当前位置:文档之家› 电子设计大赛风板控制系统

电子设计大赛风板控制系统

电子设计大赛风板控制系统
电子设计大赛风板控制系统

2015年全国大学生电子设计竞赛

风板控制装置(I题)

【高职高专组】

2015年8月15日

摘要

本系统以MSP430单片机为控制核心,通过PID算法,实现了对风板的控制。系统主要由电源模块、角度测量模块、电机驱动模块、显示模块、键盘模块和声光模块等构成。通过PID反馈输出PWM来改变直流风机风力大小,使风板转角根据需求变化。加速度传感器MPU6050检测风板位置的变化,并将风板角度在LCD 液晶器上显示,同时单片机对采集的数据进行分析,实时调整PWM输出,通过驱动芯片L298N控制风机风速,使风板达到稳定的状态,并带有相应的声光提醒功能,使系统人性化,经过反复测试,达到了设计要求。

关键词:MSP430;PID;PWM;直流风机;MPU6050

目录

1 系统方案

本系统主要由主控模块、角度检测模块、电机驱动模块、显示模块、电源模块组成,下面分别论证这几个模块的选择。

主控模块的论证与选择

方案一:采用传统8位的51单片机作为该系统的控制核心。经典51单片机具有价格低廉,使用简单等特点,但其存在外设I/O端口较少,运算速度低,功能单一,不稳定等缺点。

方案二:采用 TI 公司所生产的 MSP430F149 单片机为主控制芯片,运算速度快,超低功耗,有非常丰富的片内资源,性价比高。

综合比较以上两个方案,选择TI公司生产的430芯片,在低功耗方面有显着的优势,处理数据快,且其片内资源丰富,满足系统设计需求。

角度检测模块方案论证

方案一:采用模拟三轴加速度计MMA7260, MMA7260QT是检测物件运动和方向的传感器,它根据物件运动和方向改变输出信号的电压值。通过A/D转换器读取输出信号,检测其运动和方向。

方案二:采用mpu6050传感器可准确追踪快速与慢速动作,并且可调整感测范围,可快速、直接将检测信号给控制器。

控制帆板角度是个快速处理的过程,方案一还需采集电路对AD进行采集转化为数字量,综合考虑选择方案二。

电机驱动模块

本设计的主要目的在于控制风机的转速,因此电机驱动模块是必不可少,其方案有以下两种。

方案一:采用大功率晶体管组合电路构成驱动电路,这种方法结构简单,成本低、易实现,但由于在驱动电路中采用了大量的晶体管相互连接,使得电路复杂、抗干扰能力差、可靠性下降,我们知道在实际的生产实践过程中可靠性是一个非常重要的方面。因此此中方案不宜采用。

方案二:采用专用的电机驱动芯片,例如L298N、L297N等电机驱动芯片,由于它内部已经考虑到了电路的抗干扰能力,安全、可靠行,所以我们在应用时只需考虑到芯片的硬件连接、驱动能力等问题就可以了,所以此种方案的电路设计简单、抗干扰能力强、可靠性好。设计者不需要对硬件电路设计考虑很多,可将重点放在算法实现和软件设计中,大大的提高了工作效率。

基于上述理论分析和实际情况,电机驱动模块选用方案二。

显示模块方案

方案一:选用常见的数码管显示,成本低,只能显示简单的字符和数字。显示位数较多时,轮番扫描占用CPU时间。

方案二:选用12864显示屏做显示。12864的显示为128x64,显示面积大,数字和汉字显示容易实现,程序要求不是很高,更加方便。

方案三:用彩屏做显示。彩屏显示效果好,但成本高,功耗大,编程设计相对繁琐。

由于系统显示信息量较多,对比所述方案,选择12864作为系统显示器。电源模块方案

电源是任何系统能否运行的能量来源,本系统中电源模块为主控制器、电机驱动、角度检测模块等提供电源。

方案一:通过电阻分压的形式将整流后的电压分别降为控制芯片和电机运行所需的电压,此种方案原理和硬件电路连接都比较简单,但对能量的损耗大,在实际应用系统同一般不宜采用。

方案二:通过固定芯片对整流后的电压进行降压、稳压处理(如7812、7805等),此种方案可靠性、安全性高,对能源的利用率高,并且电路简单容易实现。

根据系统的具体要求,采用方案二作为系统的供电模块。

2.系统理论分析与计算

角度确定

风板运动过程中需要实时检测角度的变化,通过计算加速度传感器传回的数据,可以测得风板的角度,加速度与角度存在如下关系:

风速控制

风速的快慢直接决定了系统风板角度的大小。通过pid调节,单片机输出PWM 波形,可对风板进行快速、准确的调整。

通过不断调整P(比例)、I(积分)、D(微分)值,系统的稳定性得到明显的提高,响应时间也加快了。由各个参数的控制规律可知,比例P使反应变快,微

分D使反应提前,积分I使反应滞后。在一定范围内,P,D值越大,调节的效果越好。

3.电路与程序设计

硬件电路设计

系统总体框图如图所示。

图系统总体框图

单片机最小系统设计

MSP430F149单片机,其最小系统包括电源电路、复位电路、时钟电路,具体电路设计如图所示。

图最小系统原理图

角度测量设计

本系统中要实时监控风板的角度,系统采用mpu6050传感器,通过计算可迅速得出测量的角度,从而反馈给单片机进行相应操作。

显示模块设计

本系统采用LCD12864作为显示,模块电路图如图所示。

图 LCD12864电路图

直流风机驱动

电机驱动芯片L298N内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器。L298可驱动2个电机,OUT1、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。利用单片机产生PWM信号接到ENA,ENB端子,对电机的转速进行调节。电机驱动电路如图所示。

图电机驱动

供电系统电路

在电子电路及设备中,一般都需要稳定的直流电源供电。小功率的稳压电源的组成如图所示,它由电源变压器、整流电路、滤波电路和稳压电路四部分组成。直流稳压电源电路如图所示。

图直流稳压电路工作原理

图 LM2596可调电源模块

程序设计

程序功能描述

根据设计要求,软件部分主要实现风机转速控制以及声光报警与液晶显示。(1)风机转速控制部分:在键盘按下设定风板的角度后,风板15s内处于指定位置并稳定5秒以上,上下波动不超过5度,根据传感器测出的距离通过PID 算法调整风机转速来调整风板的位置。

(2)键盘设置部分:在键盘按下后,风机作出相应转速,风板达到指定位置。(3)液晶显示部分:液晶器显示风板位置及维持时间。

程序设计思路

系统程序主要由角度检测部分,PID调节部分和显示部分组成。设定需求角度,通过获取测量角度值来反馈给单片机,单片机做出相应的PWM调节,从而达到需求的角度。同时液晶将对实时采集的角度和按键值信息进行显示。

程序流程图

程序总体流程图如图所示,PWM控制流程图如图所示,12864液晶显示电路流程图如图所示。

开始系统初始化

采集角度

达到设定值

调节电机

液晶显示

结束

设定角度

Y

N

Y

N

开始

初始化

读取角度值

是否需要PID 调

节Pwm 脉冲调整

电机驱动

PID 调节运算输出

N

Y

液晶程序流程图

4系统测试 测试仪器

高精度的数字毫伏表、模拟示波器、数字示波器、数字万用表、指针式万用表、量角器、秒表。

测试方案

1、硬件测试

对各个模块进行测试,测试通过后使用。 2、软件仿真测试

对程序的错误和不能正确实现的部分进行调节和改正。 3、硬件软件联调

对整体功能的实现进行进一步调节。

测试结果及分析 测试结果

a. 风板实际角度与角度传感器角度比较

b.风板角度与pwm 关系如表所示。

测试分析与结论

根据上述测试数据,随着PWM的增加,风机的风速逐渐加大,风板设定的角度能维持3~5s,由此可以得出以下结论:

1、风机的转速可通过PWM调控且成正比关系。

2、风板实际角度与传感器检测的角度误差1度,当稳定时,角度误差小于5度波动,符合系统要求。

综上所述,本系统达到设计要求。

5 设计总结

不说我们在电赛中学到的新知识是多么有价值,也不用说它拓宽了多少我们的眼界,只是说它让我们的能力得到提高就已足以成为我们努力付出的回报。

在这四天三夜的奋战中,遇到过很多困难,搭载硬件时,由于对量角器安装角度有误差,导致软件校准时存在较大误差,经过仔细排查,不断改变方案,最终解决了问题。软件调试时,PID参量设置成了最头疼的问题,过大调整系统波动较大,过小调整风板很难达到预设角度。功夫不负有心人,两天的幸苦没有白费,当风机稳定的转动到达预设角度时,喜悦之情难以言表。理论与现实总是用通过实践联系起来的,我们在这次比赛中不再是局限于课本或是参考资料中的理论知识,而是把所有的实验都按部就班的做过,并通过实验结果对所理解的知识进行了加强巩固,更是对原来的理解偏差进行了改正,使我们对平时所学的课程更加透彻。当然,我们自己动手焊接了不少硬件电路,用到了大量的基础知识,还把实习中学到的焊接技术,对以前的知识进行了一次整合。再来,它增强了我们的沟通能力。合作精神是一个团队成立成长的根本所在,我们组的队员从第一个合作项目起就十分的团结,大家各有分工,共同讨论,为我们日后的工作能力打下了基础。

这次大赛给予了我们很多,通过这次比赛大家一起交流学习,互帮互助,增强了合作意识。老师们的帮助让我们感觉老师不再仅仅是一个指导者,更像一个家长带领我们成长,让我们跟老师之间的关系更加的紧密。最后,我们衷心感谢我们的指导老师,也祝愿此次大赛圆满成功!

附录1:电路原理图附录2:源程序

#include <>

#include ""

#define P_DATA

#define I_DATA 0

#define D_DATA 0

typedef struct PID

{

int SetPoint; -90); //X轴角度值

return ( -Roll);

}

void lcd_printf(uchar *s,int temp_data) {

if(temp_data<0)

{

temp_data=-temp_data;

*s='-';

}

else *s=' ';

*++s =temp_data/100+'0';

temp_data=temp_data%100; //取余运算*++s =temp_data/10+'0';

temp_data=temp_data%10; //取余运算*++s =temp_data+'0';

*++s='\0';

}

void InitMPU6050()

{

//Single_WriteI2C(PWR_MGMT_1, 0x80); //复位

Single_WriteI2C(PWR_MGMT_1, 0x00); //解除休眠状态

Single_WriteI2C(SMPLRT_DIV, 0x07); //陀螺仪采样率,典型值:0x07(125Hz)

Single_WriteI2C(CONFIG, 0x06); //低通滤波频率,典型值:0x06(5Hz)

Single_WriteI2C(GYRO_CONFIG, 0x18); //陀螺仪自检及测量范围,典型值:0x18(不自检,2000deg/s)

Single_WriteI2C(ACCEL_CONFIG, 0x01);//加速计自检,测量范围及高通滤波频率,典型值:0x01(不自检,2G,5Hz)

}

//**************************************

//合成数据

//**************************************

int GetData(uchar REG_Address)

{

char H,L;

H=Single_ReadI2C(REG_Address);

L=Single_ReadI2C(REG_Address+1);

return (H<<8)+L; //合成数据

}

//**************************************

//在12864上显示10位数据

//**************************************

int Display10BitData(int value)

{

value/=64; //转换为10位数据

lcd_printf(dis, value); //转换数据显示

//csj(y,x,dis);

return value;

}

void I2C_Start()

{

SDA1; //拉高数据线 SCL1; //拉高时钟线 delayus(5); //延时

SDA0; //产生下降沿 delayus(5); //延时 SCL0; //拉低时钟线}

//************************************** //I2C停止信号

//************************************** void I2C_Stop()

{

SDA0; //拉低数据线 SCL1; //拉高时钟线 delayus(5); //延时 SDA1; //产生上升沿 delayus(5); //延时}

//************************************** //I2C发送应答信号

//入口参数:ack (0:ACK 1:NAK)

//************************************** void I2C_SendACK(uchar ack)

{

SDAOUT;

if(ack) SDA1;

else SDA0;

// SDA = ack; //写应答信号 SCL1; //拉高时钟线

delayus(5); //延时

SCL0; //拉低时钟线

delayus(5); //延时

}

//**************************************

//I2C接收应答信号

//************************************** uchar I2C_RecvACK()

{

uchar cy;

SCL1; //拉高时钟线

SDAIN;

delayus(5); //延时

if(SDADATA)

{

cy=1;

}

else

{

cy=0;

}

// cy = SDA; //读应答信号 SCL0; //拉低时钟线

delayus(5); //延时

SDAOUT;

return cy;

}

//**************************************

//向I2C总线发送一个字节数据

//************************************** void I2C_SendByte(uchar dat)

{

uchar i;

for (i=0; i<8; i++) //8位计数器 {

if((dat<

{

SDA1;

}

else

{

SDA0;

}

// SDA = cy; //送数据口 SCL1; //拉高时钟线

delayus(5); //延时

SCL0; //拉低时钟线

delayus(5); //延时

}

I2C_RecvACK();

}

//**************************************

//从I2C总线接收一个字节数据

//************************************** uchar I2C_RecvByte()

{

uchar i;

uchar dat = 0,cy;

SDA1; //使能内部上拉,准备读取数据, SDAIN;

for (i=0; i<8; i++) //8位计数器

{

dat <<= 1;

SCL1; //拉高时钟线

delayus(5); //延时

if(SDADATA)

{

cy=1;

}

else

{

cy=0;

}

dat |= cy; //读数据

SCL0; //拉低时钟线

delayus(5); //延时

}

SDAOUT;

return dat;

}

//**************************************

//向I2C设备写入一个字节数据

//**************************************

void Single_WriteI2C(uchar REG_Address,uchar REG_data) {

I2C_Start(); //起始信号

I2C_SendByte(SlaveAddress); //发送设备地址+写信号

I2C_SendByte(REG_Address); //内部寄存器地址,

I2C_SendByte(REG_data); //内部寄存器数据,

I2C_Stop(); //发送停止信号

}

//**************************************

//从I2C设备读取一个字节数据

//**************************************

uchar Single_ReadI2C(uchar REG_Address)

{

uchar REG_data;

I2C_Start(); //起始信号

I2C_SendByte(SlaveAddress); //发送设备地址+写信号

I2C_SendByte(REG_Address); //发送存储单元地址,从0开始

I2C_Start(); //起始信号

I2C_SendByte(SlaveAddress+1); //发送设备地址+读信号

REG_data=I2C_RecvByte(); //读出寄存器数据

I2C_SendACK(1); //接收应答信号

I2C_Stop(); //停止信号

return REG_data;

}

机电控制系统课程设计

JIANG SU UNIVERSITY 机电系统综合课程设计 ——模块化生产教学系统的PLC控制系统设计 学院:机械学院 班级:机械 (卓越14002) 姓名:张文飞 学号: 3140301171 指导教师:毛卫平 2017年 6月

目录 一: MPS系统的第4站PLC控制设计 (3) 1.1第四站组成及结构 (3) 1.2 气动回路图 (3) 1.3 PLC的I/O分配表,I/O接线图(1、3、6站电气线路图) (4) 1.4 顺序流程图&梯形图 (5) 1.5 触摸屏控制画面及说明,控制、信息软元件地址表 (10) 1.6 组态王控制画面及说明 (13) 二: MPS系统的两站联网PLC控制设计 (14) 2.1 PLC和PLC之间联网通信的顺序流程图(两站)&从站梯形图 (14) 2.2 通讯软元件地址表 (14) 三:调试过程中遇到的问题及解决方法 (18) 四:设计的收获和体会 (19) 五:参考文献 (20)

一:MPS系统的第4站PLC控制设计 1.1第四站组成及结构: 由吸盘机械手、上下摆臂部件、料仓换位部件、工件推出部件、真空发生器、开关电源、可编程序控制器、按钮、I/O接口板、通讯接口板、多种类型电磁阀及气缸组成,主要完成选择要安装工件的料仓,将工件从料仓中推出,将工件安装到位。 1.吸盘机械手臂机构:机械手臂、皮带传动结构真空吸嘴组成。由上下摆臂装置带动其旋转完成吸取小工件到放小工件完成组装流程的过程。 2.上下摆臂结构:由摆臂缸(直线缸)摆臂机械装置组成。将气缸直线运动转化为手臂旋转运动。带动手臂完成组装流程。 3.仓料换位机构:由机构端头换仓缸带动仓位装置实现换位(蓝、黑工件切换)。 4.推料机构:由推料缸与机械部件载料平台组成。在手臂离开时将工件推出完成上料。 5.真空发生器:当手臂在工件上方时,真空发生器通气吸盘吸气。 5.I/O接口板:将桌面上的输入与输出信号通过电缆C1与PLC的I/O相连。 6.控制面板:完成设备启动上电等操作。(具体在按钮上有标签说明)。

数字电子称的设计(完美版)

沈阳航空航天大学 课程设计 (说明书) 数字电子称的设计 班级 学号 学生姓名 指导教师胡乃瑞

沈阳航空航天大学 课程设计任务书 课程名称电子技术综合课程设计 课程设计题目数字电子称的设计 课程设计的内容及要求: 一、设计说明与技术指标 设计一个一个具有数字显示功能的数字电子称,具体技术要求如下: (1)测量范围0~0.99kg(0~0.99V)1~1.99kg(1~1.99V)。 (2)用3 位数码管显示测量结果。 (3)直流电源输出的微弱信号作为该系统的输入信号。 (4)发挥部分:设计测量量程,进一步扩大测量量程和减小测量误差。 二、设计要求 1.在选择器件时,应考虑成本。 2.根据技术指标,通过分析计算确定电路和元器件参数。 3.画出电路原理图(元器件标准化,电路图规范化)。 三、实验要求 1.根据技术指标制定实验方案;验证所设计的电路,用multisim软件仿真。 2.进行实验数据处理和分析。 四、推荐参考资料 1. 童诗白,华成英主编.模拟电子技术基础.[M]北京:高等教育出版社,2006年 五、按照要求撰写课程设计报告

成绩评定表: 指导教师签字: 年月日

一.概述 电子秤是日常生活中常用的电子衡器,广泛应用于超市、大中型商场、物流配送中心。电子秤在结构和原理上取代了以杠杆平衡为原理的传统机械式称量工具。相比传统的机械式称量工具,电子秤具有称量精度高、装机体积小、应用范围广、易于操作使用等优点,在外形布局、工作原理、结构和材料上都是全新的计量衡器。目前市场上使用的称量工具,或者是结构复杂,或者运行不可靠,且成本高,精度稳定性不好,调整时间长,易损坏,维修困难,装机容量大,能源消耗大,生产成本高。而且目前市场上电子秤产品的整体水平不高,部分小型企业产品质量差且技术力量薄弱,设备不全,缺乏产品的开发能力,产品质量在低水平徘徊。因此,有针对性地开发出一套有实用价值的电子秤系统,从技术上克服上述诸多缺点,改善电子秤系统在应用中的不足之处,具有现实意义。 从20世纪70年代开始,在世界范围内掀起了一股“电子秤热”,各先进工业国都很重视传感技术和电子秤的研究、开发和生产。传感技术已经成为重要的现代科技领域,电子秤及其系统生产已经成为了重要的新兴行业。我国生产的电子秤产品主要是属于静态衡器电子秤,在计量要求、功能和外形上已经达到了国外同类产品的先进水平,而且在价格上又低于国外的同类产品,具有较好的出口潜力;但动态衡器电子秤,与国外的同类产品还有一定的差距,尤其是在动态稳定性上存在较大的距离,我国进口的电子秤大多数就是这类产品。我国的电子衡量器要想打入国际市场,参与国际竞争。这就要求企业必须以技术为先导、以质量为中心、以管理为基础,努力提高制造技术与制造工艺水平,稳定产品

电气综合控制系统课程设计

成都理工大学工程技术学院电气综合控制系统课程设计 院系:自动化工程系 专业:建筑电气与智能化 班级:2013建电1班 学号: 姓名: 同组成员: 指导老师:

完成时间:2015年12月25日

目录 概述 (1) 一、PLC的分类及特点 (1) 二、PLC的结构与工作原理 (1) 三、S7-200 PLC的硬件组成及指令系统 (2) 四、常用低压电器介绍 (3) 第一部分 (6) 课题一电动机带延时正反转控制实操模拟 (6) 课题二天塔之光控制模拟 (10) 课题三机械手控制模拟 (15) 第二部分 (20) 课题一电动机点动控制 (20) 课题二电动机自锁控制 (22) 课题三两台电动机顺序起、停控制 (24) 课题四三台电动机顺序起动控制 (26) 总结 (28)

概 述 一、PLC 的分类及特点 可编程控制器简称PLC (Programmable Logic Controller ),在1987年国际电工委员会(International Electrical Committee )颁布的PLC 标准草案中对PLC 做了如下定义:PLC 是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC 及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。 PLC 的分类:按产地分,可分为日系、欧美、韩台、大陆等;按点数分,可分为大型机、中型机及小型机等;按结构分,可分为整体式和模块式;按功能分,可分为低档、中档、高档三类。 PLC 的特点:1.可靠性高,抗干扰能力强2.配套齐全,功能完善,适用性强3.易学易用,深受工程技术人员欢迎3.系统的设计、建造工作量小,维护方便,容易改造4.体积小,重量轻,能耗低 二、PLC 的结构与工作原理 PLC 的结构:PLC 的类型繁多,功能和指令系统也不尽相同,但结构与工作原理则大同小异,通常由主机、输入/输出接口、电源、编程器扩展器接口和外部设备接口等几个主要部分组成。其组成框图如图1所示。 图1 整体式PLC 的组成框图 PLC 的工作原理:PLC 是采用“顺序扫描,不断循环”的方式进行工作的。即在PLC 运行时,CPU 根据用户按控制要求编制好并存于用户存储器中的程序,按指令步序号(或地址号)作周期性循环扫描,如无跳转指令,则从第一条指令开始逐条顺序执行用户程序,直至程序结束。然后重新返回第一条指令,开始下一轮新的扫描。在每次扫描过程中,还要完成对输入信号的采样和对输出状态的刷新等工作。 接触器电磁阀指示灯电源 电源 限位开关选择开关按钮

5.2 闭环电子控制系统的设计与应用(1)

如图所示是JN6201集成电路鸡蛋孵化温度控制器电路图,根据该原理图完成1~3题。 1.该电路图作为控制系统的控制(处理)部分是IC JN6201,当JN6201集成输出9脚长时间处于高电平,三极管V2处于截止状态,继电器释放,电热丝通电加热。 2.安装好调试时,先将温度传感器Rt1放入37℃水中,调整电位器Rp1,使继电器触点J-2吸合,再将温度传感器Rt2放入39℃水中,调整Rp2,使继电器触点J-2释放。 3.调试时发现,不管电位器Rp1和Rp2怎么调,继电器J 始终吸合,检查电路元器件安装和接线都正确,用万用表测三极管V2集电极电位,在不同的调试状态分别为2.8V 和0V ,可知电路发生故障的原因是( B ) A.二极管V6内部断路 B.三极管V3内部击穿(短路) C.电阻R4与三极管V3基极虚焊 D.继电器线圈内部短路 如图所示是运算放大器鸡蛋孵化温度控制器电路图,根据该原理完成4~6题。 4.该电路作为控制系统的输出部分是继电器J 、电热丝等,当电路中集成运放2脚的电位低于3脚的电位,三极管V3处于饱和状态,继电器J 吸合,电热丝通电加热。 上限 V2饱和导通时候Uce 电压降0.2V ,所以留下来给集电极2.8V ,截止时候0V

5.安装好后调试时,将温度传感器Rt 放入39℃水中,调R4,使电压U2=U3,集成运放输出端6脚的电压为0V ,电路实现39℃单点温度控制。 6.调试时发现,将温度传感器Rt 放入高于39℃水中,继电器吸合;将温度传感器Rt 放入低于39℃水中,继电器释放,出现该故障现象的原因可能是( A ) A.集成运放2脚与3脚接反 B.二极管V4接反 C.电阻R2断路 D.三极管V3损坏 如图所示是晶体管组成的水箱闭环电子控制系统电路,根据该原理图完成7~9题。 7.该电路作为控制系统被控对象的是水箱内的水,水箱的水位从a 点降到b 点的过程中,三极管V1处于饱和状态,三极管V2处于截止状态,继电器触点J-1处于吸合状态。 8.安装调试时,将三个水位探头按图中的高低放入空玻璃杯中,如果电路正常,电路通电后,继电器J 吸合;向玻璃杯中加水,到达a 点时,继电器J 释放;接着将玻璃杯中的水排出,水位降到b 点以上时,继电器J 释放;水位降到b 点以下时,继电器J 吸合。 9.调试时发现,玻璃杯中的水位在b 点以下时,继电器J 就吸合;水位加到b 点,继电器J 就释放。出现该故障现象的原因是( D ) A.继电器J 没用 B.三极管V1损坏 C.二极管V3接反 D.电路没接J-1触点,b 点直接接到了电阻R1 如图所示是555集成电路组成的水箱水位闭环电子控制系统电路图, (第4~6题) (第7~9题) R4 10k ?R5 4.7k R3 4.7k

电子秤的proteus仿真设计

基于单片机的实用电子秤的设计 1设计目的 单片机以其功能强,体积小,功耗低,易开发等很多优势被广泛应用。本次数字电子秤的设计就是需要通过选择合适的单片机来进行主控,再结合A/D转换、键盘、液晶显示、复位电路和蜂鸣器报警驱动电路的知识,同时在软件的设计过程中用到键盘扫描、液晶显示驱动、模数转换程序及汉字库的的设计,做到对我们所学数电、模电、单片机等知识的综合应用,最终实现所设计数字电子秤的各项功能,达到“巩固知识,培养技能,学而用之”的实践目的。通过这次课程设计,不但要提高我们在工作中的学习能力、探究能力、应用能力和动手能力,还要历练我们不畏艰难、不懂便学、有漏必补的认真严谨的工作态度,强化我们的社会适应力和社会竞争力,为走向社会提前试水,完善自我。 2设计的主要内容及要求 本设计主要完成一个简单实用数字电子秤的硬件电路部分和软件部分的设计。硬件部分包括数据采集、最小系统板、人机交互界面三大部分。其中,数据采集部分由压力传感器和A/D 转换部分组成;人机界面部分为键盘输入、液晶显示。软件部分应用单片机 C 语言实现了本设计的全部控制功能。本设计的数字电子秤要求能够显示商品的名称、价格、总量、总价等;能够自动完成商品的价格计算;能够储存几种简单商品的价格;能够具有超重提醒功能,一旦重量超出了自身重量的测量的范围,发出警报;同时对数字电子秤的测量范围要达到5KG,测量精度要求达到0.001。 3整体设计方案 整个数字电子秤电路由压力传感电路(ADC0832采样)、模数转换系统、单片机主控制电路、LM4229显示电路、蜂鸣器报警电路和4*4键盘电路6个部分

组成。如图3.1所示。 图3.1 基于单片机的实用电子秤组成框图 电子秤的测量过程实际是通过电阻应变传感器将被测物体的重量转换成电压信号输出,电压信号经过模数转换把模拟信号转换成数字量,数字量通过显示器显示重量。打开电源,数字电子秤开始工作。接通电源时,数字电子秤进入欢迎界面“欢迎使用电子秤设计······”。数字电子秤上MCU开始工作,键盘不断进行扫描,同时通过ADC0832也不断进行外部称量数据采样,LCD上显示“实用电子秤名称单价······”。当载物台上放有物体时,ADC0832立即将数据收集送给单片机处理。在键盘输入对应商品的代码编号,在240*128的LCD上可以看到相应商品的名称,单价,总重,总价格等信息。在称量的过程中,一旦物体自身的重量超出电子秤的称量范围,蜂鸣器立即会发出“滴滴····”警报声告诉工作人员,所称量物品超重。 4硬件电路设计 4.1整体电路图 数字电子秤采用AT89C51单片机作为微处理器,接口电路由晶振、LM4229显示电路、4*4按键电路、ADC0832电路、报警电路、存储器等组成。控制器系统的硬件电路如图4.1所示。 控制器系统硬件电路的工作过程是:打开电源时,MCU及各个部分电路开始工作,MCU调用内部存储数据对各部分接口电路初始化。200ms后LM4229进入欢迎界面,ADC0832不断对外部数据进行采样交给MCU进行处理,一旦有物品放入载物台,ADC0832立即发送中断请求,并将本次采集数据交给MCU

数字电子秤课程设计

数字电子秤 摘要:随着微电子技术的应用,市场上使用的传统称重工具已经满足不了人们的要求。为了改变传统称重工具在使用上存在的问题,在本设计中将智能化、自动化、人性化用在了电子秤重的控制系统中。本系统主要由单片机来控制,测量物体重量部分由称重传感器及A/D转换器组成,加上显示单元,此电子秤俱备了功能多、性能价格比高、功耗低、系统设计简单、使用方便直观、速度快、测量准确、自动化程度高等特点。本系统以AT89S52单片机为主控芯片,外围附以称重电路、显示电路、报警电路、键盘电路等构成智能称重系统电路板,从而实现自动称重系统的各种控制功能。可以说,此设计所完成的电子秤在很大程度上满足了应用需求。 关键词:AT89S52,称重传感器,A/D转换器,LED显示器 Abstract:With the application of micro-electronics technology, tradition ponderation instrument used in market has been not satisfaction with hunman requirements already. In order to make up for the traditional apparatus shortcoming, we improve the apparatus's control system with intelligence and automation. This system is mainly controlled by microcontroller, the section of height measurement accomplish by supersonic sensor, the section of weight measurement accomplish by weight sensor and A/D transformer, this apparatus have many characteristic such as having more function, consume less energy, small and move easily, low price, measure precisely, the speed is quick, automatic work without people and so on.The system is mainly controlled by the microcontroller AT89S52, the periphery is consist of the circuit of clock and calendar, the circuit of measure height and weight, the circuit of display and print, all of these comprise the circuit board of the intelligent apparatus of height and weight. It can achieve all function of the apparatus. Keywords: AT89S52,ponderation –sensor,A / D converter,LEDDisplay

电子设计大赛常用电路图

错误 !未定义书签。 图2 L293D 的电机驱动电路 图3 电源稳压电路 图4 降压电路

图3 降压斩波电路原理图 图4 电流检测模块

OS CI ICE_SDA ICE_SCK ICE_EN AV SS1OP I AGC M ICOUT DA C2DA C IOB12IOB11IOB15IOB13SLE EP IOB14VS S IOA12IOA14IOA11IOA10IOA15IOA13I O B 9I O B 10IOA9 I O B 5I O B 8I O B 7V C P I O A 8 V D D H I O A 6I O A 7V S S VS S V D D H VS S V R T A V S S 1 V D D _P I O B 2V C M I O A 3I O B 6I O B 1I O A 1V M I C I O B 0I O A 2M I C P R E S _B I O B 4 I O A 4 I O B 3I O A 0I O A 5VREF2V S S V D D H SPCE061A DA C1M ICN AV SS1VDD VS S VS S VS S OS CO +C29100u C31104 U1 OS C32O 12OS C32I 13XT EST 14VDD 15XICE 16XICECLK 17XICES DA 18VS S 19PV IN 20DA C121DA C222VREF223VS S 24AGC 25OP I 26M ICOUT 27M ICN 28PFUSE 29M I C P 33V C M 34V R T P A D 35V D D 36V M I C 37V S S 38I O A 041I O A 142I O A 243I O A 344I O A 445I O A 546I O A 647I O A 748V S S 49V S S 50V D D H 51V D D H 52I O A 8 53 N C 39N C 40NC 30NC 31NC 32 IOA9 54 IOA1055IOA1156IOA1257IOA1358IOA1459IOA1560XROM T 61VS S 62XS LEEP 63IOB1564IOB1465IOB1366IOB1267IOB1168PV PP 69V D D H 75 I O B 1076I O B 977NC 70NC 71NC 72NC 73NC 74I O B 878I O B 779I O B 680I O B 581I O B 41I O B 32I O B 23N C 82N C 83N C 84I O B 14I O B 05X R E S B 6V D D 7V C P 8V S S 9N C 10N C 11C8104C7104C18104 +C5 100u C28104 + C27100u +C17100u + C4100u V D D _A SPCE061A 芯片引脚电路图 电机驱动电路 图5 电源变换电路图

南理工控制系统综合课程设计-随机切换系统

随机切换系统的仿真

目录 摘要 (3) 1 引言 (4) 1.1 切换系统概述 (4) 1.1.1 切换系统工程背景 (4) 1.1.2 切换系统研究现状 (4) 1.1.3 切换系统的特点 (4) 1.2 问题描述与准备 (5) 2 一般随机线性切换系统 (5) 2.1 切换系统模型 (5) 2.1.1 模型形式 (5) 2.1.2 反馈控制律 (6) 2.2 仿真实例 (7) 3 对随机切换系统性能的研究 (8) 3.1 线性切换系统的能控性和能观性 (8) 3.2 线性切换系统的稳定性 (9) 4 随机切换系统的有趣现象探索 (10) 4.1 切换函数的选取 (10) 4.1.1 切换函数依赖状态变量 (10) 4.1.2 切换函数为随机数 (11) 4.2 系统结构的选取 (12) 4.3 时延函数的选取 (12) 4.4 多个子系统切换探究 (13) 4.2.1 改变初值 (14) 4.2.2 改变切换函数 (15) 5 总结和展望 (16) 参考文献 (17)

摘要 本文研究了随机切换控制系统的分析和仿真问题。首先介绍切换系统的发展背景、特点、研究内容、研究现状以及本文要讨论的问题;第二部分介绍随机切换系统的一般模型,用实例分析了切换系统的运动特性;第三部分简析了切换系统性能,并结合实例说明切换函数的存在对于稳定性的影响;第四部分通过改变系统参数、不同切换函数等情况,利用MATLAB/Simulink软件对系统进行仿真,给出了仿真程序、系统状态曲线,试图从各个系统状态曲线的不同现象的特点和系统性能中发现一些有趣的现象并进行分析;第五部分对全文作了总结并对随机切换系统进行展望。 关键词:随机切换系统simulink仿真状态响应曲线分析有趣现象探索

基于51单片机的电子秤的设计

学号: 毕业设计 G RADUATE T HESIS 论文题目:基于51单片机的电子秤的设计 学生姓名: 专业班级: 学院: 指导教师: 2017年06月12日

第一章功能说明 本设计系统以单片机AT89S52为控制核心,实现电子秤的基本控制功能。在设计系统时,为了更好地采用模块化设计法,分步设计了各个单元功能模块。 系统的硬件部分包括最小系统部分、数据采集部分、人机交互界面和系统电源四大部分。最小系统部分主要包括AT89S52和扩展的外部数据存储器;数据采集部分由称重传感器,信号的前期处理和A/D转换部分组成,包括运算放大器AD620和A/D转换器ICL7135;人机界面部分为键盘输入,四位LED数码显示器,可以直观的显示重量的具体数字以及方便的输入数据,使用方便;系统电源以LM317和LM337为核心设计电路以提供系统正常工作电源。 系统的软件部分应用单片机C语言进行编程,实现了该设计的全部控制功能。该电子秤可以实现基本的称重功能(称重范围为0~9.999Kg,重量误差不大于±0.005Kg),并发挥部分的显示购物清单的功能,可以设置日期和设定十种商品的单价,还具有超量程和欠量程的报警功能。 本系统设计结构简单,使用方便,功能齐全,精度高,具有一定的开发价值。称重传感器原理 即由非电量(质量或重量)转换成电量的转换元件,它是把支承力变换成电的或其它形式的适合于计量求值的信号所用的一种辅助手段。 按照称重传感器的结构型式不同,可以分直接位移传感器(电容式、电感式、电位计式、振弦式、空腔谐振器式等)和应变传感器(电阻应变式、声表面谐振式)或是利用磁弹性、压电和压阻等物理效应的传感器。 对称重传感器的基本要求是:输出电量与输入重量保持单值对应,并有良好的线性关系;有较高的灵敏度;对被称物体的状态的影响要小;能在较差的工作条件下工作;有较好的频响特性;稳定可靠。 传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。其中敏感元件指传感器中能直接感受被测量的部分,转换元件指传感器中能将敏感元件输出量转换为适于传输和测量的电信号部分。此外传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 称重传感器在电子秤中占有十分重要的位置,被喻为电子秤的心脏部件,它的性能好坏很大程度上决定了电子秤的精确度和稳定性。通常称重传感器产生的误差约占电子秤整机误差的50%~70%。若在环境恶劣的条件下(如高低温、湿热),传感器所占的误差比例就更大,因此,在人们设计电子秤时,正确地选用称重传感器非常重要。 称重传感器的种类很多,根据工作原理来分常用的有以下几种:电阻应变式、电容式、压磁式、压电式、谐振式等。(本设计采用的是电阻应变式)电阻应变式称重传感器包括两个主要部分,一个是弹性敏感元件:利用它将被测的重量转换为弹性体的应变值;另一个是电阻应变计:它作为传感元件将弹性体的应变,同步地转换为电阻值的变化。电阻应变片所感受的机械应变量一般

自动控制综合课程设计报告

题目:根据线性系统的频域分析法和串联校正方法的原理,编写MATLAB程序,要求针对被校正系统的特点以及校正目 标,实现串联校正装置结构的选择以及相应参数的计 算 1)在频域内进行系统设计,是一种间接设计方法,因为设计结果满足的是一些频域指标,而不是时域指标。然而,在频域内进行设计是一种简便的方法,在伯德图上虽不能严格地定量给出系统的动态性能。但却能方便地根据频域指标校正装置的参数。 2)频域设计的这种简便性,是由于开环系统的频率特性与闭环系统的时间响应有关。开环频域特性的低频段表征了闭环系统的稳态性能;中频段表征了闭环系统的动态性能;高频段表征了闭环系统的复杂性和噪声抑制性能。 3)因此,用频域法设计控制系统的实质,就是在系统中加入频率特性形状合适的校正装置,使开环系统频率特性形状变为所期望的形状:低频段增益充分大,以保证稳态误差要求;中频段对数幅频特性斜率一般为-20db/dec,并占据充分的频带,以保证具备适当的相角裕度;高频段增益尽快减小,以消弱噪声影响。 4)串联校正就是将校正装置G(s)与待校正系统在主调节回路里串联连接。控制环节的设计的实质就是,当系统的静态、动态性能指标偏离要求时,在系统的适当位置加入适宜的特殊机构,通过调节它们的参数,从而使系统的整体特性发生改变,最终达到符合要求的性能指标。

1 算法实现流程图

2 伯德图超前校正的设计 2.1 伯德图超前校正设计的方法 1)超前校正环节的两个转折频率应分别设在系统截止频率的两侧。因为超 前校正环节相频特性曲线具有正相移,幅频特性曲线具有正斜率,所以校正后系统伯德图的低频段不变,而其截止频率和相角裕度比原系统的大,这说明校正后系统的快速性和稳定性得到提高。 2)然而,这两者是一对矛盾,不可能同时达到最大,总是顾此失彼。一般, 我们在选用超前校正时,以提高截止频率为主要目的。 3)利用系统频率响应性能可以试凑地解决超前滞后类校正器的设计问题, 但这样很耗时,有时还不能得出期望的结果。本次本人用基于校正后系统剪切频率和相位裕度设定的算法来设计超前校正。 2.2 超前校正设计的步骤 1)根据稳态误差要求,确定开环增益k 。 2)利用已确定的开环增益,计算待校正系统的相角裕度。 调用伯德函数可以轻松求出。 3) 根据幅值关系计算出α。 由超前校正系统的伯德图可知,在最大相角处,幅值增益为10lg α由此 可算出α。 4)计算零、极点z 、p 的值 由 c m ωω=== 得p ω=、/z p α= 5)得出校正网络传递函数、并作校正后系统的伯德图,得相角裕度。 2.3 超前校正设计的程序 [mag,phase,w]=bode(sys0); m1=spline(w,mag,wc);

基于51单片机的电子秤的设计

学号: G RADUATE T HESIS 论文题目:基于51 单片机的电子秤的设计 学生姓名: 专业班级: 学院: 指导教师: 2017 年06 月12 日

第一章功能说明 本设计系统以单片机AT89S52为控制核心,实现电子秤的基本控制功能。在设计系统时,为了更好地采用模块化设计法,分步设计了各个单元功能模块。 系统的硬件部分包括最小系统部分、数据采集部分、人机交互界面和系统电源四大部分。最小系统部分主要包括AT89S52和扩展的外部数据存储器;数据采集部分由称重传感器,信号的前期处理和A/D 转换部分组成,包括运算放大器AD620和A/D 转换器ICL7135;人机界面部分为键盘输入,四位LED数码显示器,可以直观的显示重量的具体数字以及方便的输入数据,使用方便;系统电源以LM317和LM337为核心设计电路以提供系统正常工作电源。 系统的软件部分应用单片机C 语言进行编程,实现了该设计的全部控制功能。该电子秤可以实现基本的称重功能(称重范围为0~9.999Kg ,重量误差不 大于± 0.005Kg), 并发挥部分的显示购物清单的功能,可以设置日期和设定十种商品的单价,还具有超量程和欠量程的报警功能。 本系统设计结构简单,使用方便,功能齐全,精度高,具有一定的开发价值。 称重传感器原理 即由非电量(质量或重量)转换成电量的转换元件,它是把支承力变换成电的或其它形式的适合于计量求值的信号所用的一种辅助手段。 按照称重传感器的结构型式不同,可以分直接位移传感器(电容式、电感式、电位计式、振弦式、空腔谐振器式等)和应变传感器(电阻应变式、声表面谐振式)或是利用磁弹性、压电和压阻等物理效应的传感器。对称重传感器的基本要求是:输出电量与输入重量保持单值对应,并有良好的线性关系;有较高的灵敏度;对被称物体的状态的影响要小;能在较差的工作条件下工作;有较好的频响特性;稳定可靠。 传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成” 。其中敏感元件指传感器中能直接感受被测量的部分,转换元件指传感器中能将敏感元件输出量转换为适于传输和测量的电信号部分。此外传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 称重传感器在电子秤中占有十分重要的位置,被喻为电子秤的心脏部件,它的性能好坏很大程度上决定了电子秤的精确度和稳定性。通常称重传感器产生的误差约占电子秤整机误差的50%~70%。若在环境恶劣的条件下(如高低温、湿热),传感器所占的误差比例就更大,因此,在人们设计电子秤时,正确地选用称重传感器非常重要。 称重传感器的种类很多,根据工作原理来分常用的有以下几种:电阻应变式、电容式、压磁式、压电式、谐振式等。(本设计采用的是电阻应变式) 电阻应变式称重传感器包括两个主要部分,一个是弹性敏感元件:利用它将

基于单片机的数字电子称设计

基于单片机的数字电子称设计 专业:通信工程 学生:王帅指导老师:王珊 摘要 在科技水平高速发展的现代社会,称重方面技术也有必须跟上时代进步的步伐。目前而言,市场交易中,称重工具通常采用台式电子秤。然而,台式电子秤具有一定的局限性:体积大、成本高、对电源有特殊要求以及携带上的不变。目前,人们生活中常见的手拿式迷你秤的使用原理是基于杆秤抑或弹簧通过弹性形变再利用胡克定律转换而进行测量的,即日常携带的小型秤为弹簧秤,同时,精度不高并且已不在国家测量规范内认可的杆秤依然没有退出贸易集市。但经济形势的转变和容量的急剧上升,人们迫切的需要一种测量精确度高、便于携带并且成本范围合理且自主性强的电子秤 本次课题研究意在根据市场需求对智能电子秤进行开发研究,论文的展开以本次设计电子秤所选用的工作方式为出发点,文中分析表明误差分配会造成设备产生误差,并规划了电路方面的设计步骤及软件操作方案。 本次设计研究的智能电子秤的构成基本分为6大部分,包括电源、ADC、称重传感器、单片机、输出输入工具/开关、数值显示器。而对于智能电子秤基础性数据标准,其精度需达到Ⅲ级,重量适用范围不超过15千克,以5g为一刻度进行换算。而该电子秤有五大基本功能,它们分别是自我核算、去皮、计算交易金额、单价输入统计,还有超载提醒。电子秤自带睡眠功能,最大程度得控制自身电量的使用情况,其功能自动启用的前提是电子秤未被使用的时间超过5min。 智能电子秤的优势在于其空间占用量不多,精度较高,使用方便简单,受众人群高,工作效率高,同时还能完成对称重物的价格计算,因为其具有的高性能,智能电子秤能同时保证交易双方的贸易质量和效率,其未来的发展空间也十分广阔。 关键词:数字电子称称重传感器 A/D转换器 8051单片机误差分析

电子电路设计的一般方法和步骤

电子电路设计的一般方法与步骤 一、总体方案的设计与选择 1.方案原理的构想 (1)提出原理方案 一个复杂的系统需要进行原理方案的构思,也就是用什么原理来实现系统要求。因此,应对课题的任务、要求和条件进行仔细的分析与研究,找出其关键问题是什么,然后根据此关键问题提出实现的原理与方法,并画出其原理框图(即提出原理方案)。提出原理方案关系到设计全局,应广泛收集与查阅有关资料,广开思路,开动脑筋,利用已有的各种理论知识,提出尽可能多的方案,以便作出更合理的选择。所提方案必须对关键部分的可行性进行讨论,一般应通过试验加以确认。 (2)原理方案的比较选择 原理方案提出后,必须对所提出的几种方案进行分析比较。在详细的总体方案尚未完成之前,只能就原理方案的简单与复杂,方案实现的难易程度进行分析比较,并作出初步的选择。如果有两种方案难以敲定,那么可对两种方案都进行后续阶段设计,直到得出两种方案的总体电路图,然后就性能、成本、体积等方面进行分析比较,才能最后确定下来。 2.总体方案的确定 原理方案选定以后,便可着手进行总体方案的确定,原理方案只着眼于方案的原理,不涉及方案的许多细节,因此,原理方案框图中的每个框图也只是原理性的、粗略的,它可能由一个单元电路构成,亦可能由许多单元电路构成。为了把总体方案确定下来,必须把每一个框图进一步分解成若干个小框,每个小框为一个较简单的单元电路。当然,每个框图不宜分得太细,亦不能分得太粗,太细对选择不同的单元电路或器件带来不利,并使单元电路之间的相互连接复杂化;但太粗将使单元电路本身功能过于复杂,不好进行设计或选择。总之,

应从单元电路和单元之间连接的设计与选择出发,恰当地分解框图。 二、单元电路的设计与选择 1.单元电路结构形式的选择与设计 按已确定的总体方案框图,对各功能框分别设计或选择出满足其要求的单元电路。因此,必须根据系统要求,明确功能框对单元电路的技术要求,必要时应详细拟定出单元电路的性能指标,然后进行单元电路结构形式的选择或设计。 满足功能框要求的单元电路可能不止一个,因此必须进行分析比较,择优选择。 2.元器件的选择 (1)元器件选择的一般原则 元器件的品种规格十分繁多,性能、价格和体积各异,而且新品种不断涌现,这就需要我们经常关心元器件信息和新动向,多查阅器件手册和有关的科技资料,尤其要熟悉一些常用的元器件型号、性能和价格,这对单元电路和总体电路设计极为有利。选择什么样的元器件最合适,需要进行分析比较。首先应考虑满足单元电路对元器件性能指标的要求,其次是考虑价格、货源和元器件体积等方面的要求。 (2)集成电路与分立元件电路的选择问题 随着微电子技术的飞速发展,各种集成电路大量涌现,集成电路的应用越来越广泛。今天,一块集成电路常常就是具有一定功能的单元电路,它的性能、体积、成本、安装调试和维修等方面一般都优于由分立元件构成的单元电路。 优先选用集成电路不等于什么场合都一定要用集成电路。在某些特殊情况,如:在高频、宽频带、高电压、大电流等场合,集成电路往往还不能适应,有时仍需采用分立元件。另外,对一些功能十分简单的电路,往往只需一只三极管或一只二极管就能解决问题,就不必选用集成电路。

《自动控制系统》课程设计任务书1201.1202

《电力拖动自动控制系统》课程设计 计划、任务与指导书 一、课程设计的目的 通过电力拖动自动控制系统的设计,了解一般交直流调速系统设计过程及设计要求,并巩固交直流调速系统课程的所学内容,初步具备设计电力拖动自动控制系统的能力。为今后从事相关技术工作打下必要的基础。 二、课程设计的要求 1、熟悉交直流调速系统设计的一般设计原则,设计内容以及设计程序的要求。 2、掌握控制系统设计制图的基本规范,熟练掌握电气控制部分的新图标。 3、学会收集、分析、运用自动控制系统设计的有关资料和数据。 4、培养独立工作能力、创造能力及综合运用专业知识解决实际工程技术问题的能力。 三、课程设计的内容 完成某一给定课题任务,按给出的工艺要求、运用变频调速对系统进行控制。四、进度安排:共1.5周 本课程设计时间共1.5周,进度安排如下: 1、设计准备,熟悉有关设计规范,熟悉课题设计要求及内容。(1.5天) 2、分析控制要求、控制原理,设计控制方案。(1.5天) 3、绘制控制原理图、控制流程图、端子接线图。(2天) 4、编制程序、梯形图设计、程序调试说明。(1.5天) 5、整理图纸、写课程设计报告。(1.5天) 五、课程设计报告内容 完成下列课题的课程设计及报告(课题工艺要求由课程设计任务书提供) 1.退火炉温度控制系统 2.变频液位自动控制系统设计 3.变频流量自动控制系统设计 4.变频供水系统设计 5.变频调速恒张力控制系统设计 6.变频器在印染机械多电机同步调速系统中应用 7.线缆设备恒张力变频器控制设计 8.空气压缩机变频调速的设计 六、参考书 1.陈伯时主编电力拖动自动控制系统(第二版), 机械工业出版社1992 2.陈伯时, 陈敏逊. 交流调速系统. 机械工业出版社1998 3.张燕宾著SPWM变频调速应用技术机械工业出版社1997 4.王兆义主编2《可编程控制器教程》主编 5.徐世许主编2《可编程控制器教程原理、应用、网络》主编 6.《工厂常用电气设备手册》(第2版)上、下册中国电力出版社

电子称设计(完整版)

课程设计说明书 学生姓名:学号: 学院:信息与通信工程学院 专业:电子信息科学与技术 题目:电子综合应用实践: 数字电子秤设计 指导教师:职称: 2010 年 1 月 4 日

课程设计任务书 09/10 学年第一学期 学院:信息与通信工程学院 专业:电子信息科学与技术 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 课程设计题目:电子综合应用实践: 数字电子秤设计 起迄日期:2010年1月4 日~2010年1月15日指导教师: 系主任: 下达任务书日期: 2010 年1月 4 日

1.设计目的: 针对电子线路课程要求,对学生进行实用型电子线路设计、安装、调试等各环节的综合性训练,培养学生运用课程中所学的理论与实践紧密结合,独立地解决实际问题的能力。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 设计内容:设计一个数字电子秤,组装及调试各单元电路及系统电路,用数字表显示称重结果。 设计要求及技术指标: ①测量范围:0~1.999kg、0~19.99kg、0~199.9kg; ②用数字显示被测重量,小数点位置对应不同的量程显示。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 1 电路原理图. 2 仿真结果. 3 课程设计说明书.

4.主要参考文献: 要求按国标GB 7714—87《文后参考文献著录规则》书写,例: 1 傅承义,陈运泰,祁贵中.地球物理学基础.北京:科学出版社,1985 (5篇以上) 5.设计成果形式及要求: 1电路原理图 2课程设计说明书 6.工作计划及进度: 2010年1 月4 日~ 1月7 日了解设计题目,查找资料、学习相关软件; 1月8日~ 1月13 日确定各题目要求计算相关参数,具体设计; 1月14日~ 1月15 日整理设计说明书,答辩。 系主任审查意见: 签字: 年月日

从EMC角度考虑常用电路设计及PCB设计

从EMC角度考虑常用电路设计及PCB设计 A.电源电路 电源电路设计中,功能性设计主要考虑温升和纹波大小。温升大小由结构 很关键:大电容一般采用低ESR电容,小电容采用0.1UF和1000pF共用。电源电路设计中,电磁兼容设计是关键设计。主要涉及的电磁兼容设计有:传导发射和浪涌。 传导发射设计一般采用输入滤波器方式。外部采购的滤波器内部电路一般采用下列电路: Cx1和Cx2为X电容,防止差模干扰。差模干扰大时,可增加其值进行抑制;Cy1和Cy2为Y电容,防止共模干扰。共模干扰大时,可增加其值进行抑制。需要注意的是,如自行设计滤波电路,Y电容不可设计在输入端,也不可双端都加Y电容。 浪涌设计一般采用压敏电阻。差模可根据电源输入耐压选取;共模需要电源输入耐压和产品耐压测试综合考虑。 当浪涌能量大时,也可考虑压敏电阻(或TVS)与放电管组合设计。

1 电源输入部分的EMC设计 应遵循①先防护后滤波;②CLASS B规格要求的电源输入端推荐两级滤波电路,且尽量靠近输入端;③在电源输入端滤波电路前和滤波电路中无采样电路和其它分叉电路;如果一定有采样电路,采样电路应额外增加了足够的滤波电路。 原因说明: ①先防护后滤波: 第一级防护器件应在滤波器件之前,防止滤波器件在浪涌、防雷测试中损坏,或导致滤波参数偏离,第二级保护器件可以放在滤波器件的后面;选择防护器件时,还应考虑个头不要太大,防止滤波器件在PCB布局时距离接口太远,起不到滤波效果。 ②CLASS B规格要求的电源输入端推荐两级滤波电路,且尽量靠近输入端:CLASSB要求比CLASS A要求小10dB,即小3倍,所以应有两级滤波电路; CLASSA规格要求至少一级滤波电路;所谓一级滤波电路指包含一级共模电感的滤波电路。

基于Arduino的一种电子显示屏控制系统设计剖析

《学术论文写作》课程论文 基于Arduino的一种电子显示屏控制 系统设计 姓名: 学院(系): 专业:自动化 班级: 学号:

基于arduino的一种简易电子显示屏设计 摘要:LED显示屏因其工作稳定可靠、寿命长、亮度高等优点,在许多场合中应用广泛。加强显示屏控制系统的可靠性研究意义重大。基于Arduino单片机,研究设计了一种新的电子显示屏控制系统。以PC机为上位机,向单片机发送显示代码和控制命令,单片机控制显示驱动模块驱动LED点阵显示屏进行扫描显示。PC机与单片机之间的通信采用ISP下载编程器来实现。利用按键模块通过单片机对显示屏的显示内容进行翻页和更新控制。 关键词:显示屏;可靠性;Arduino;控制 The Design of Electronic Display Control System based on Arduino Abstract: LED displays is widely used in many occasions because of its a dvantages such as stable, reliable and long life. It is of great significance to strengthen the research of the reliability of electronic display control system. Here introduces a new kind of el ectronic display control system based on Arduino microcontroller. System uses PC as uppe r computer.PC send control commands and display code it has stored to the Arduino microcontr oller. And arduino microcontroller receives and deals with control command and display cod e which are from PC. Then drives scan display o f the display screen. Communication betwee n PC and the microcomputer can be implemented by using ISP download programmer. At last, page and update the content which is displayed of the billboard by using the key module an d all is based on th e single chip microcomputer. Keywords: electronic display; reliability; Arduino microcontroller 1.系统整体设计 本系统硬件的设计采用模块化设计,既能满足模块本身功能又要能够和整个系统兼容,如图1.1所示。系统硬件由Arduino控制系统,显示扫描电路,显示屏,键盘扫描电路及数据传输部分以及上位机六部分组成。上位机通过数据传输部分向MCU系统发送显示代码和控制命令,MCU系统执行显示命令并将显示代码处理后控制显示部分的显示内容和显示方式。

相关主题
文本预览
相关文档 最新文档