当前位置:文档之家› 590+的通信控制-Modbus

590+的通信控制-Modbus

590+的通信控制-Modbus
590+的通信控制-Modbus

Euro590+直流调速器通讯控制-Modbus总线控制

一、590+Modbus通讯控制概述

目前在塑料机械、电工机械的设备控制系统中,普遍使用英国EUROTHERM 公司-欧陆590+直流驱动器作为直流电机的驱动,该直流驱动器具有较高的性能价格比,常规的控制方式通常采用可编程序控制器和可编程序控制器的A/D、D/A、I/O模块对590+直流驱动器进行控制,当590+直流驱动器的数量较多时,需要增加大量的互联线和PLC模块,既增加成本,也增加接线的工作量。随着通讯技术应用越来越广泛,590+直流驱动器也内置3种基于RS422-485方式的通讯协议:ASCII/Binary/Modbus。与传统的控制方式相比较,通讯控制有以下几个方面主要优点:

1、使590+直流驱动器的控制线路简单化

由于大多数工业总线的物理层均为RS422-485连接方式,这样可编程序控制器PLC至590+直流驱动器的控制线路可采用最简单的屏蔽双绞线连接方法,与传统的端子控制模式相比较,不仅可以节省联接线缆的费用,同时也可以最大限度地避免人工接线过程中出现的失误。

2、590+直流驱动器与可编程序控制器-PLC之间直接进行数字交换

由于可编程序控制器和590+直流驱动器均为数字控制器,采用通讯控制方式可以实现两者之间的直接数字交换,与传统的I/O控制方式相比较,不仅可以节约可编程序控制器A/D、D/A、数字量I/O模块的费用,同时,控制精度也能够得到最大限度的提高。

例如,对590+直流驱动器采用传统的模拟量控制和反馈时,其静态控制精度为0.1%;如采用通讯控制和数字反馈时,其静态控制精度可达到0.01%。(来自Euro590+用户手册)

3、多台590+直流驱动器的远程集中监控

随着设备的自动化要求的不断提高,远程集中监视、控制已经成为控制系统中不可或缺的组成部分。采用传统的I/O控制方式费时费力,而采用通讯控制方式则可轻易实现。

采用通讯控制方案,可以通过可编程序控制器对多台远程590+直流驱动器实现控制:

?590+直流驱动器参数的设置和调整

?590+直流驱动器实际运行值的监视和控制

?590+直流驱动器的故障诊断和管理

4、590+直流驱动器通讯控制模式可以简单地分为低速和高速两大类。

低速通讯是指采用标准的串行连接方式,其数据传输率最大为19.2Kbit/s,针对590+直流驱动器而言,支持标准串行通讯的协议有Modbus、ASCII字符/Binary。

高速通讯是指采用数据传输率较高的工业网络,对于590+直流驱动器可采用如Ethernet、Modbus Plus、CAN Open、Profibus-DP、Lonworks、DeviceNet 等方式。

低速通讯和高速通讯的选择一般应综合以下几方面因素:

?从站的数目

?交换数据的数量

?响应时间

?通讯距离

?价格等

低速串行总线一般仅包含网络概念的OSI(Open System Interconnection)模型中的协议层以下的信息,用户在对驱动器进行通讯控制时需要编写相应的通讯程序,同时由于传输速率较低,在响应时间要求较高的场合有一定的局限性。但串行总线一般是可编程序控制器和调速控制器的基本配置,无需增加额外成本,在价格上有明显的优势。

高速工业网络一般均包含了OSI模型中的最高层- 应用层,即在网络应用中预先设定了某些必要信息,这些信息将由网络系统自动进行交换,同时将交换后的数据映像在可编程序控制器的相应内存中,也就是说,在采用高速工业总线对调速控制器进行控制时,用户无需编写通讯程序,只需对相应内存进行读写操作,即可实现对调速控制器的高速通讯控制。但高速工业网络需要专用的通讯网卡及附件(线缆、接头等),成本较高。

本文介绍采用Modbus通讯协议的通讯控制技术,这种通讯方式比采用标准ASCII方式编程更简单、通讯更加可靠。

下面以590+直流驱动器Modbus 总线通讯控制为例,简单介绍了Modicon TSX Micro PLC的编程方法。

二、590+直流驱动器的通讯控制参数的设置和Modbus总线的联接

1、菜单MMI Menu Map-类型选择TEC OPTION-类型TEC OPTION TYPE:RS485,类型选择TEC OPTION-协议PROTOOL:MODBUS RTU

2、类型选择TEC OPTION-波特率BAUD RATE、组号GROUP ID、

地址号UNIT ID等需根据PLC和设备的要求选择。

3、Modbus 协议、590+直流驱动器接口

MODBUS 协议是美国Modicon公司发明的一种基于设备之间通讯的协议。MODBUS协议将通信参与者规定为“主站”(MASTER)和“从站”(SLAVE),主站可向从站发送通信请求,每个从站都有自己的地址编号,数量最多可达247个。它通过多达24种的总线命令实现主站和从站之间的信息交换,具有简单、高效、可靠、和容易实现等优点。从功能上看,它可以认为是一种现场总线,不同厂商生产的设备控制器通过Modbus协议方式可以相互连成工业网络,进行整个系统的集中监控,因而得到了广泛的应用。应众多设备制造商的要求,Modicon公司将该协议完全公开,成为了“事实上的工业标准”。

MODBUS协议有ASCII 和RTU (远程终端单元)两种传输方式,在ASCII 方式中,消息中的每个8Bit字节需2个ASCII字符,其优点是允许字符的传输间隔达到1秒而不产生错误;在RTU方式,每个8Bit字节包含两个4Bit的十六进制字符,其优点是,在同样的波特率下,可比ASCII方式传送更多的数据,但每个消息必须以连续的流传输,约95%的Modbus总线采用RTU方式。590+直流驱动器采用Mobus RTU传输方式。Modbus 协议是一个完全开放的主从式异步串行通讯协议,主站和从站之间允许多点连接,实现主站对一个或多个从站的通讯。主站对从站的访问方式有两种:

?查询方式:主站对一个从站进行对话并等待其应答

?广播方式:主站对所有从站进行对话(不等待应答)

在Modbus协议中,主站在信息交换中是主动的,即只有主站唯一对数据的交换进行管理,从站只能在主站要求其应答时发送信息,从而避免了信息的冲突;同时,数据交换采用严格的检验方法(如CRC - Cyclical Redundancy Check,循环冗余检验),以保证数据交换的正确性。例如,主站发送完访问指令后,在设定时间(Time-out)内等待从站的应答,并对回应的数据进行检验,如正确无误,则发送下一条指令。当出现错误时(如检验不正确或从站无应答),主站将按设定的重试次数重新发出指令,如果错误仍然存在,主站将报告相应的错误信息。

590+直流驱动器采用MODBUS方式与可编程序控制器可以方便的实现多点通信。采用带有120Ω特性阻抗的屏蔽双绞线,确认在通讯电缆的两边都有终端匹配电阻(120Ω),并将屏蔽小心接地。从站数限制为32个以下。Modbus协议规定每个消息不超过256个字节。

可编程序控制器PLC与590+直流驱动器连接

见下图

网络末端的590+直流驱动器的DIP选择开关-1:OFF、2:ON

其它的590+直流驱动器的DIP选择开关-1、2:OFF

三、590+直流控制器通讯控制PLC编程举例

施耐德电气公司的Modicon TSX Micro PLC是一种面向机器的中小型PLC,本机最大可达256 I/O点,具备强大的内存扩展和通讯扩展功能;其编程软件PL7 PRO4.2与中型PLC Premium兼容,不仅编程简单方便,同时具有中型PLC的强大功能(如丰富的库函数和算术表达式编程等)。

在Micro PLC上实现Modbus主站有两种方式:

1、通过编程软件直接将编程端口(Channel 0)设置为Modbus Master的通讯方式。

2、在通讯扩展插槽(Channel 1)内插入TSXSCP114 - RS485 PCMCIA多协议通讯卡,通过编程软件将该通讯卡设置为Modbus Master方式。注意:使用TSXSCP114 - RS485 PCMCIA多协议通讯卡最多联接8个从站。

注意,采用第一种方式时,通讯口为非隔离的,当传输距离大于10米时应采用总线隔离器(如:TSXPACC01)。此外,Modbus通讯参数必须与变频器一致。

在PLC的软件编程中,通过库函数中的通讯指令即可简单地实现对590+直流控制器的内部通讯变量的访问:

例如,以Tag方式Speed Feedback-Tag 63,写Ramp Input-Tag 5:

通讯启停

%MW100:X0

READ_VAR(ADR#m.v.i,’%MW’,62,1,%MW10:1,%MW100:4)

%MW110:X0

WRITE_VAR(ADR#m.v.i,’%MW’,4,1,%MW20:1,%MW110:4)

读变量:将590+直流控制器Tag63中的数据读入PLC内部数据区%MW10中,%MW100:4为4个字的通讯管理参数,%MW100:X0为通讯启停标志位写变量:将PLC内部数据区%MW20中的数据写入590+直流控制器Tag5中其中: m - 模块号(对Micro PLC为0)

v - 通道号(编程端口为0,通讯扩展口为1)

i - 从站地址(变频器设置的Modbus从站号)

因590+直流控制器的Tag号码比较分散,当需要读写的数据较多时,可将需要读写的Tag号码在初始化程序中赋给从PNO96开始的16个地址指针,然后在主程序中读写从PNO112开始的连续16个字即可,程序略。

有关Micro PLC通讯及编程的详细说明参见“Modicon TSX Micro PLC 用户手册”。590+直流控制器的通讯协议参见590+系列通讯技术手册-RS485通讯界面。

modbus_通讯协议_实例

上海安标电子有限公司 ——PC39A接地电阻仪通信协议 通信协议: 波特率:9600数据位:8校验位:无停止位:1 上位机(计算机): 字节号 1 2 3 4 5 6 7 8 意义ID Command 数据地址V alue CRC 注:1 ID:1个字节,由单机来定(0~255) 2 Command:1个字节,读:3或4,写:6 3 数据地址:2个字节,寄存器地址,读从100开始,写从200开始 4 V alue:2个字节,读:个数(以整型为单位),写:命令/ 数据(以整型为单位) 5 CRC:计算出CRC 下位机(PC39A): 读数据,若正确 字节号 1 2 3 3+N (N=个数*2) 3+N+1 3+N+2 意义ID Command=3 / 4 数据个数数据CRC 注:1 ID:1个字节,由单机来定(0~255) 2 Command:1个字节,收到的上位机命令 3数据个数:1个字节,返回数据个数(以字节为单位) 4 V alue:N个字节,是返回上位机的数据 5 CRC:计算出CRC 写命令,若正确 返回收到的数据: 若错误 字节号 1 2 3 4 5 意义ID Command 数据CRC 注:1 ID:1个字节,由单机来定(0~255) 2 Command:1个字节,收到的上位机命令或上0x80, 如收到3,返回0x83 3数据:1个字节,错误的指令 错误指令 1:表示command不存在 2:表示数据地址超限 4 CRC:计算出CRC

例如读PC39A 电流数据: 机器地址为12,电流的数据地址100,数据为15.45(A) (一个整型数据) 主机: ID Command 数据地址 V alue CRC 16进制 0x0c 0x03 0x0064 0x0001 CRC_H CRC_L 10进制 12 3 100 1 CRC_H CRC_L 从机返回 如正确: ID Command 数据个数(以字节为单位) V alue CRC 16进制 0x0c 0x03 0x002 0x0609 CRC_H CRC_L 10进制 12 3 2 1545 CRC_H CRC_L 如错误: ID Command 数据 CRC 16进制 0x0c 0x83 0x02 CRC_H CRC_L 10进制 12 131 2 CRC_H CRC_L 例如发PC39A 启动命令: 机器地址为12,命令的地址200,数据为25000(25000表示启动) 主机: ID Command 数据地址 V alue CRC 16进制 0x0c 0x06 0x00c8 0x61a8 CRC_H CRC_L 10进制 12 6 200 25000 CRC_H CRC_L 从机返回 如正确: ID Command 数据地址 V alue CRC 16进制 0x0c 0x06 0x00c8 0x61a8 CRC_H CRC_L 10进制 12 6 200 25000 CRC_H CRC_L 如错误: ID Command 数据 CRC 16进制 0x0c 0x86 0x02 CRC_H CRC_L 10进制 12 134 2 CRC_H CRC_L 0011 10000110 错误码0x83 功能码0x06错误码0x86

基于Modbus协议实现单片机与PLC之间的通讯

基于Modbus协议实现单片机与PLC之间的通讯 来源:PLC&FA 作者:蔡晓燕赵兴群万遂人董鹏云 关键词:可编程控制器 Modbus 通讯协议 1 引言 HMI(人机界面)以其体积小,高性能,强实时等特点,越来越多的应用于工业自动化系统和设备中。它有字母、汉字、图形和图片等不同的显示,界面简单友好。配有长寿命的薄膜按钮键盘,操作简单。它一般采用具有集成度高、速度快、高可靠且价格低等优点的单片机[1]作为其核心控制器,以实现实时快速处理。PLC和单片机结合不仅可以提PLC的数据处理能力,还可以给用户带来友好简洁的界面。本文以Modbus通讯协议为例,详细讨论了一个人机系统中,如何用C51实现单片机和PLC之间通讯的实例。 2 Modbus通讯协议[4] Modbus协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络和其它设备之间可以通信。 Modbus协议提供了主—从原则,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。主设备查询的格式:设备地址(或广播,此时不需要回应)、功能代码、所有要发送的数据、和一错误检测域。从设备回应消息包括确认地址、功能码、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。 控制器能设置为两种传输模式:ASCII和RTU,在同样的波特率下,RTU可比ASCII方式传送更多的数据,所以采用KTU模式。 (1) 典型的RTU消息帧 典型的RTU消息帧如表1所示。

RTU消息帧的地址域包含8bit。可能的从设备地址是0...127(十进制)。其中地址0是用作广播地址,以使所有的从设备都能认识。主设备通过将要联络的从设备的地址放入消息中的地址域来选通从设备。当从设备发送回应消息时,它把自己的地址放入回应的地址域中,以便主设备知道是哪一个设备作出回应。 RTU消息帧中的功能代码域包含了8bits,当消息从主设备发往从设备时,功能代码域将告之从设备需要执行哪些行为;当从设备回应时,它使用功能代码域来指示是正常回应(无误)还是有某种错误发生(称作异议回应,一般是将功能码的最高位由0改为1)。 从主设备发给从设备消息的数据域包含附加的信息:从设备必须用于进行执行由功能代 码所定义的行为。这包括了像不连续的寄存器地址,要处理项的数目,域中实际数据字节数。如果没有错误发生,从从设备返回的数据域包含请求的数据。如果有错误发生,此域包含一异议代码,主设备应用程序可以用来判断采取下一步行动。 当选用RTU模式作字符帧时,错误检测域包含一16Bits值(用两个8位的字符来实现)。错误检测域的内容是通过对消息内容进行循环冗长检测(CRC)方法得出的。CRC域附加在消息的最后,添加时先是低字节然后是高字节。 (2) 所有的Modbus功能码 Modbus的功能码定义如表2所示。

(完整版)MODBUS通讯协议-RTU要点

Modbus 通讯协议 (RTU传输模式)本说明仅做内部参考,详细请参阅英文版本。

第一章Modbus协议简介 Modbus 协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。 此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。 当在一Modbus网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus协议发出。在其它网络上,包含了Modbus协议的消息转换为在此网络上使用的帧或包结构。这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。 协议在一根通讯线上使用应答式连接(半双工),这意味着在一根单独的通讯线上信号沿着相反的两个方向传输。首先,主计算机的信号寻址到一台唯一的终端设备(从机),然后,在相反的方向上终端设备发出的应答信号传输给主机。协议只允许在主计算机和终端设备之间,而不允许独立的设备之间的数据交换,这就不会在使它们初始化时占据通讯线路,而仅限于响应到达本机的查询信号。 1.1 传输方式 传输方式是一个信息帧内一系列独立的数据结构以及用于传输数据的有限规则,以RTU 模式在Modbus总线上进行通讯时,信息中的每8位字节分成2个4位16进制的字符,每个信息必须连续传输下面定义了与Modebus 协议– RTU方式相兼容的传输方式。 代码系统 ?8位二进制,十六进制数0...9,A...F ?消息中的每个8位域都是一个两个十六进制字符组成 每个字节的位 ?1个起始位 ?8个数据位,最小的有效位先发送 ?1个奇偶校验位,无校验则无 ?1个停止位(有校验时),2个Bit(无校验时) 错误检测域 ?CRC(循环冗长检测)

很好的威纶通MODBUSRTU通讯协议与变频器通讯案例

很好的威纶通 M O D B U S R T U通讯协议与变频器通讯案例 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

本文研究的是触摸屏通过MODBUS RTU通讯协议与变频器通讯实现变频器的控制。触摸屏采用威纶通TK6070IP,变频器用汇川MD380通用系列。通过触摸屏编程软件,编辑控制画面实现变频器的启动、停止、速度调节、多段速速度设置,通过宏指令实现工程值与实际值的转换。 一、MODBUS RTU 简介: 为了在自动化系统之间、自动化系统和所连接的分散的现场设备之间进行信息交换,如今串行现场总线被主要用作通讯系统。成千上万的应用已经强烈地证明了通过使用现场总线技术,可以节省多至40%的接线、调试及维护的费用。仅仅使用两根电线就可以传送现场设备的所有相关信息,比如输入和输出数据、参数、诊断数据。过去使用的现场总线往往是制造商的特定现场总线,并且同其它现场总线不兼容。如今使用的现场总线几乎是完全公开和标准化的。这就意味者用户可以以最合理的价格选择最好的产品,而不用依赖于每个独立的制造商。Modbus RTU是一种国际的、开放的现场总线标准。作为一种很容易实现的现场总线协议,在全世界范围内,Modbus得到了成功的应用。应用领域包括生产过程中的自动化、过程控制和楼宇自控。MODBUS RTU通讯协议的报文如图1。 图1 MODBUS RTU 通讯协议的报文功能码如下: 01H 读取线圈状态。从执行机构上读取线圈(单个位)的内容; 02H 读取离散量输入。从执行机构上读取离散量输入(多个位)的内容; 03H 读取保持寄存器。从执行机构上读取保持寄存器(16位字)的内容; 04H 读取输入寄存器。从执行机构上读取输入寄存器(16位字)的内容; 05H 强置单线圈。写数据到执行机构的线圈(单个位)为“通”(“1”)或“断”(“0”); 06H 预置单寄存器。写数据到执行机构的单个保持寄存器(16位字); 0FH 强置多线圈。写数据到执行机构的几个连续线圈(单个位)为“通”(“1”) 或“断”(“0”); 10H 预置多寄存器。写数据到执行机构的几个连续的保持寄存器(16位字)。 二、威纶通编程软件介绍: EB8000软件中MODBUS协议的设备类型为0x、1x、3x、4x、5x、6x,还有 3x_bit,4x_bit,6x_bit,0x_multi_coils等,下面分别说明这些设备类型在MODBUS协议中支持哪些功能码。 0x:是一个可读可写的设备类型,相当于操作PLC的输出点。该设备类型读取位状态的时候,发出的功能码是01H,写位状态的时候发出的功能码是05H。写多个寄存器时发出的功能码是0fH。

modbus协议下上位机编程实例

竭诚为您提供优质文档/双击可除modbus协议下上位机编程实例 篇一:modbus协议下的上位机地址 Rs485采取流量计数据,经串口com1的2号地址读到int ouch中来,双字40001、40002为浮点型瞬时流量,读到上位机项目为40001F双字40004、40005为长整型累计流量,读到上位机项目为40004l 驱动设置与intouch标记名的设置 驱动设置: 项目名设置 注:在不修改驱动设置的情况下,s=s1+s2*65535 s=s2+s1*65535 根据各个厂家的仪表,上面工式有区别,设计时各个测试一下。 篇二:modbus通讯协议实例 上海安标电子有限公司 ——pc39a接地电阻仪通信协议 通信协议:

波特率:9600数据位:8校验位:无停止位:1 上位机(计算机): 注:1id:1个字节,由单机来定(0~255) 2command:1个字节,读:3或4,写:6 3数据地址:2个字节,寄存器地址,读从100开始,写从200开始4Value:2个字节,读:个数(以整型为单位),写:命令/数据(以整型为单位)5cRc:计算出cRc下位机(pc39a ):注:1id:1个字节,由单机来定(0~255) 2command:1个字节,收到的上位机命令 3数据个数:1个字节,返回数据个数(以字节为单位)4Value:n个字节,是返回上位机的数据5cRc:计算出cRc 写命令,若正确返回收到的数据:若错误注:1id:1个字节,由单机来定(0~255) 2command:1个字节,收到的上位机命令或上0x80, 如收到3,返回0x83 3数据:1个字节,错误的指令错误指令 1:表示command不存在2:表示数据地址超限 4cRc:计算出cRc 例如读pc39a电流数据: 机器地址为12,电流的数据地址100,数据为15.45(a)(一个整型数据)

Modbus通讯协议(TCP和RTU)

1MODBUS RTU 读寄存器请求序号意义所占字节字节存放格式 1从设备地址1个字节0x00?0xff 2功能码1个字节0x03 3起始寄存器基地址两个字节高字节在前 4寄存器个数两个字节高字节在前 5CRC校验码两个字节低字节在前 读寄存器回应序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节0x03 3数据长度1个字节寄存器个数×2 4数据寄存器个数×2个字节每个寄存器高字节在前5CRC校验码两个字节低字节在前 写单个寄存器请求序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节0x06 3起始寄存器地址两个字节高字节在前 4寄存器值两个字节 高字节在前 5CRC校验码 两个字节 低字节在前 写单个寄存器回应序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节0x10 3起始寄存器地址两个字节高字节在前 4寄存器值两个字节 高字节在前 5CRC校验码 两个字节 低字节在前 1

写多个寄存器请求序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节0x10 3起始寄存器地址两个字节高字节在前 4寄存器个数两个字节 高字节在前 5数据长度 1个字节 寄存器个数×2  6数据寄存器个数×2个字节每个寄存器高字节在前7CRC校验码 两个字节 低字节在前 写多个寄存器回应序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节0x10 3起始寄存器地址两个字节高字节在前 4寄存器个数两个字节 高字节在前 5CRC校验码 两个字节 低字节在前 错误返回序号意义所占字节字节存放格式1从设备地址1个字节0x00?0xff 2功能码1个字节请求功能码+0x80 3错误码1个字节 其代号见下面表格4CRC校验码 两个字节 低字节在前 错误代号错误代号意义 0x01不支持该功能码 0x02越界 0x03寄存器数量超出范围 0x04读写错误 2

电磁流量计实用标准MODBUS通讯协议详情(1)

电磁流量计转换器 通讯协议 2012-10-12

目录 一、概述................................................................................................. - 2 - 二、网络结构及接线................................................................................ - 2 -

三、Modbus协议RTU帧格式 .............................................................. - 2 - 四、Modbus协议命令编码定义............................................................. - 4 - 五、电磁流量计MODBUS寄存器定义 ................................................... - 5 - 1. 电磁流量计MODBUS寄存器地址定义............................................... - 5 - 2.PLC地址设置说明................................................................................ - 5 - 3.组态王地址设置说明............................................................................. - 6 -4.数据含义说明 .................................................................................... - 6 -六、通讯数据解析................................................................................... - 7 -1读瞬时流量 .......................................................................................... - 7 -2.读瞬时流速:....................................................................................... - 8 -3读累积流量 .......................................................................................... - 8 - 5.读总量流量单位 ................................................................................. - 10 - 6.读报警状态 ........................................................................................ - 10 - 七、应用举例........................................................................................ - 11 - 1.C语言MODBUS 示例程序............................................................... - 11 - 2.modbus调试软件modbus poll通讯实例....................................... - 13 - 3.modbus调试软件modscan32通讯实例 ......................................... - 15 - 4.组态王6.53通讯实例 ........................................................................ - 17 - 5.力控 6.1通讯实例.............................................................................. - 21 -

modbus通讯协议

Modbus通讯协议 图片: 图片: 图片:

Modbus协议最初由Modicon公司开发出来,在1979年末该公司成为施耐德自动化(Schneider Automation)部门的一部分,现在Modbus已经是工业领域全球最流行的协议。此协议支持传统的RS-232、RS-422、RS-485和以太网设备。许多工业设备,包括PLC,DCS,智能仪表等都在使用Modbus协议作为他们之间的通讯标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。 当在网络上通信时,Modbus协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成应答并使用Modbus协议发送给询问方。 Modbus协议包括ASCII、RTU、TCP等,并没有规定物理层。此协议定义了控制器能够认识和使用的消息结构,而不管它们是经过何种网络进行通信的。标准的Modicon控制器使用RS232C实现串行的Modbus。Modbus的ASCII、RTU协议规定了消息、数据的结构、命令和就答的方式,数据通讯采用Maser/Slave方式,Master 端发出数据请求消息,Slave端接收到正确消息后就可以发送数据到Master端以响应请求;Master端也可以直接发消息修改Slave端的数据,实现双向读写。

Modbus协议需要对数据进行校验,串行协议中除有奇偶校验外,ASCII模式采用LRC校验,RTU模式采用16位CRC校验,但TCP模式没有额外规定校验,因为TCP 协议是一个面向连接的可靠协议。另外,Modbus采用主从方式定时收发数据,在实际使用中如果某Slave站点断开后(如故障或关机),Master端可以诊断出来,而当故障修复后,网络又可自动接通。因此,Modbus协议的可靠性较好。 下面我来简单的给大家介绍一下,对于Modbus的ASCII、RTU和TCP协议来说,其中TCP和RTU协议非常类似,我们只要把RTU协议的两个字节的校验码去掉,然后在RTU协议的开始加上5个0和一个6并通过TCP/IP网络协议发送出去即可。所以在这里我仅介绍一下Modbus的ASCII和RTU协议。 下表是ASCII协议和RTU协议进行的比较: 通过比较可以看到,ASCII协议和RTU协议相比拥有开始和结束标记,因此在进行程序处理时能更加方便,而且由于传输的都是可见的ASCII字符,所以进行调试时就更加的直观,另外它的LRC校验也比较容易。但是因为它传输的都是可见的ASCII 字符,RTU传输的数据每一个字节ASCII都要用两个字节来传输,比如RTU传输一个十六进制数0xF9,ASCII就需要传输’F’’9’的ASCII码0x39和0x46两个字节,这样它的传输的效率就比较低。所以一般来说,如果所需要传输的数据量较小可以考虑使用ASCII协议,如果所需传输的数据量比较大,最好能使用RTU协议。

MODBUS标准通讯协议

MODBUS 标准通讯协议(简版) (基于Modbus 应用协议RTU 通讯模式) 1. 前言 本协议适用于符合MODBUS 标准通讯协议的规定以及在Modbus 网络上以RTU 模式通信运行的设备和应用软件。本协议按照Modbus 应用协议标准制定。 2. 波特率可选范围 代码 6 7 8 9 10 11 12 13 14 波特率 2400 4800 9600 14400 19200 28800 38400 57600 115200 3. RTU 通讯数据传输模式 3.1 RTU 模式每个字节( 11 位 )的格式为 : 通讯传输为异步方式,并以字节(数据帧)为单位。在主站和从站之间传递的每一个数据帧都是11位的串行数据流。 编码系统: 8–位二进制,报文中每个8 位字节含有两个4 位十六进制字符(0–9, A –F) 数 据 位: 1个 起始位 8个 数据位, 首先发送最低有效位 1个 奇偶校验(注:偶校验是要求的,其它模式( 奇校验,无校验 )也可以使用) 1个 停止位 (注 :使用无校验时要求2个停止位) 帧校验域:循环冗余校验(CRC) 3.2 字符的串行传送方式: 每个字符或字节按如下顺序发送(从左到右):最低有效位 (LSB) . . . 最高有效位 (MSB) 通过配置,设备可以接受奇校验、偶校验或无校验。如果无奇偶校验,那么传送一个附加的停止位来填充数据帧使其成为完整的11位异步字符: 3.3 数据编码: Modbus 处理的所有数据按照存储数据的类型可以分为位寄存器(容量为1位)和16位寄存器(容量为16位)两种,它们的宽度都是16位(Data is packed as two bytes per register),协议允许单个选择65536个数据项,而且其读写操作可以越过多个连续数据项直到数据大小规格限制,这个数据大小规格限制与事务处理功能码有关。在Modbus PDU 中从0~65535寻址每个数据。 Modbus 使用一个‘big-Endian ’表示地址和数据项,即最高有效字节在低地址存储,最低有效字节在高字节存储。这意味着当发送多个字节时,首先发送最高有效位例如: 寄存器大小 值 16位 0x1234 发送的第一字节为0x12,然后发0x34。 4. RTU 报文帧结构 Modbus RTU 报文帧格式如下: 地址码 功能码 数据区 错误校验码 2 字节 1字节 1字节 0到252字节 CRC 低 CRC 高

Modbus协议讲解

Modbus协议讲解 一、基本术语 1、字word、字节byte、位bit 1 word = 2 byte; 1 byte = 8 bit. 2、校验码 校验码是由前面的数据通过某种算法得出的,用以检验该组数据的正确性。代 码作为数据在向计算机或其它设备进行输入时,容易产生输入错误,为了减少 这种输入错误,编码专家发明了各种校验检错方法,并依据这些方法设置了校 验码。 常用的校验有:累加和校验SUM、字节异或校验XOR、纵向冗余校验LRC、循环冗余校验CRC…… 3、协议和接口 协议是一种规范和约定,是一种通讯的语言,规定了通信双方能够识别并使用 的消息结构和数据格式。 接口是一种设备的物理连接,指的是在物理层上的定义,像 RS422/RS232/RS485/以太网口等。协议和接口并不是一个概念,不能混淆。 Modbus协议一般运行在RS485物理接口上,半双工的,是一种主从协议。 二、Modbus协议概述

Modbus协议是应用于电子控制器上的一种通用语言,实现控制器之间、控制器由网络和其它设备之间的通信,支持传统的RS232/RS422/RS485和最新发展的以太网设备。它已经成为一种通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中控制。此协议定义了一个控制器能认识使用的消息结构。 Modbus协议是一种请求——应答方式的协议。 三、两种传输方式 1、ASCII模式 ASCII:美国标准信息交换代码 特点: ②消息中每个8bit都作为两个ASCII字符发送 ②1个起始位、7个数据位、1个奇偶校验位和1个停止位(或者两个停止位) ③错误检测域是LRC检验 ④字符发送的时间间隔可达到1秒而不会产生错误 2、RTU模式 RTU:远程终端单元 特点: ①消息中每个8bit字节包含两个4bit的十六进制字符,因此,在波特率相 同的情况下,传输效率比ascii传输方式大 ②1个起始位、8个数据位、1个奇偶校验位和1个停止位(或者两个停 止位)

2019很好的威纶通MODBUS RTU通讯协议与变频器通讯案例

本文研究的是触摸屏通过MODBUS RTU通讯协议与变频器通讯实现变频器的控制。触摸屏采用威纶通TK6070IP,变频器用汇川MD380通用系列。通过触摸屏编程软件,编辑控制画面实现变频器的启动、停止、速度调节、多段速速度设置,通过宏指令实现工程值与实际值的转换。 一、MODBUS RTU 简介: 为了在自动化系统之间、自动化系统和所连接的分散的现场设备之间进行信息交换,如今串行现场总线被主要用作通讯系统。成千上万的应用已经强烈地证明了通过使用现场总线技术,可以节省多至40%的接线、调试及维护的费用。仅仅使用两根电线就可以传送现场设备的所有相关信息,比如输入和输出数据、参数、诊断数据。过去使用的现场总线往往是制造商的特定现场总线,并且同其它现场总线不兼容。如今使用的现场总线几乎是完全公开和标准化的。这就意味者用户可以以最合理的价格选择最好的产品,而不用依赖于每个独立的制造商。Modbus RTU是一种国际的、开放的现场总线标准。作为一种很容易实现的现场总线协议,在全世界范围内,Modbus得到了成功的应用。应用领域包括生产过程中的自动化、过程控制和楼宇自控。MODBUS RTU通讯协议的报文如图1。图1 MODBUS RTU 通讯协议的报文功能码如下: 01H 读取线圈状态。从执行机构上读取线圈(单个位)的内容; 02H 读取离散量输入。从执行机构上读取离散量输入(多个位)的内容; 03H 读取保持寄存器。从执行机构上读取保持寄存器(16位字)的内容; 04H 读取输入寄存器。从执行机构上读取输入寄存器(16位字)的内容; 05H 强置单线圈。写数据到执行机构的线圈(单个位)为“通”(“1”)或 “断”(“0”); 06H 预置单寄存器。写数据到执行机构的单个保持寄存器(16位字); 0FH 强置多线圈。写数据到执行机构的几个连续线圈(单个位)为“通”(“1”) 或“断”(“0”); 10H 预置多寄存器。写数据到执行机构的几个连续的保持寄存器(16位字)。 二、威纶通编程软件介绍: EB8000软件中MODBUS协议的设备类型为0x、1x、3x、4x、5x、6x,还有3x_bit,4x_bit,6x_bit,0x_multi_coils 等,下面分别说明这些设备类型在MODBUS协议中支持哪些功能码。 0x:是一个可读可写的设备类型,相当于操作PLC的输出点。该设备类型读取位状态的时候,发出的功能码是01H,写位状态的时候发出的功能码是05H。写多个寄存器时发出的功能码是0fH。 1x:是一个只读的设备类型,相当于读取PLC的输入点。读取位状态的时候发出的功能码为02H。 3x:是一个只读的设备类型,相当于读取PLC的模拟量。读数据的时候,发出的功能码是04H。 4x:是一个可读可写的设备类型,相当于操作PLC的数据寄存器。当读取数据的时候,发出的功能码是03H,当写数据的时候发出的功能码时10H,可写多个寄存器的数据。 6x:是一个可读可写的设备类型,读取数据的时候,发出的功能码也是03H,与4x不同之处在于写数据的时候发出的功能码时06H,即写单个寄存器的数据。 三、变频器参数设置: F0-02 命令源选择为:通讯命令通道(1正转运行、2反转运行、3正转点动、4反转点动、5自由停车、6减速停机); F0-03 主频率源选择为:通讯给定; F0-28 串口通讯协议选择:MODBUS 协议; Fd-00 通讯波特率:9600 BPS; Fd-01 MODBUS 数据格式:偶校检(8-E-1); Fd-02 本机地址:1 Fc-00—Fc-15 1到16段多段速运行速度

关于51单片机上实现modbus协议

你找一个MODBUS的协议详细资料好好看看,就是一种通讯约定,你按照它规定的格式通讯就可以了 协议发送给询问方。Modbus协议包括ASCII、RTU、TCP等,并没有规定物理层。此协议定义了控制器能够认识和使用的消息结构,而不管它们是经过何种网络进行通信的。标准的Modicon控制器使用RS232C实现串行的Modbus。Modbus的ASCII、RTU协议规定了消息、数据的结构、命令和就答的方式,数据通讯采用Maser/Slave方式,Master端发出数据请求消息,Slave端接收到正确消息后就可以发送数据到Master端以响应请求;Master端也可以直接发消息修改Slave端的数据,实现双向读写。Modbus协议需要对数据进行校验,串行协议中除有奇偶校验外,ASCII模式采用LRC校验,RTU模式采用16位CRC校验,但TCP 模式没有额外规定校验,因为TCP协议是一个面向连接的可靠协议。另外,Modbus采用主从方式定时收发数据,在实际使用中如果某Slave站点断开后(如故障或关机),Master端可以诊断出来,而当故障修复后,网络又可自动接通。因此,Modbus协议的可靠性较好。下面我来简单的给大家介绍一下,对于Modbus的ASCII、RTU和TCP协议来说,其中TCP 和RTU协议非常类似,我们只要把RTU协议的两个字节的校验码去掉,然后在RTU协议的开始加上5个0和一个6并通过TCP/IP网络协议发送出去即可。所以在这里我仅介绍一下Modbus的ASCII和RTU协议。下表是ASCII协议和RTU协议进行的比较:协议开始标记结束标记校验传输效率程序处理 ASCII :(冒号)CR,LF LRC 低直观,简单,易调试 RTU 无无CRC 高不直观,稍复杂 通过比较可以看到,ASCII协议和RTU协议相比拥有开始和结束标记,因此在进行程序处理时能更加方便,而且由于传输的都是可见的ASCII字符,所以进行调试时就更加的直观,另外它的LRC校验也比较容易。但是因为它传输的都是可见的ASCII字符,RTU传输的数据每一个字节ASCII都要用两个字节来传输,比如RTU传输一个十六进制数0xF9,ASCII 就需要传输’F’’9’的ASCII码0x39和0x46两个字节,这样它的传输的效率就比较低。所以一般来说,如果所需要传输的数据量较小可以考虑使用ASCII协议,如果所需传输的数据量比较大,最好能使用RTU协议。 下面对两种协议的校验进行一下介绍。 1、LRC校验 LRC域是一个包含一个8位二进制值的字节。LRC值由传输设备来计算并放到消息帧中,接收设备在接收消息的过程中计算LRC,并将它和接收到消息中LRC域中的值比较,如果两值不等,说明有错误。 LRC校验比较简单,它在ASCII协议中使用,检测了消息域中除开始的冒号及结束的回车换行号外的内容。它仅仅是把每一个需要传输的数据按字节叠加后取反加1即可。下面是它的VC代码: BYTE GetCheckCode(const char * pSendBuf, int nEnd)//获得校验码 {

相关主题
文本预览
相关文档 最新文档