖酶的耐高温和热稳定性是工业化应用的理想特性,在生物转化、制浆造纸,食品饲料等工业中存在很大的应用潜力。 本文综述了木聚糖酶的分离纯化技术以及性质和结构研究进展,研究了重组大肠杆菌1020产生的耐热木聚糖酶(XYNB)的纯化方法与性质。 采用不同的破碎方法,对表达的木聚糖酶在细胞中的分布进行分析,确定了表达的耐热木聚糖酶XYNB主要分布中可溶性细胞质中。纯化前对表达的酶进行细胞定位是本论文的一个特色。 XYNB是胞内酶,采用反复冻融和超声波联合的方法破碎,发现对湿菌泥反复冻融三次后,酶的释放量最大;50 mL 20%的菌悬液,采用500 W,间歇时间10 s,超声波破碎15 min后,酶的释放量最大。利用热变性除去杂蛋白,选择变性温度70℃,时间30 min,回收率可达到69.4%,纯化倍数4.9。结合Ni-NTA 亲和层析,采用梯度洗脱方法,一步得到电泳纯XYNB,回收率29.4%,纯化倍数13.4。采用热变性和一步亲和层析分离得到电泳纯的耐热木聚糖酶XYNB,简化了分离纯化步骤,是本论文的一个特色。 酶学性质研究表明XYNB的最适pH在6.5左右,在pH 6.0-10.0能保持最高活力的60%以上,在pH值低于6.0和高于10.0时,活力显著下降。在50-100℃范围内,酶催化活力随着温度的升高不断上升,酶在80-100℃范围内表现出50%以上的酶活力。在pH8.0,70℃,保温6 h后,酶活力变化不大;100℃保温1.5 h 后,残余50%的酶活力。1mmol/L Hg2+显著影响酶活力,其它金属阳离子和EDTA 对酶活的影响不大。XYNB对Oat spelt xylan 酶促反应的K m为0.23 mg/mL,最大反应速度V max为0.36 μmol/(min﹒mL)。 采用生物信息学手段分析XYNB的序列和结构,发现XYNB属于F/10族,与Thermotoga sp. strain FjSS3-B.1的xyn A有85%一致性,与Thermotoga

木聚糖酶作用机理及区分木聚糖内外切酶测定方法探讨

木聚糖酶作用机理及区分木聚糖内外切酶测定方法探讨 近年来,木聚糖酶以其特有降解阿拉伯木聚糖,消除阿拉伯木聚糖对动物的抗营养作用,已成为一种在养殖业中广泛应用的酶制剂。特别是基因工程菌株性木聚糖酶以其稳定性好,降解效率高等特点引起了人们的广泛关注。然而木聚糖酶是降解半纤维素木聚糖的一组酶的总称,要想很好的应用木聚糖酶制剂产品,必须对木聚糖酶的作用机理有较深的了解。同时,在实际生产应用中木聚糖内切酶和外切酶的协同作用对木聚糖降解至关重要,但对于如何应用检测方法去区分木聚糖内外切酶的性质却很少关注。由此,本文首先从分子角度对木聚糖酶的作用机理进行了论述,然后对区分木聚糖酶系中内切酶和外切酶的检测方法进行了探讨,意欲对木聚糖酶制剂产品在生产上更好的应用提供帮助。 1. 木聚糖酶作用机理 木聚糖是由β-1,4或β-1,3糖苷键连接的一种杂合多聚分子。主链由多个吡喃木糖基通过木糖苷键相连,侧链上连着多种不同大小的短的取代基,主要有乙酰基、4-甲基-D-葡糖醛酸残基、L-阿拉伯糖残基等。这些侧链与植物细胞中其它几种结构性多糖(如木质素、纤维素、果胶、葡聚糖等)以共价或非共价键连接,组成植物细胞重要的结构——细胞壁。木聚糖主要存在于植物细胞的次生壁中,处于木质素及其它多聚糖之间,起着连接作用。也正由于这些侧链的不同,使得木聚糖的结构变化范围很大,从仅由β-1,4-糖苷键连接的多聚木糖线性分子到高度分枝的异质多糖。因此,要使木聚糖完全降解则需要多种水解酶的协同作用,这其中包括主链水解酶β-D-1,4内切木聚糖酶、β-D-1,4外切木糖苷酶和侧链水解酶a-L -阿拉伯呋喃糖苷酶、a-葡萄糖醛酸酶和乙酰木聚糖酯酶等。 木聚糖降解时,起主要作用的酶是β-D-1,4内切木聚糖酶和β-D-1,4外切木糖苷酶。β-D-1, 4内切木聚糖酶以内切方式作用于木聚糖主链内部的β- 1,4木糖苷键,其主要水解产物为低聚木糖、木寡糖、木二糖等;β-D-1,4外切木糖苷酶通过水解低聚木糖、木寡糖等的非还原性末端来催化释放木糖残基。另外, 参与彻底降解木聚糖的还有a-L-阿拉伯呋喃糖苷酶、α-葡萄糖醛酸苷酶、乙酰木聚糖酯酶及能降解木聚糖上阿拉伯糖侧链残基与酚酸(如阿魏酸或香豆酸)形成的酯键酚酸酯酶等侧链水解酶,它们作用于木糖与侧链取代基之间的糖苷键,协同主链水解酶的作用最终将木聚糖转化为它的组成单糖。 2. 区分木聚糖内外切酶测定方法 广义上的木聚糖酶是指可将木聚糖降解成低聚糖和木糖的一组酶的总称,因此常规木聚糖酶的检测方法仅是以酶降解木聚糖产生还原糖的量为标准来确定酶活单位,还原糖一般都以木糖等量。而实际上还原糖木糖是各种木聚糖水解酶协同作用的最终产物,这其中主要是内切木聚糖酶、外切木糖苷酶,但从常规检测方法上很难判断木聚糖酶的性质是内切还是外切。所以要想应用检测方法去区别木聚糖酶的性质是内

木聚糖酶的基因克隆及表达

木聚糖酶的基因克隆及表达 木聚糖酶(xylanase)主要包括β-1,4-木聚糖酶、β-1,4-木聚糖内切酶等,是指能够将木聚糖降解为低聚木糖或单糖的一组酶的总称。木聚糖是植物半纤维素的主要成分,约占植物总糖的1/3,是自然界中除纤维素外含量最丰富的再生生物资源[1]。木聚糖酶在饲料、造纸、食品、医药、能源等领域应用较广。木聚糖酶广泛存于微生物中,目前已从不同来源的微生物中分离得到上百种木聚糖酶。在自然界中,绝大多数野生型木聚糖酶的最适温度为40~60℃,酶活性不高,热稳定性较差[2]。因此,研究者把研究重点放在了利用分子生物学手段对原始菌株的木聚糖酶基因进行克隆上,并对其进行表达,以期获得使用更加方便、特性更加优异的工程菌株。本文对聚糖酶特性等进行了回顾,对其基因克隆和表达作一综述,并对分子生物学技术在木聚糖酶上的应用前景进行了展望。1木聚糖酶的研究现状国外对木聚糖酶的研究开始较早,生产技术及应用已趋于成熟。研究者对细菌、真菌和放线菌木聚糖酶的研究更加深入和广泛,早在1992年就已经实现了木聚糖酶的工业化生产。国内对木聚糖酶的研究起步较晚,但发展迅速。20世纪80年代初期,中国科学院微生物所张树政院士首先从海枣曲霉(Aspergillusphoenicis)中纯化得到了木聚糖酶Ⅰ~Ⅳ,并深入研究了活力较高的组分酶Ⅲ的酶学性质。目前,由于从这些野生型菌株中获得的木聚糖酶活性并不高,并且受到酶稳定性和底物特异性等方面的限制[2],使研究者们将对木聚糖酶的研究重点放在了木聚糖酶基因克隆、表达和重组上,并在分子水平上对木聚糖酶进行改造。木聚糖酶基因克隆和表达的研究进展王丹丹1,2 综述,周晨妍1,付冠华1审校1.新乡医学院生命科学技术学院河南省医学遗传学与分子靶向药物高校重点实验室培育基地,河南新乡453003;2.新乡医学院三全学院,河南新乡453003 摘要:半纤维素分解微生物在自然界的物质循环过程中起着重要作用,半纤维素是植物多糖的重要成分之一,而木聚糖则是半纤维素的主要成分。木聚糖酶(xylanase)可催化木聚糖的水解,在各种生物体内均发现木聚糖酶。在过去几十年中,已有上百种木聚糖酶基因被克隆至同源或异源宿主内来表达木聚糖酶,以期改变宿主特性并适于商业应用。本文综述了木聚糖酶基因的克隆和表达,并对基因工程技术在木聚糖酶上的应用前景进行了展望。关键词:木聚糖酶;克隆;基因表达2木聚糖酶基因的克隆木聚糖水解酶系是一种复杂的复合酶系统,广泛分布于自然界的真菌和细菌中。已经报道的有细菌、真菌、酵母和放线菌等。在国内外研究最多的还是木霉、青霉、黑曲霉和棒曲霉等。到目前为止,已经有上百种来自细菌和真菌等微生物中的木聚糖酶基因被克隆,并在不同的表达系统中成功表达。从近几年克隆和表达出的木聚糖酶基因主要来自细菌、真菌、酵母和放线菌等,而研究最多的是木霉、青霉、黑曲霉和棒曲霉等。从这些野生菌种克隆出的木聚糖酶基因在不同宿主菌中已成功实现了异源表达。 木聚糖酶基因的表达3.1木聚糖酶基因在原核细胞内的表达木聚糖酶基因在原核细胞内的表达以大肠埃希菌的研究为热点。大肠埃希菌繁殖速度较快,是相对较理想的宿主细胞。将克隆得到的目的基因和原核载体经双酶切,胶回收产物与重组质粒经连接酶连接,转化合适的大肠埃希菌,选择培养基筛选阳性克隆子,并进行诱导表达。多数情况下,大肠埃希菌不但表达出目的蛋白,并且酶活力也有较大提高。见表2。 3.2木聚糖酶基因在真核细胞中的表达大肠埃希菌虽然繁殖速度较快,但由于其为原核生物,细胞外有一层厚厚的细胞壁,必须先破碎细胞壁,才能将目的蛋白释放出来,而真核细胞克服了原核细胞的这个缺点,可将表达的目的蛋白分泌到细胞外,便于分离纯化。能够表达木聚糖酶的真核细胞以酿酒酵母和毕赤酵母为代表,如水稻等真核细胞同样能够表达木聚糖酶,并且酶活也有一定程度的提高

相关主题
文本预览
相关文档 最新文档