当前位置:文档之家› 化工原理第八章第三节全塔物料衡算—操作线方程教案

化工原理第八章第三节全塔物料衡算—操作线方程教案

化工原理第八章第三节全塔物料衡算—操作线方程教案
化工原理第八章第三节全塔物料衡算—操作线方程教案

赵县职教中心职高二年级化工原理教学案

解:进塔气体组成Y1=y1/(1-y1)=0.1/0.9=0.11

出塔气体Y2=0(尾气中无丙酮)

进塔吸收组成X2=0(纯水)

吸收水的摩尔流量L=质量流量/摩尔质量=1000.18=55.56kmol/h 塔内惰性气体的摩尔流量V=混合气摩尔流量-吸收质摩尔流量M M=M A y A+M B y B=58×0.1+29×0.9=31.9

V=200/31.9×(1-0.1)=5.64kmol/h

吸收塔溶液出口浓度由全塔物料衡算求得

V(Y1-Y2)=L(X1-X2)

X1=5.64×(0.11-0)/55.56+0=0.011

物料衡算与能量衡算

物料衡算与能量衡算 5.1概述 工艺通过甲苯和甲醇采用纳米ZSM-5分子筛催化下通过烷基化反应制得对二甲苯,得到了高纯度的对二甲苯,并且在工艺流程中实现了甲苯和甲醇的循环利用,达到了经济环保的要求。 设计过程中利用Aspen Plus 对全流程进行模拟,并在此基础上完成物料衡算、能量衡算。以工段为单位进行物流衡算,全流程分为甲苯甲醇烷基化反应工段、闪蒸——倾析工段、脱甲苯工段、对二甲苯提纯工段。 5.2物料衡算 5.2.1物料衡算基本原理 系统的物料衡算以质量守恒为理论基础,研究某一系统内进出物料量及组成的变化,即: 系统累计的质量=输入系统的质量-输入系统的质量+反应生成的质量-反应消耗的质量 假设系统无泄漏: R R O U T IN C G F F dt dF -+-=/ 当系统无化学反应发生时: O U T IN F F dt dF -=/ 在稳定状态下: 0/=-=O U T IN F F dt dF ,O U T IN F F = 注:IN F —进入系统的物料流率; OUT F —流出系统的物料流率; R G —反应产生物料速率; R C —反应消耗物料速率。

5.2.2 物料衡算任务 通过对系统整体以及部分主要单元的详细物料衡算,得到主、副产品的产量、原料的消耗量、“三废”的排放量以及最后产品的质量指标等关键经济技术指标,对所选工艺路线、设计流程进行定量评述,为后阶段的设计提供依据。 5.2.3系统物料衡算 详见附录,物料衡算一览表。 5.3能量衡算 5.3.1基本原理 系统的能量衡算以能量守恒为理论基础,研究某一系统内各类型的能量的变化,即: 输入系统的能量=输出系统的能量+系统积累的能量 对于连续系统: ∑∑-=+IN O U T H H W Q 注:Q —设备的热负荷; W —输入系统的机械能; ∑OUT H —离开设备的各物料焓之和; ∑IN H —进入设备的各物料焓之和。 本项目的能量衡算以单元设备为对象,计算由机械能转换、化学反应释放能量和单纯的物理变化带来的热量变化。 5.3.2能量衡算任务 (1) 、确定流程中机械所需的功率,为设备设计和选型提供依据。 (2) 、确定精馏各单元操作中所需的热量或冷量及传递速率,确定加热剂和冷剂的用量,为后续换热和公用工程的设计做准备。 (3) 、确定反应过程中的热交换量,指导反应器的设计和选型。

物料衡算

3.物料衡算 3.1生产过程的总物料衡算 3.1.1生产能力 年生产商品味精(99%)50000t,折算为100%味精为49500t/a。 日生产商品味精(99%):50000/320=156.25(t/d),折算为100%味精为155t/d。 3.1.2计算指标(以淀粉质为原料) 计算指标[10]见表3.1。 表3.1计算指标 项目指标 淀粉糖化转化率98.5% 发酵产酸率(浓度)11% 发酵对糖转化率60% 培养菌种耗糖为发酵耗糖的 1.5% 谷氨酸提取收率96% 精制收率95% 商品淀粉中淀粉含量86% 发酵周期(含辅助时间)40h 全年工作日320d 3.1.3物料衡算 (1)1000kg纯淀粉理论上产100%MSG量 1000×1.11×81.7%×1.272=1153.5kg 式中81.7%——谷氨酸对糖的理论转化率 1.272—— 纯味精相对分子质量 纯谷氨酸相对分子质量 = 184 147 =1.272 (2)1000kg纯淀粉实际产100%MSG量 1000×1.11×98.5%×60%×(100%-1.5%)×96%×95%×1.272=749.6kg (3)1000kg商品淀粉(含量86%的玉米淀粉)产100%MSG量 749.6×86%=644.7kg (4)淀粉单耗 ①1t100%MSG消耗纯淀粉量 1000 749.6 =1.334t/t ②1t100%MSG实耗商品淀粉量 1000 644.7 =1.5511t/t ③1t100%MSG理论上消耗纯淀粉量 1000 1153.5 =0.8669 t/t ④1t100%MSG理论上消耗商品淀粉量 0.8669 86% =1.008t/t (5)总收率可按以下两种方法计算

化工原理教案(下册)

化工原理教案(下册) 第一章蒸馏(下册) 1. 教学目的 通过本章的学习,掌握蒸馏的基本概念和蒸馏过程的基本计算方法。 2. 教学重点 (1)两组分理想物系的汽液平衡关系 (2)蒸馏过程的原理 (3)两组分连续精馏过程的计算(物料衡算与进料热状况的影响、理论板层数的计算与回流比的影响、塔板效率) 3. 教学难点 进料热状况参数及对精馏的影响;多侧线的精馏塔理论板层数的求解;间歇精馏的计算。 4. 本章学习应注意的问题 (1)汽液平衡关系是精馏过程计算的基础,要理解平衡常数、相对挥发度等基本概念,熟练地运用汽液平衡关系进行有关计算。 (2)两组分连续精馏过程计算的主要内容是物料衡算、理论板层数的计算及塔高和塔径的计算,涉及到进料热状况、最小回流比和回流比、塔板效率等诸多概念,要理解上述概念,熟练地掌握各计算公式之间的联系。 (3)两组分连续精馏过程计算所涉及的公式较多,学习时不要机械地记忆,应注意掌握其推导过程。 (4)塔板效率计算通常需联立操作线方程、汽液平衡方程及塔板效率定义式,应注意给出有关组成可计算塔板效率;给出塔板效率亦可计算有关组成。计算时应注意所求塔板的位置和类型(是理论板还是实际板)。 5. 教学方法 以课堂讲授为主,辅之以课堂讨论和习题课进行巩固和强化训练。 6. 本章学习资料 (1)夏清等.化工原理,下册. 天津: 天津大学出版社, 2005 (2)姚玉英等. 化工原理,下册. 天津: 天津大学出版社, 1999 (3)大连理工大学. 化工原理,下册. 大连: 大连理工大学出版社, 1992 (4) 贾绍义,柴诚敬.化工传质与分离过程.北京:化学工业出版社,2001 (5) 蒋维钧,雷良恒,刘茂林.化工原理,下册.北京:清华大学出版社, 1993 1-1 蒸馏过程概述与汽液平衡关系

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师: 2012 年 5 月31 日

《化工原理课程设计》任务书 2011~2012 学年第2学期 学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸 收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时 处理含苯煤气2000m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充 新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ①吸收塔、解吸塔填料层的高度计算和设计; ②塔径的计算; ③其他工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明 书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程 和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计 算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作 条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算; 设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

化工原理的教案

化工原理教案 ★每章编写概要: 1、本章内容大串联:包括主要内容简介、重点难点提示、突出“三基”内容和工程观点。 2、典型实例:密切结合生产实例,重在理论联系实际,拟补相关教材“重理论,轻实践”的不足;突出知识的灵活运用;考研题解。 3、工程观点及概念补充练习题。 ★课程特点: 化工原理是一门工程性、实用性很强的课程。在课程内容中,既有详细的过程分析,又有大刀阔斧的粗描概略;既有详尽的理论分析,又有许多的经验总结。作为一门专业基础课,起着承前启后的作用,对于帮助学生建立基本的工程观点、培养专业的学习兴趣至关重要。 化工原理也是化工类研究生入学考试的必考课,由于它讨论的各种单元操作也广泛地被应用于其它工业过程,同时也是制药、食品、冶金、纺织、材料等类专业的选考课。目前全国开设此课的院校有百多家,教材种类繁多,其中最有代表性的是华东理工大学、天津大学、谭天恩、清华大学等所编的教材。这些教材编写格局大致相同,局部内容有差异。因此同学在报考不同院校时,首先应注意选择教材,其次应熟悉各院校的出题思路。各院校的命题指导思想,命题原则是基本一致的。即:是否牢固地掌握了基础知识;是否具备定量计算能力;是否树立了工程观点具备理论联系实际的分析和解决问题的能力。 无论升学考试还是专业学习,化工原理的教学目的是一致的。因此,教学中,我们十分强调学生能力的培养和工程观点的建立,在每一章后都补充相应的概念题,主要是把重要的工程观点和基本概念通过练习题书面化加强学生这方面的学习。另外在具体知识的讲解中,再三强调方法的重要性。通过具体知识的学习,将实验研究方法、因次理论下的实验研究方法、数学模型法介绍给学生。 化工原理主要研究化工单元操作的基本原理、典型设备的设计及操作调节等,又称为化学工程基础或化工单元操作。化工生产中涉及到大大小小几十种单元操作,在有限的学时内,不可能一一介绍,那么对于一个新的单元操作应如何分析和掌握哪些内容呢? ★如何着手分析某一单元操作? 一、单元操作的目的是什么? 二、单元操作的依据是什么? 三、采取什么措施? 四、典型设备的操作与调节 五、过程的经济性 单元操作从理论上分析,可归结为三大类:遵循动量传递规律、遵循热量传递规律、遵循质量传递规律。因此化工原理的重点内容为:流体流动及输送、传热、精馏、吸收、干燥等。这也是课程学习中需加深理解、重点掌握的内容。 第一章流体流动及输送

化工原理课程设计心得

小结本次化工原理课程设计历时两周,是学习化工原理以来第一次独立的工业设计。化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;理解计算机辅助设计过程,利用编程使计算效率提高。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。在短短的两周里,从开始的一头雾水,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我们从中也明白了学无止境的道理,在我们所查找到的很多参考书中,很多的知识是我们从来没有接触到的,我们对事物的了解还仅限于皮毛,所学的知识结构还很不完善,我们对设计对象的理解还仅限于书本上,对实际当中事物的方方面面包括经济成本方面上考虑的还很不够。在实际计算过程中,我还发现由于没有及时将所得结果总结,以致在后面的计算中不停地来回翻查数据,这会浪费了大量时间。由此,我在每章节后及时地列出数据表,方便自己计算也方便读者查找。在一些应用问题上,我直接套用了书上的公式或过程,并没有彻底了解各个公式的出处及用途,对于一些工业数据的选取,也只是根据范围自己选择的,并不一定符合现实应用。因此,一些计算数据有时并不是十分准确的,只是拥有一个正确的范围及趋势,而并没有更细地追究下去,因而可能存在一定的误差,影响后面具体设备的选型。如果有更充分的时间,我想可以进一步再完善一下的。通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,这对我们的继续学习是一个很好的指导方向,我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。我还要感谢我的指导老师***老师对我们的教导与帮助,感谢同学们的相互支持。限于我们的水平设计中难免有不足和谬误之处,恳请老师批评参考文献[1]陈英男、刘玉兰.常用华工单元设备的设计[M].上海:华东理工大学出版社,2005、4[2]刘雪暖、汤景凝.化工原理课程设计[M].山东:石油大学出版社,2001、5 [3]贾绍义、柴诚敬.化工原理课程设计[M].天津:天津大学出版社,2002、8 [4]路秀林、王者相.塔设备[M].北京:化学工业出版社,2004、1 [5]王明辉.化工单元过程课程设计[M].北京:化学工业出版社,2002、6 [6]夏清、陈常贵.化工原理(上册)[M].天津:天津大学出版社,2005、1 [7]夏清、陈常贵.化工原理(下册)[M].天津:天津大学出版社,2005、1 [8]《化学工程手册》编辑委员会.化学工程手册—气液传质设备[M]。北京:化学工业出版社,1989、7 [9]刘光启、马连湘.化学化工物性参数手册[M].北京:化学工业出版社,2002 [10]贺匡国.化工容器及设备简明设计手册[M].北京:化学工业出版社,2002 通过这次课程设计使我充分理解到化工原理课程的重要性和实用性,更特别是对精馏原理及其操作各方面的了解和设计,对实际单元操作设计中所涉及的个方面要注意问题都有所了解。通过这次对精馏塔的设计,不仅让我将所学的知识应用到实际中,而且对知识也是一种巩固和提升充实。在老师和同学的帮助下,及时的按要求完成了设计任务,通过这次课程设计,使我获得了很多重要的知识,同时也提高了自己的实际动手和知识的灵活运用能力。

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为%的氯苯140000t,塔顶馏出液中含氯苯不高于%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工中的物料衡算和能量衡算

化工中的物料衡算和能量衡算 化72 王琪2007011897 在化工原理的绪论课上,戴老师曾强调过化工原理的核心内容是“三传一反” 即传质、传动、传热和反应,而物理三大定律——质量守恒、动量守恒、能量守 恒正是三传的核心与实质,因此这三大定律在化工中统一成一种核心的方法:衡 算。正是衡算,使原本复杂的物理定律的应用变得简单,实用性强,更符合工程 学科的特点。为此化工中的物料衡算和能量衡算很重要,本文将分别从物料衡算、 能量衡算讨论化工中的衡算问题,然后将讨论二者结合的情况。 物料衡算在台湾的文献中称为“质量平衡”,它反映生产过程中各种物料 之间量的关系,是分析生产过程与每个设备的操作情况和进行过程与设备设计的 基础。一般来说物料衡算按下列步骤进行,为表示直观,做成流程图。 绘制流程图时应注意: 1.用简洁的长方形来表达一个单元,不必画蛇添足; 2.每一条物质流线代表一个真实的流质流动情况; 3.区别开放与封闭的物质流 4.区别连续操作与分批操作(间歇生产) 5.不必将太复杂的资料写在物质流线上 确定体系也比较重要,对于不同体系,衡算基准和衡算关系会有不同。 合适的基准对于衡算问题的简化很重要,根据过程特点通常有如下几种: 1.时间基准:连续生产,选取一段时间间隔如1s,1min,1h,1d;间歇生产以一釜或一批料的生产周期为基准,对于非稳态操作,通常以时间微元dt为基准。 2.质量基准,对于固相、液相体系,常采用此基准,如1kg,100kg,1t,1000lb

等。 3.体积基准(质量基准衍生):适用于气体,但要换成标准体积;适用于密度无变化的操作。 4.干湿基准:水分算在内和不算在内是有区别的,惯例如下: 烟道气:即燃烧过程产生的所有气体,包括水蒸气,往往用湿基; 奥氏分析:即利用不同的溶液来相继吸收气体试样中的不同组分从而得到气体组分,往往用干基。 化肥、农药常指湿基,而硝酸、盐酸等则指干基。 选取基准后,就要确定着眼物料了。通常既可从所有物料出发,也可根据具体情况,从某组分或某元素着眼。对于有化学反应的过程,参加反应的组分不能被选作着眼物料。 列物料衡算方程式时计算中要注意单位一致。列方程时,要注意:物料平衡是关于质量的平衡,而不是关于体积或者摩尔数的平衡。只有密度相同时才可列关于体积的方程,根据元素守恒可列相应的关于摩尔数的方程。 物料衡算方程的基本形式为:(以下均为质量,若密度不变,也可用体积或体积流速) 输入+产生=输出+积累+消耗。 对于无反应的物理过程,没有产生和消耗,所以输入=输出+积累,如果是稳态过程,积累=0,则方程变为:输入=输出。以下分别对特定的单元操作讨论物料衡算关系。 1.输送:连续性方程,进管液体=出管液体;进泵液体=出泵液体 2.过滤:总平衡:输入的料浆=输出的滤液+输入的滤饼; 液体平衡:料浆中的液体=滤液中的液体+滤饼中的液体 3.蒸发:原料液=积累+母液+晶体+水蒸气 其他过程类似。值得注意的是,如果对于每个组分列物料衡算方程,则总衡算方程不用列出,因为其不独立。一般来说,对于无反应的物理过程,如果有n 个组分,就可以列出n个方程。 对于有化学反应的过程,物料衡算要更复杂一些,因为反应中原子重新组合,消耗旧物质,产生新物质,所以每一个物质的摩尔量和质量流速不平衡。此外,在化学反应中,还涉及化学反应速率、转化率、产物的收率等因素。为了有利于反应的进行,往往一种反应物要过量。因此在进行反应过程的物料衡算时,应考虑以上因素。对于不参加反应的惰性物质列衡算方程通常比较方便。通常来讲,总质量衡算和元素衡算用得较多,组分衡算对于有化学反应的过程不可以用。 有化学反应的过程物料衡算通常有以下几种方法:直接计算法、利用反应速率进行物料衡算、元素衡算法、化学平衡常数法、结点衡算法、联系组分衡算法等。

《化工原理课程设计》指南

《化工原理课程设计》指导书 一、课程设计的目的与性质 化工原理课程设计是化工原理课程的一个实践性、总结性和综合性的教学环节,是学生进一步学习、掌握化工原理课程的重要组成部分,也是培养学生综和运用课堂所学知识分析、解决实际问题所必不可少的教学过程。 现代工业要求相关工程技术人员不仅应是一名工艺师,还应当具备按工艺要求进行生产设备和生产线的选型配套及工程设计能力。化工原理课程设计对学生进行初步的工程设计能力的培养和训练,为后续专业课程的学习及进一步培养学生的工程意识、实践意识和创新意识打下基础。 二、课程设计的基本要求 (1)在设计过程中进一步掌握和正确运用所学基本理论和基本知识,了解工程设计的基本内容,掌握设计的程序和方法,培养发现问题、分析问题和解决问题的独立工作能力。 (2)在设计中要体现兼顾技术上的先进性、可行性和经济上的合理性,注意劳动条件和环境保护,树立正确的设计思想,培养严谨、求实和科学的工作作风。 (3)正确查阅文献资料和选用计算公式,准确而迅速地进行过程计算及主要设备的工艺设计计算。 (4)用简洁的文字和清晰的图表表达设计思想和计算结果。 三、设计题目 题目Ⅰ:在生产过程中需将3000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅱ:在生产过程中需将5000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ /kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅲ:在生产过程中需将7000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。

物料衡算和热量衡算..

3 物料衡算 依据原理:输入的物料量=输出的物料量+损失的物料量 3.1 衡算基准 年生产能力:2000吨/年 年开工时间:7200小时 产品含量:99% 3.2 物料衡算 反应过程涉及一个氧化反应过程,每批生产的产品相同,虽然有原料对叔丁基甲苯和溶剂甲苯的循环,第一批以后循环的物料再次进入反应,但每批加料相同。在此基础上,只要计算第一个批次的投料量,以后加料一样。 反应釜内加热时间2h、正常的反应时间18h、冷却时间1h。加上进料和出料各半个小时,这个生产周期一共2+18+1+1=22h。所以在正常的生产后,每22小时可以生产出一批产品。每年按300天生产来计算,共开工7200小时,可以生产327个批次。要求每年生产2000吨对叔丁基苯甲酸,则每批生产2000÷327=6.116吨。产品纯度99 %( wt %) 实际过程中为了达到高转化率和高反应速率,需要加入过量对叔丁基甲苯做溶剂,反应剩余的原料经分离后循环使用。 3.2.1 各段物料 (1) 原料对叔丁基甲苯的投料量 设投料中纯的对叔丁基甲苯为X kg,则由 C11H16C11H14O2 M 148.24 178.23 m x 6054.8 得x=6054.8×148.24÷178.23=5036.0 kg 折合成工业原料的对叔丁基甲苯质量为5036.0÷0.99=5086.9kg 实际在第一批生产过程加入的对叔丁基甲苯为6950.3kg (2)氧气的通入量 生产过程中连续通入氧气,维持釜内压力为表压0.01MPa,进行氧化反应。实

际生产过程中,现场采集数据结果表明,通入的氧气量为1556.8 kg,设反应消耗的氧气量为x kg 3/2O2C11H14O2 M 31.99 178.23 m x 6054.8 得x= 3/2×6054.8×31.99÷178.23=1630.1kg 此时采用的空气分离氧气纯度可达99%,因此折合成通入的氧气为1630.1÷0.99=1646.6 kg即在反应过程中,需再连续通入1646.6kg氧气。 (3)催化剂 催化剂采用乙酰丙酮钴(Ⅲ),每批加入量10.4 kg (4)水的移出量 设反应生产的水为x kg H2O C11H14O2 M 18.016 178.23 m x 6054.8 得x=6054.8×18.016÷178.23=612 kg 产生的水以蒸汽的形式从反应釜上方经过水分离器移出。 3.2.2 设备物料计算 (1)计量槽 对叔丁基甲苯计量槽: 一个反应釜每次需加入的对叔丁基甲苯质量为3475.1÷2=3475.15 kg 对叔丁基甲苯回收计量槽:每批反应结束后产生母液1834.8kg 甲苯计量槽:每批需加入甲苯做溶剂,加入量为396.1 kg (2)反应釜:反应结束后,经过冷却、离心分离后,分离出水612kg,剩余的对叔丁基甲苯1834.8kg循环进入下一批产品的生产。分离出来的固体质量为:6950.3+10.4+1646.6-612-1834.8=6160.5 kg 。 (3)进入离心机的物料:6950.3+10.4+1646.6-1834.8-612=6160.5kg (4)脱色釜:分离机分离出来的粗产品移入脱色釜,加入甲苯做溶剂,加入量为396.1 kg,搅拌升温将产品溶解,再加入76.5 kg活性碳进行脱色。进入

《化工原理课程设计》板式精馏塔设计报告

《化工原理课程设计》报告 4万吨/年甲醇~水 板式精馏塔设计

目录 一、概述 (4) 1.1 设计依据·································错误!未定义书签。 1.2 技术来源·································错误!未定义书签。 1.3 设计任务及要求 (5) 二:计算过程 (7) 1. 塔型选择 (7) 2. 操作条件的确定 (8) 2.1 操作压力 (8) 2.2 进料状态 (8) 2.3 加热方式 (8) 2.4 热能利用 (8) 3. 有关的工艺计算 (9) 3.1 最小回流比及操作回流比的确定·········错误!未定义书签。 3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算错误!未定义书签。 3.3 全凝器冷凝介质的消耗量 (17) 3.4 热能利用·····························错误!未定义书签。 3.5 理论塔板层数的确定 (17) 3.6 全塔效率的估算·······················错误!未定义书签。 N·······················错误!未定义书签。 3.7 实际塔板数 P 4. 精馏塔主题尺寸的计算······················错误!未定义书签。 4.1 精馏段与提馏段的体积流量·············错误!未定义书签。 4.1.1 精馏段 (20) 4.1.2 提馏段 (22) 4.2 塔径的计算 (24) 4.3 塔高的计算 (33) 5. 塔板结构尺寸的确定 (27) 5.1 塔板尺寸 (27) 5.2 弓形降液管···························错误!未定义书签。 5.2.1 堰高 (29) 5.2.2 降液管底隙高度h0 (30) 5.2.3 进口堰高和受液盘···············错误!未定义书签。 5.3 浮阀数目及排列 (31)

《化工原理课程设计》教学大纲

本文由zsp1056013047贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 《化工原理课程设计》教学大纲 课程编号: 课程名称: 化工原理课程设计 英文名称: Design of Unit Operations 《常用化工单元设备的设计》 、陈英南、刘玉 选用教材: 兰主编、华东理工大学出版社 先修课程: 《化工原理》 适用专业: 化学工程与化工工艺类专业及相近专业 一、教学基本目标 化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所 学知识,完成以某一单元操作为主的一次设计实践。通过课程设计,应培养学生的独立工作能力, 培养学生树立正确的设计思想和实事求是、严肃认真的工作作风。 二、教学基本内容 1.设计方案的选定 对给定或选定的工艺流程、主要设备的型式进行简要的论述; 2.工艺设计 选定工艺参数,物料衡算,热量衡算,单元操作的工艺计算并绘制相应的工艺流程图, 标出物流量及主要测量点; 3.设备设计 设备的结构设计和工艺尺寸的设计计算,并绘制设备的工艺条件图。图面应包括设备的 主要工艺尺寸、技术特性和接管表; 4.辅助设备选型 典型辅助设备主要工艺尺寸的计算,设备规格、型号的选定; 5.设计说明书的编写 设计说明书的内容应包括:设计任务书;目录;设计方案简介;工艺计算及主要设备设 计;工艺流程图和主要设备的工艺条件图;辅助设备的计算和选型;设计结果汇总;设计评述; 参考文献。 设计项目及主要内容:(换热器的选型设计 6 学时在课程中进行,为每位学生必做,安排在第一学 期传热章后,集中 1 周选一个单元操作进行设计 30 学时。设计报告与图纸要求规范化。) 1.列管式换热器的选型设计(6 学时) 设计方案的选定 冷却介质及出口温度的确定;冷、热流体通道的选择;流向的选择。 工艺计算 物料及热量衡算;管程、壳程给热系数及总传热系数的计算;管程、壳程阻力的计算; 对数平均温差的修正。 设备计算 列管式换热器的选型及校核。 2.反应釜的设计(30 学时) 设计方案的选定 物料的加热(冷却)方式的选定;传热面及搅拌桨型式的选定。 工艺计算 1 课程性质: 技术基础课/必修 学时/ 学分: 30/1 考核方式: 报告,加测验 大纲执笔人: 齐鸣斋 大纲审核人: 齐鸣斋 物料衡算;搅拌釜操作周期、釜容积的选定;釜的传热计算;转速、搅拌功率的确定。 设备计算 搅拌釜传热面大小及各尺寸的确定。 辅助设备的计算与选型 3.蒸发器的设计(30 学时) 设计方案的选定 蒸发器类型、效数及流程的确定。 工艺计算 物料及热量衡算;各效浓度及温度分布的确定。 设备计算 蒸发室和加热室工艺尺寸的计算。 辅助设备的计算与选型 冷凝器、真空泵选型,接管尺寸的确定。 4.填料吸收塔的设计(30 学时) 设计方案的选定 气液相平衡关系(温度、总压对平衡的影响及非等温吸收的平衡线)、吸收操作流程的确 定;填料的类型、性能与选型。 工艺计算 液气比的选择;物料及热量衡算;液泛速度和压降的计算。 设备计算 塔径的确定;填料层高度的计算(传质系数、传质单元数及传质单元高度);液体分布与 再分布装置;填料层支撑结构及接管口的确定。 辅助设备的计算与选型 5.板式精馏塔的设计(30 学时) 设计方案的选定 操作压力、进料状态及加热方式的确定。 工艺计算 物料衡算;回流比的确定;理论板数及实际塔板数的确定;热量衡算。 设备计算 塔板的型式、结构及主要尺寸的选取;流体力学计算和校核;负荷性能图;塔体总高度 的计算。 辅助设备的计算与选型 回流冷凝器、再沸器的选型;接管尺寸的确定。 6.转盘萃取塔的设计(30 学时) 设计方案的选定 转盘塔分散相、流比的选取与确定。 工艺计算 物料衡算;特性速度、临界转速、两相极限流速、转速与功率消耗等的计算;相际传质 面积和液滴平均直径;传质系数(滴内、滴外传质分系数,总传质系数)。 设备计算 塔径及主要结构参数的确定。 用扩散模型计算塔高(转盘塔内的轴向混合,扩散模型的近似解);澄清段高度的计算。 转盘塔塔体、内件、附件及传动装置的结构设计。 辅助设备的计算与选型 2 管路、泵、流量计、储槽及换热器等的计算与选型。 7.喷雾干燥塔的设计(30 学时) 设计方案的选定 干燥装置流程;干燥器内热空气和雾滴的流动方向;操作条

《化工原理》电子教案

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 《化工原理》电子教案 《化工原理》电子教案绪论化工原理就是研究除化学反应以外的诸物理操作步骤原理和所用设备的课程。 化工原理是实验性很强的工科课程,是化工类和相近专业学生必修的重要技术基础课。 主要介绍单元操作的基本原理,所用典型设备的结构、计算和选用。 计算包括设计型计算和操作型计算两种。 设计型计算是指对给定的任务计算出设备的工艺尺寸;操作型计算是指对已有的设备进行查定计算。 学生学完本课程后应初步具有以下能力: (1)能理论联系实际,用工程和经济的观点处理遇到的各种化工单元操作的问题。 (2)会筛选恰当的单元操作去完成给定的生产任务;(3)在设计设备计算工作中能寻找出所需的经验数据以及适宜的公式;(4)能管理设备的正常运转,找出故障的原因并及时排除;(5)应具有强化设备与初步创新的能力。 各单元操作原理及设备的计算都是以物料衡算、能量衡算、传递速率和平衡关系的概念为依据,有关内容在以后各章中陆续介绍。 一、化工生产过程与单元操作 1、化学工业所谓化学 1 / 3

工业,是指将原料进行化学加工以得到有用的产品的工业,即:化工产品种类繁多,一般可分为无机、有机及生化产品。 若按产品用途及性能来分有染(颜)料化工、塑料橡胶化工、油脂化工、石油化工、食品化工、涂料化工、日用化工等等。 当今如何评价化学工业呢?评价可能为让你欢喜让你忧。 欢喜的是化学工业已经成为了国民经济中的支柱产业之一,近二、三十年以来化学工业得到了长足的发展。 化工产品处处可见,人们的衣食住行都已离不开它。 我国自七十年代以来先后引进了大型化肥、石油化工成套生产技术及成套设备,如 30 万吨合成氨, 45 万吨尿素成套设备及技术; 30 万吨乙烯, 45 万吨芳烃的成套设备及技术。 金山石化, 扬子石化, 齐鲁石化令人忧虑的是化学工业带来的污染十分严重。 水污染、空气污染、白色污染日益严重,危害人类生存及发展。 2、化工生产过程不论化工生产产品的品种不同、规模大小的差异,一个化工产品生产过程总是由两大部分组成的,即核心部分和辅助部分。 核心为化学反应过程,辅助部分为前、后处理过程。 为了保证化工生产过程经济合理有效地进行,这就要求反应器内必须保持最适宜的(最佳的)反应条件,如适宜的压强、温度和物料的组成等。

化工原理课程设计教学大纲

《化工原理课程设计(Ⅰ、Ⅱ)》大纲 课程名称:化工原理课程设计 英文名称:Course Design of Principles of Chemical Engineering 课程编号:1804031(1804032) 课程类别:专业基础课 学时数:四周(第四学期两周和第五学期两周) 学分数:4 学分 使用专业:化学工程与工艺 一、课程设计目的与任务 化工原理课程设计是一门重要的实践课程,是综合运用《化工原理》课程和有关先修课程所学知识,完成以化工单元操作为主的一次设计实践。通过课程设计,对学生进行设计技能的基本训练,培养学生综合运用所学的书本知识解决实际问题的能力,也为毕业设计打下基础。因此,化工原理课程设计是提高学生实际工作能力的重要教学环节。 二、教学基本要求 通过课程设计学生应在下列几个方面得到较好的培养和训练: 1. 使学生掌握化工设计的基本程序与方法; 2. 结合设计课题,培养学生查阅有关技术资料及物性参数的获取信息能力; 3. 通过查阅技术资料,选用设计计算公式,搜集数据,分析工艺参数与结构尺寸间的相互影响,增强学生分析问题、解决问题的能力; 4. 对学生进行化工工程设计的基本训练,使学生了解一般化工工程设计的基本内容与要求; 5. 通过编写设计说明书,提高学生文字表达能力,掌握撰写技术文件的有关要求; 6. 了解一般化工制图基本要求,对学生进行绘图基本技能训练。 三、课程设计内容及学时分配 化工原理课程设计应以化工单元操作的典型设备为对象,课程设计的题目尽量从科研和生产实际中选题。化工原理课程设计内容包括: 1. 设计方案简介:包括对给定或选定的工艺流程、主要设备的型式进行简要的论述。 2. 主要设备的工艺设计计算:包括工艺参数的选定、物料衡算、热量衡算、设备的工艺尺寸计算及结构设计。

《化工原理课程设计》指南(doc 8页)

《化工原理课程设计》指南(doc 8页)

《化工原理课程设计》指导书 一、课程设计的目的与性质 化工原理课程设计是化工原理课程的一个实践性、总结性和综合性的教学环节,是学生进一步学习、掌握化工原理课程的重要组成部分,也是培养学生综和运用课堂所学知识分析、解决实际问题所必不可少的教学过程。 现代工业要求相关工程技术人员不仅应是一名工艺师,还应当具备按工艺要求进行生产设备和生产线的选型配套及工程设计能力。化工原理课程设计对学生进行初步的工程设计能力的培养和训练,为后续专业课程

题目Ⅱ:在生产过程中需将5000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅲ:在生产过程中需将7000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 四、课程设计的任务(内容)要求与进度 1.搜集资料、阅读教材,拟定设计方案(0.3周) 2.换热器工艺设计及计算(物料衡算、能量衡算、工艺参数选定及其计算)(0.7周) 1) 试算与初选换热器规格

化工原理课程设计心得

小结;本次化工原理课程设计历时两周,是学习化工原理以来第一次独立的工业设计。化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;理解计算机辅助设计过程,利用编程使计算效率提高。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。 在短短的两周里,从开始的一头雾水,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。 我们从中也明白了学无止境的道理,在我们所查找到的很多参考书中,很多的知识是我们从来没有接触到的,我们对事物的了解还仅限于皮毛,所学的知识结构还很不完善,我们对设计对象的理解还仅限于书本上,对实际当中事物的方方面面包括经济成本方面上考虑的还很不够。 在实际计算过程中,我还发现由于没有及时将所得结果总结,以致在后面的计算中不停地来回翻查数据,这会浪费了大量时间。由此,我在每章节后及时地列出数据表,方便自己计算也方便读者查找。在一些应用问题上,我直接套用了书上的公式或过程,并没有彻底了解各个公式的出处及用途,对于一些工业数据的选取,也只是根据范围自己选择的,并不一定符合现实应用。因此,一些计算数据有时并不是十分准确的,只是拥有一个正确的范围及趋势,而并没有更细地追究下去,因而可能存在一定的误差,影响后面具体设备的选型。如果有更充分的时间,我想可以进一步再完善一下的。 通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,这对我们的继续学习是一个很好的指导方向,我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。 我还要感谢我的指导老师***老师对我们的教导与帮助,感谢同学们的相互支持。 限于我们的水平,设计中难免有不足和谬误之处,恳请老师批评指正。

化工原理教案

化工原理教案 材料科学与化学工程专业 第一授课单元 离心泵的操作原理、构造、类型、主要性能参数

T T BQ A H -= 线性关系 离心泵的性能参数与特性曲线 离心泵的主要性能参数有流量,压头,轴功率,效率和气蚀余量等。离心泵性能参数间的关系通常用特性曲线来表示 (一) 离心泵的主要性能参数 1.流量 Q 2.压头 H 3.功率与效率 N=HQ r g= HQ r /102 [KW] η=(Ne/N)′100% η小于1,离心泵在输送液体过程中存在能量损失,主要有三种: (1)容积损失 (2)机械损失 (3)水力损失 离心泵的效率反映上述三项能量损失的总和,故又称为总效率,因此总效率为上述三个效率的乘积,即: h = h V h m h h 离心泵输送液体中的能量传递、变化过程: 六、思考题 离心泵为何采用后弯叶片? 2、课程实验内容及目的 第二授课单元 离心泵的特性曲线及影响因素 * 1、主要参考书目 2、课程实验内容及目的

第三授课单元 离心泵汽蚀现象、允许吸上真空度、汽蚀余量、离心泵的工作点和管路特性曲线、安装高度计 算。 教案内容备注* 一、教学目的 掌握离心泵汽蚀现象、允许吸上真空度、汽蚀余量、离心泵的工作点 和管路特性曲线、安装高度计算。 二、教学内容 离心泵汽蚀现象、允许吸上真空度、汽蚀余量、离心泵的工作点和管路 特性曲线。 三、教学重点、难点及其处理 1.重点:离心泵汽蚀现象、允许吸上真空度、汽蚀余量、离心泵的工 作点和管路特性曲线、安装高度计算 四、教学方法、手段 课堂教学。 五、板式设计 离心泵的气蚀现象与允许吸上高度 (一)气蚀现象 为避免气蚀现象产生,叶片入口附近的最低压强不能低于输送温度 下液体的饱和蒸气压。(泵的安装高度不能过高)泵内最低压强的位置 不易确定,一般都规定泵入口处的最低压强,称为入口处允许的最低压 强。 姚玉英等编著化工原理 上册 刘佩茹编著化工过程与 设备 王志魁主编化工原理 第二版

《化工原理课程设计》课程教学大纲

《化工原理课程设计》课程教学大纲 一、课程的地位、性质和任务 化工原理课程设计是继理论课之后的一个综合性的实践教学环节,是培养锻炼学生综合运用所学知识分析、解决化工实际问题能力的一个重要过程。通过对典型化工单元过程及设备的工程设计实践,对学生进行一次化工设计的基本训练,使学生初步掌握化工设计的基本步骤和主要方法,为今后从事实际工作打下基础;通过设计要着重培养、锻炼学生查阅资料、收集数据的能力,迅速准确地进行工程计算的能力(包括电算能力)以及用简捷的文字、清晰的图表表达设计结果、说明设计思想的书面表达能力和工程制图能力。 设计内容包括生产过程方案和流程的设计与确定、操作条件的选择与确定、生产过程基本控制的初步设计、单元过程的工艺设计计算、辅助设备的选型设计等;最终编写出设计说明书、绘制带控制点的工艺流程图、编制设备的工艺条件单等。 本设计是化工类学生的第一次工程设计实践,对培养学生全面的技术能力,健全合理的知识结构,都应发挥应有的作用。 二、大纲编写依据 根据全国高校化工原理课程教学指导委员会制定的“高等学校工科本科《化工原理》课程教学基本要求”,结合近年来的教学实践,在原教学大纲的基础上进行修订的。 三、大纲适用范围 本大纲适用于化工类各专业。 四、大纲本文 化工原理课程设计应以重要的化工单元操作及典型设备为对象,可选择以下四个方面题目中的一个。列管换热器的设计、精馏塔设计、吸收塔设计和干燥器设计等四类,各题目的内容与要求如下: (一)、换热器设计 包括换热器型式选择、流体的流程选择、载热体最佳出口温度的确定(优化设计)、热量衡算、所需面积计算、换热器结构尺寸的设计计算和换热器的传热验算,辅助设

相关主题
文本预览
相关文档 最新文档