当前位置:文档之家› 半导体器件基本结构

半导体器件基本结构

常用半导体器件复习题

第1章常用半导体器件 一、判断题(正确打“√”,错误打“×”,每题1分) 1.在N型半导体中,如果掺入足够量的三价元素,可将其改型成为P型半导体。()2.在N型半导体中,由于多数载流子是自由电子,所以N型半导体带负电。()3.本征半导体就是纯净的晶体结构的半导体。() 4.PN结在无光照、无外加电压时,结电流为零。() 5.使晶体管工作在放大状态的外部条件是发射结正偏,且集电结也是正偏。()6.晶体三极管的β值,在任何电路中都是越大越好。( ) 7.模拟电路是对模拟信号进行处理的电路。( ) 8.稳压二极管正常工作时,应为正向导体状态。( ) 9.发光二极管不论外加正向电压或反向电压均可发光。( ) 10.光电二极管外加合适的正向电压时,可以正常发光。( ) 一、判断题答案:(每题1分) 1.√; 2.×; 3.√; 4.√; 5.×; 6.×; 7.√; 8.×; 9.×; 10.×。

二、填空题(每题1分) 1.N型半导体中的多数载流子是电子,P型半导体中的多数载流子是。2.由于浓度不同而产生的电荷运动称为。 3.晶体二极管的核心部件是一个,它具有单向导电性。 4.二极管的单向导电性表现为:外加正向电压时,外加反向电压时截止。5.三极管具有放大作用的外部条件是发射结正向偏置,集电结偏置。6.场效应管与晶体三极管各电极的对应关系是:场效应管的栅极G对应晶体三极管的基极b,源极S对应晶体三极管,漏极D对应晶体三极管的集电极c。7.PN结加正向电压时,空间电荷区将。 8.稳压二极管正常工作时,在稳压管两端加上一定的电压,并且在其电路中串联一支限流电阻,在一定电流围表现出稳压特性,且能保证其正常可靠地工作。 9.晶体三极管三个电极的电流I E 、I B 、I C 的关系为:。 10.发光二极管的发光颜色决定于所用的,目前有红、绿、蓝、黄、橙等颜色。 二、填空题答案:(每题1分) 1.空穴 2.扩散运动 3.PN结 4.导通 5.反向 6.发射机e 7.变薄 8.反向 9.I E =I B +I C 10.材料 三、单项选择题(将正确的答案题号及容一起填入横线上,每题1分)

半导体器件基础测试题

第一章半导体器件基础测试题(高三) 姓名班次分数 一、选择题 1、N型半导体是在本征半导体中加入下列物质而形成的。 A、电子; B、空穴; C、三价元素; D、五价元素。 2、在掺杂后的半导体中,其导电能力的大小的说法正确的是。 A、掺杂的工艺; B、杂质的浓度: C、温度; D、晶体的缺陷。 3、晶体三极管用于放大的条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 4、晶体三极管的截止条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 5、晶体三极管的饱和条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 6、理想二极管组成的电路如下图所示,其AB两端的电压是。 A、—12V; B、—6V; C、+6V; D、+12V。 7、要使普通二极管导通,下列说法正确的是。 A、运用它的反向特性; B、锗管使用在反向击穿区; C、硅管使用反向区域,而锗管使用正向区域; D、都使用正向区域。 8、对于用万用表测量二极管时,下列做法正确的是。 A、用万用表的R×100或R×1000的欧姆,黑棒接正极,红棒接负极,指针偏转; B、用万用表的R×10K的欧姆,黑棒接正极,红棒接负极,指针偏转; C、用万用表的R×100或R×1000的欧姆,红棒接正极,黑棒接负极,指针偏转; D、用万用表的R×10,黑棒接正极,红棒接负极,指针偏转; 9、电路如下图所示,则A、B两点的电压正确的是。 A、U A=3.5V,U B=3.5V,D截止;

半导体器件物理 试题库

半导体器件试题库 常用单位: 在室温(T = 300K )时,硅本征载流子的浓度为 n i = 1.5×1010/cm 3 电荷的电量q= 1.6×10-19C μn =1350 2cm /V s ? μp =500 2 cm /V s ? ε0=8.854×10-12 F/m 一、半导体物理基础部分 (一)名词解释题 杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消 的作用,通常称为杂质的补偿作用。 非平衡载流子:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度, 额外产生的这部分载流子就是非平衡载流子。 迁移率:载流子在单位外电场作用下运动能力的强弱标志,即单位电场下的漂移速度。 晶向: 晶面: (二)填空题 1.根据半导体材料内部原子排列的有序程度,可将固体材料分为 、多晶和 三种。 2.根据杂质原子在半导体晶格中所处位置,可分为 杂质和 杂质两种。 3.点缺陷主要分为 、 和反肖特基缺陷。 4.线缺陷,也称位错,包括 、 两种。 5.根据能带理论,当半导体获得电子时,能带向 弯曲,获得空穴时,能带 向 弯曲。 6.能向半导体基体提供电子的杂质称为 杂质;能向半导体基体提供空穴的杂 质称为 杂质。 7.对于N 型半导体,根据导带低E C 和E F 的相对位置,半导体可分为 、弱简 并和 三种。 8.载流子产生定向运动形成电流的两大动力是 、 。

9.在Si-SiO 2系统中,存在 、固定电荷、 和辐射电离缺陷4种基 本形式的电荷或能态。 10.对于N 型半导体,当掺杂浓度提高时,费米能级分别向 移动;对于P 型半 导体,当温度升高时,费米能级向 移动。 (三)简答题 1.什么是有效质量,引入有效质量的意义何在?有效质量与惯性质量的区别是什么? 2.说明元素半导体Si 、Ge 中主要掺杂杂质及其作用? 3.说明费米分布函数和玻耳兹曼分布函数的实用范围? 4.什么是杂质的补偿,补偿的意义是什么? (四)问答题 1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最高工作温度各不相同? 要获得在较高温度下能够正常工作的半导体器件的主要途径是什么? (五)计算题 1.金刚石结构晶胞的晶格常数为a ,计算晶面(100)、(110)的面间距和原子面密度。 2.掺有单一施主杂质的N 型半导体Si ,已知室温下其施主能级D E 与费米能级F E 之差为 1.5B k T ,而测出该样品的电子浓度为 2.0×1016cm -3,由此计算: (a )该样品的离化杂质浓度是多少? (b )该样品的少子浓度是多少? (c )未离化杂质浓度是多少? (d )施主杂质浓度是多少? 3.室温下的Si ,实验测得430 4.510 cm n -=?,153510 cm D N -=?, (a )该半导体是N 型还是P 型的? (b )分别求出其多子浓度和少子浓度。 (c )样品的电导率是多少? (d )计算该样品以本征费米能级i E 为参考的费米能级位置。 4.室温下硅的有效态密度1932.810 cm c N -=?,1931.110 cm v N -=?,0.026 eV B k T =,禁带 宽度 1.12 eV g E =,如果忽略禁带宽度随温度的变化

半导体基础知识和半导体器件工艺

半导体基础知识和半导体器件工艺 第一章半导体基础知识 通常物质根据其导电性能不同可分成三类。第一类为导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其它一些物体。第二类为绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。第三类为半导体,其导电能力介于导体和绝缘体之间,如四族元素Ge锗、Si硅等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。 物体的导电能力可以用电阻率来表示。电阻率定义为长1厘米、截面积为1平方厘米的物质的电阻值,单位为欧姆*厘米。电阻率越小说明该物质的导电性能越好。通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。 半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由于它的导电能力介于导体和绝缘体之间,而是由于半导体具有以下的特殊性质: (1) 温度的变化能显著的改变半导体的导电能力。当温度升高时,电阻率会降低。比如Si在200℃时电阻率比室温时的电阻率低几千倍。可以利用半导体的这个特性制成自动控制用的热敏组件(如热敏电阻等),但是由于半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身产生的热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。 (2) 半导体在受到外界光照的作用是导电能力大大提高。如硫化镉受到光照后导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。 (3) 在纯净的半导体中加入微量(千万分之一)的其它元素(这个过程我们称为掺杂),可使他的导电能力提高百万倍。这是半导体的最初的特征。例如在原子密度为5*1022/cm3的硅中掺进大约5X1015/cm3磷原子,比例为10-7(即千万分之一),硅的导电能力提高了几十万倍。 物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。当原子的外层电子缺少后,整个原子呈现正电,缺少电子的地方产生一个空位,带正电,成为电洞。物体导电通常是由电子和电洞导电。前面提到掺杂其它元素能改变半导体的导电能力,而参与导电的又分为电子和电洞,这样掺杂的元素(即杂质)可分为两种:施主杂质与受主杂质。将施主杂质加到硅半导体中后,他与邻近的4个硅原子作用,产生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。这时的半导体叫N型半导体。施主杂质主要为五族元素:锑、磷、砷等。 将施主杂质加到半导体中后,他与邻近的4个硅原子作用,产生许多电洞参与导电,这时的半导体叫p型半导体。受主杂质主要为三族元素:铝、镓、铟、硼等。电洞和电子都是载子,在相同大小的电场作用下,电子导电的速度比电洞快。电洞和电子运动速度的大小用迁移率来表示,迁移率愈大,截流子运动速度愈快。假如把一些电洞注入到一块N型半导体中,N型就多出一部分少数载子――电洞,但由于N型半导体中有大量的电子存在,当电洞和电子碰在一起时,会发

半导体器件物理及工艺

?平时成绩30% + 考试成绩70% ?名词解释(2x5=10)+ 简答与画图(8x10=80)+ 计算(1x10=10) 名词解释 p型和n型半导体 漂移和扩散 简并半导体 异质结 量子隧穿 耗尽区 阈值电压 CMOS 欧姆接触 肖特基势垒接触 简答与画图 1.从能带的角度分析金属、半导体和绝缘体之间的区别。 2.分析pn结电流及耗尽区宽度与偏压的关系。 3.什么是pn结的整流(单向导电)特性?画出理想pn结电流-电压曲线示意图。 4.BJT各区的结构有何特点?为什么? 5.BJT有哪几种工作模式,各模式的偏置情况怎样? 6.画出p-n-p BJT工作在放大模式下的空穴电流分布。 7.MOS二极管的金属偏压对半导体的影响有哪些? 8.MOSFET中的沟道是多子积累、弱反型还是强反型?强反型的判据是什么? 9.当VG大于VT且保持不变时,画出MOSFET的I-V曲线,并画出在线性区、非线 性区和饱和区时的沟道形状。 10.MOSFET的阈值电压与哪些因素有关? 11.半导体存储器的详细分类是怎样的?日常使用的U盘属于哪种类型的存储器,画出 其基本单元的结构示意图,并简要说明其工作原理。 12.画出不同偏压下,金属与n型半导体接触的能带图。 13.金属与半导体可以形成哪两种类型的接触?MESFET中的三个金属-半导体接触分 别是哪种类型? 14.对于一耗尽型MESFET,画出VG=0, -0.5, -1V(均大于阈值电压)时的I-V曲线示 意图。 15.画出隧道二极管的I-V曲线,并画出电流为谷值时对应的能带图。 16.两能级间的基本跃迁过程有哪些,发光二极管及激光器的主要跃迁机制分别是哪 种? 计算 Pn结的内建电势及耗尽区宽度

半导体器件复习题与参考答案

第二章 1 一个硅p -n 扩散结在p 型一侧为线性缓变结,a=1019cm -4,n 型一侧为均匀掺杂,杂质浓度为3×1014cm -3,在零偏压下p 型一侧的耗尽层宽度为0.8μm,求零偏压下的总耗尽层宽度、建电势和最大电场强度。 解:)0(,22≤≤-=x x qax dx d p S εψ )0(,2 2n S D x x qN dx d ≤≤-=εψ 0),(2)(22 ≤≤--=- =E x x x x qa dx d x p p S εψ n n S D x x x x qN dx d x ≤≤-=- =E 0),()(εψ x =0处E 连续得x n =1.07μm x 总=x n +x p =1.87μm ?? =--=-n p x x bi V dx x E dx x E V 0 516.0)()( m V x qa E p S /1082.4)(25 2max ?-=-= ε,负号表示方向为n 型一侧指向p 型一侧。 2 一个理想的p-n 结,N D =1018cm -3,N A =1016cm -3,τp=τn=10-6s ,器件的面积为1.2×10-5cm -2,计算300K 下饱和电流的理论值,±0.7V 时的正向和反向电流。 解:D p =9cm 2/s ,D n =6cm 2/s cm D L p p p 3103-?==τ,cm D L n n n 31045.2-?==τ n p n p n p S L n qD L p qD J 0 + = I S =A*J S =1.0*10-16A 。 +0.7V 时,I =49.3μA , -0.7V 时,I =1.0*10-16A 3 对于理想的硅p +-n 突变结,N D =1016cm -3,在1V 正向偏压下,求n 型中性区存

1章 常用半导体器件题解

第一章 常用半导体器件 自 测 题 一、判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)在N 型半导体中如果掺入足够量的三价元素,可将其改型为P 型半导体。( √ ) (2)因为N 型半导体的多子是自由电子,所以它带负电。( × ) (3)PN 结在无光照、无外加电压时,结电流为零。( √ ) (4)处于放大状态的晶体管,集电极电流是多子漂移运动形成的。 ( ×) (5)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R G S 大的特点。( ) (6)若耗尽型N 沟道MOS 管的U G S 大于零,则其输入电阻会明显变小。( ) 解:(1)√ (2)× (3)√ (4)× (5)√ (6)× 二、选择正确答案填入空内。 (1)PN 结加正向电压时,空间电荷区将 A 。 A. 变窄 B. 基本不变 C. 变宽(加上正向电压时,内电场被削弱,空间电荷区变窄) (2)设二极管的端电压为U ,则二极管的电流方程是 C 。 A. I S e U B. T U U I e S C. )1e (S -T U U I (3)稳压管的稳压区是其工作在 C 。 A. 正向导通 B.反向截止 C.反向击穿 (4)当晶体管工作在放大区时,发射结电压和集电结电压应为 B 。 A. 前者反偏、后者也反偏 B. 前者正偏、后者反偏 C. 前者正偏、后者也正偏 (5)U G S =0V 时,能够工作在恒流区的场效应管有 。 A. 结型管 B. 增强型MOS 管 C. 耗尽型MOS 管 解:(1)A (2)C (3)C (4)B (5)A C

三、写出图T1.3所示各电路的输出电压值,设二极管导通电压U D=0.7V。 图T1.3 解:U O1≈1.3V,U O2=0,U O3≈-1.3V,U O4≈2V,U O5≈1.3V, U O6≈-2V。 四、已知稳压管的稳压值U Z=6V,稳定电流的最小值I Z m i n=5mA。求图T1.4所示电路中U O1和U O2各为多少伏。 图T1.4 解:U O1=6V,U O2=5V。

半导体器件工艺与物理期末必考题材料汇总综述

半导体期末复习补充材料 一、名词解释 1、准费米能级 费米能级和统计分布函数都是指的热平衡状态,而当半导体的平衡态遭到破坏而存在非平衡载流子时,可以认为分就导带和价带中的电子来讲,它们各自处于平衡态,而导带和价带之间处于不平衡态,因而费米能级和统计分布函数对导带和价带各自仍然是适用的,可以分别引入导带费米能级和价带费米能级,它们都是局部的能级,称为“准费米能级”,分别用E F n、E F p表示。 2、直接复合、间接复合 直接复合—电子在导带和价带之间直接跃迁而引起电子和空穴的直接复合。 间接复合—电子和空穴通过禁带中的能级(复合中心)进行复合。 3、扩散电容 PN结正向偏压时,有空穴从P区注入N区。当正向偏压增加时,由P区注入到N区的空穴增加,注入的空穴一部分扩散走了,一部分则增加了N区的空穴积累,增加了载流子的浓度梯度。在外加电压变化时,N扩散区内积累的非平衡空穴也增加,与它保持电中性的电子也相应增加。这种由于扩散区积累的电荷数量随外加电压的变化所产生的电容效应,称为P-N结的扩散电容。用CD表示。 4、雪崩击穿 随着PN外加反向电压不断增大,空间电荷区的电场不断增强,当超过某临界值时,载流子受电场加速获得很高的动能,与晶格点阵原子发生碰撞使之电离,产生新的电子—空穴对,再被电场加速,再产生更多的电子—空穴对,载流子数目在空间电荷区发生倍增,犹如雪崩一般,反向电流迅速增大,这种现象称之为雪崩击穿。 1、PN结电容可分为扩散电容和过渡区电容两种,它们之间的主要区别在于 扩散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放 电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。 2、当MOSFET器件尺寸缩小时会对其阈值电压V T产生影响,具体地,对 于短沟道器件对V T的影响为下降,对于窄沟道器件对V T的影响为上升。 3、在NPN型BJT中其集电极电流I C受V BE电压控制,其基极电流I B受V BE 电压控制。 4、硅-绝缘体SOI器件可用标准的MOS工艺制备,该类器件显著的优点是 寄生参数小,响应速度快等。 5、PN结击穿的机制主要有雪崩击穿、齐纳击穿、热击穿等等几种,其中发

01常用半导体器件练习题

第1章常用半导体器件 一.选择题 1、半导体导电的载流子是____C____,金属导电的载流子是_____A__。 A.电子B.空穴C.电子和空穴D.原子核 2、在纯净半导体中掺入微量3价元素形成的是___A_____型半导体。 A. P B. N C. PN D. 电子导电 3、纯净半导体中掺入微量5价元素形成的是____B____型半导体。 A. P B. N C. PN D. 空穴导电 4、N型半导体多数载流子是B,少数载流子是 A ;P型半导体中多数载流子是 A ,少数载流子是 B 。 A.空穴B.电子C.原子核D.中子 5、杂质半导体中多数载流子浓度取决于 D ,少数载流子浓度取于 B 。 A.反向电压的大小B.环境温度C.制作时间D.掺入杂质的浓度 6、PN结正向导通时,需外加一定的电压U,此时,电压U的正端应接PN结的 A , 负端应接PN结 B 。 A.P区B.N区 7、二极管的反向饱和电流主要与 B 有关。(当温度一定时,少子浓度一定,反向电流几乎不 随外加电压而变化,故称为反向饱和电流。) A.反向电压的大小B.环境温度C.制作时间D.掺入杂质的浓度 8、二极管的伏安特性曲线反映的是二极管 A 的关系曲线。 A.V D-I D B.V D-r D C.I D-r D D.f-I D 9、用万用表测量二极管的极性,将红、黑表笔分别接二极管的两个电极,若测得的电阻很 小(几千欧以下),则黑表笔所接电极为二极管的 C 。 A.正极B.负极C.无法确定 10、下列器件中, B 不属于特殊二极管。 A.稳压管B.整流管C.发光管D.光电管 11、稳压二极管稳压,利用的是稳压二极管的 C 。 A.正向特性B.反向特性C.反向击穿特性 12、稳压管的稳定电压V Z是指其 D 。

半导体器件物理与工艺复习题(2012)

半导体器件物理复习题 第二章: 1) 带隙:导带的最低点和价带的最高点的能量之差,也称能隙。 物理意义:带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低 2)什么是半导体的直接带隙和间接带隙? 其价带顶部与导带最低处发生在相同动量处(p =0)。因此,当电子从价带转换到导带时,不需要动量转换。这类半导体称为直接带隙半导体。 3)能态密度:能量介于E ~E+△E 之间的量子态数目△Z 与能量差△E 之比 4)热平衡状态:即在恒温下的稳定状态.(且无任何外来干扰,如照光、压力或电场). 在恒温下,连续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴.半导体的电子系统有统一的费米能级,电子和空穴的激发与复合达到了动态平衡,其浓度是恒定的,载流子的数量与能量都是平衡。即热平衡状态下的载流子浓度不变。 5)费米分布函数表达式? 物理意义:它描述了在热平衡状态下,在一个费米粒子系统(如电子系统)中属于能量E 的一个量子态被一个电子占据的概率。 6 本征半导体价带中的空穴浓度: 7)本征费米能级Ei :本征半导体的费米能级。在什么条件下,本征Fermi 能级靠近禁带的中央:在室温下可以近似认为费米能级处于带隙中央 8)本征载流子浓度n i : 对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同, 即浓度相同,称为本征载流子浓度,可表示为n =p =n i . 或:np=n i 2 9) 简并半导体:当杂质浓度超过一定数量后,费米能级进入了价带或导带的半导体。 10) 非简并半导体载流子浓度: 且有: n p=n i 2 其中: n 型半导体多子和少子的浓度分别为: p 型半导体多子和少子的浓度分别为:

【精品】电子元器件基础知识考试试题及答案

精心整理 电子元器件基础知识考试试题及答案 部门:姓名得分: 一、 填空题(每题5分,共30分)1. 电阻器是利用材料的电阻特性制作出的电子元器件,常用单位有欧姆(Ω)、千欧(K Ω) 和兆欧(M Ω),各单位之间的转换关系为1M Ω=103K Ω=106Ω。2.电阻器阻值的标示方法有直标法、数字法和色标法。3.电感器是用导线在绝缘骨架上单层或多层绕制而成的,又叫电感线圈。 4.二极管按材料分类,可分为锗管和硅管。 5.三极管按导电类型可分为 PNP 型和NPN 型。6.碳膜电阻为最早期也最普遍使用的电阻器,利用真空喷涂技术在瓷棒上面喷涂一层碳膜, 再将碳膜外层加工切割成螺旋纹状,依照螺旋纹的多寡来定其电阻值,螺旋纹愈多时表示电阻值愈大。 二、判断题(每题5分,共25分) 1.电阻量测不能带电测试,待测物要独立存在。(正确) 2.电阻器按安装方式可分为:固定电阻、可调电阻、特种电阻(敏感电阻) 。(正确)3. 二极管又称晶体二极管,简称二极管,可以往两个方向传送电流。(错误)4. 三极管又称“晶体三极管”或“晶体管”。具有两个电极,是能起放大、振荡或开关等作用的半导体电子器件。(错误)5. 扼流线圈又称为扼流圈、阻流线圈、差模电感器,是用来限制交流电通过的线圈,分高频阻流圈和低频阻流圈。(正确)三、 简答题(每题15分,共45分)1.读出右图两个色环电阻的阻值及误差 ,并根据电容的标识方法读出贴片电容212J 和104K 的 电容值及误差。答:1.270Ω,5% 2.200K Ω,1% 3.212J:21*102pF=2100pF=2.1nF,5% 4.104K:10*104pF=100nF,10% 2.简述右图符号分别表示那些特性的晶体管。 答:1.普通二极管 2.稳压二极管 3.发光二极管 4.光电二极管3.列举3个常用的电子元器件并简述其用万用表简单的检测方法。 答:1.电阻器:万用表电阻档直接测量。 2.电容器:容量用万用表直接测量,充放电采用适当的电阻档观察阻值变化确定。 3.电感器:万用表的Rx1挡,测一次绕组或二次绕组的电阻值,有一定阻值为正常。 1 2

下一代新型半导体器件及工艺基础研究

下一代新型半导体器件及工艺基础研究 微电子技术无论是从其发展速度和对人类社会生产、生活的影响,都可以说是科学技术史上空前的,微电子技术已经成为整个信息产业的基础和核心。 自1958年集成电路发明以来,为了提高电子集成系统的性能,降低成本,集成电路的特征尺寸不断缩小,制作工艺的加工精度不断提高,同时硅片的面积不断增大。40多年来,集成电路芯片的发展基本上遵循了摩尔定律,即每隔三年集成度增加4倍,特征尺寸缩小√2倍。集成电路芯片的特征尺寸已经从1978年的10/xm发展到现在的0.13-0.10txm;硅片的直径也逐渐由2英寸、3英寸、4英寸、6英寸、8英寸发展到12英寸。在这期间,虽然有很多人预测这种发展趋势将减缓,但微电子产业发展的事实证实了Moore的预言,而且根据预测,微电子技术的这种发展趋势至少在今后10多年内还将继续下去,这是其它任何产业都无法与之比拟的。 现在,0.13lam的CMOS工艺技术已进人大生产,0.04微米乃至0.01微米的器件已在实验室中制备成功,研究工作已进入亚0.1lam技术阶段,相应的栅氧化层厚度只有2.0-1.0nm。预计到2014年,特征尺寸为0.035lam的电路将投入批量生产。 2000年以来,虽然世界微电子产业进入低谷,即使如此,但从微电子技术发展方面来讲,微电子却进入了一个快速发展的阶段。自1999年以来,原来集成电路工艺每3年提升一代的规律在进入21世纪后变为两年提升一代,这说明全球的微电子产业正在借这一轮微电子产业不景气的空隙做技术上的储备,为迎接新一轮微电子产业的快速发展作着积极的准备。 近年来,虽然国际微电子产业处于低谷,但中国的微电子产业却一枝独秀,仍然保持着每年30%以上的递增速度。特别是随着中芯国际、华虹NEC、天津Motorola等一批大规模、高水平集成电路制造企业的建成,国际上先进的半导体工艺正被迅速地直接引入到我国,制造工艺技术达到了0.25、0.18甚至0.13lam工艺水平,因此可以说我国微电子产业已经进入了一个跳跃式发展阶段。 为了加强我国微电子产业的竞争力,北京大学、中国科学院微电子中心、清华大学、中国科学院半导体研究所、中国科学院上海微系统与信息技术研究所等单位共同提出了973项目"系统芯片(SystemOn a Chip)中新器件新工艺基础研究",致力研究下一代SOC发展过程中遇到的半导体新器件新工艺领域的基础科学问题。本文介绍的主要内容就是我们在该973项目研究中取得的部分新器件、新工艺方面的研究成果。 MILC平面双栅器件 双栅器件独特的优点已被公认为纳米量级器件的优选结构,平面双栅器件由于白对准双栅技术的问题一直处于探索之中,虽然已提出一些方法,如激光退火,选择外延生长,侧向外延生长等,但都非常复杂,成本也很高,而得到的器件的寄生电阻比预期高很多。在平面双栅器件工艺集成技术方面一直是一个研究热点。我们利用MILC和高温退火技术提出了一种新的简单的自对准双栅MOS晶体管制备技术,为平面双栅器件的实现提供了新的思路。 图1为我们得到的单晶自对准双栅MOS晶体管的电流电压特性曲线。为比较起见,我们在同一工艺过程中,制作了常规单栅SOl MOS晶体管。双栅器件的沟道长度、沟道宽度、栅氧化层厚度以及沟道区硅膜的厚度分别为0.36μm、0.72μm、lOnm和40nm,测量得到的有效电子迁

(完整版)常用半导体元件习题及答案

第5章常用半导体元件习题 5.1晶体二极管 一、填空题: 1.半导体材料的导电能力介于和之间,二极管是将 封装起来,并分别引出和两个极。 2.二极管按半导体材料可分为和,按内部结构可分为_和,按用途分类有、、四种。3.二极管有、、、四种状态,PN 结具有性,即。4.用万用表(R×1K档)测量二极管正向电阻时,指针偏转角度,测量反向电阻时,指针偏转角度。 5.使用二极管时,主要考虑的参数为和二极管的反向击穿是指。 6.二极管按PN结的结构特点可分为是型和型。 7.硅二极管的正向压降约为 V,锗二极管的正向压降约为 V;硅二极管的死区电压约为 V,锗二极管的死区电压约为 V。 8.当加到二极管上反向电压增大到一定数值时,反向电流会突然增大,此现象称为现象。 9.利用万用表测量二极管PN结的电阻值,可以大致判别二极管的、和PN结的材料。 二、选择题: 1. 硅管和锗管正常工作时,两端的电压几乎恒定,分别分为( )。 A.0.2-0.3V 0.6-0.7V B. 0.2-0.7V 0.3-0.6V C.0.6-0.7V 0.2-0.3V D. 0.1-0.2V 0.6-0.7V 的大小为( )。 2.判断右面两图中,U AB A. 0.6V 0.3V B. 0.3V 0.6V C. 0.3V 0.3V D. 0.6V 0.6V 3.用万用表检测小功率二极管的好坏时,应将万用表欧姆档拨到() Ω档。 A.1×10 B. 1×1000 C. 1×102或1×103 D. 1×105 4. 如果二极管的正反向电阻都很大,说明 ( ) 。 A. 内部短路 B. 内部断路 C. 正常 D. 无法确定 5. 当硅二极管加0.3V正向电压时,该二极管相当于( ) 。 A. 很小电阻 B. 很大电阻 C.短路 D. 开路 6.二极管的正极电位是-20V,负极电位是-10V,则该二极管处于()。 A.反偏 B.正偏 C.不变D. 断路 7.当环境温度升高时,二极管的反向电流将() A.增大 B.减小 C.不变D. 不确定 8.PN结的P区接电源负极,N区接电源正极,称为()偏置接法。

常用半导体器件习题考答案

第7章 常用半导体器件 习题参考答案 7-1 计算图所示电路的电位U Y (设D 为理想二极管)。 (1)U A =U B =0时; (2)U A =E ,U B =0时; (3)U A =U B =E 时。 解:此题所考查的是电位的概念以及二极管应用的有关知识。从图中可以看出A 、B 两点电位的相对高低影响了D A 和D B 两个二极管的导通与关断。 当A 、B 两点的电位同时为0时,D A 和D B 两个二极管的阳极和阴极(U Y )两端电位同时为0,因此均不能导通;当U A =E ,U B =0时,D A 的阳极电位为E ,阴极电位为0(接地),根据二极管的导通条件,D A 此时承受正压而导通,一旦D A 导通,则U Y >0,从而使D B 承受反压(U B =0)而截止;当U A =U B =E 时,即D A 和D B 的阳极电位为大小相同的高电位,所以两管同时导通,两个1k Ω的电阻为并联关系。本题解答如下: (1)由于U A =U B =0,D A 和D B 均处于截止状态,所以U Y =0; (2)由U A =E ,U B =0可知,D A 导通,D B 截止,所以U Y =E ? +9 19=109E ; (3)由于U A =U B =E ,D A 和D B 同时导通,因此U Y =E ?+5.099=1918E 。 7-2 在图所示电路中,设D 为理想二极管,已知输入电压u i 的波形。试画出输出电压u o 的波形图。 解:此题的考查点为二极管的伏安特性以及电路的基本知识。 首先从(b )图可以看出,当二极管D 导通时,电阻为零,所以u o =u i ;当D 截止时,电阻为无穷大,相当 于断路,因此u o =5V ,即是说,只要判断出D 导通与否, 就可以判断出输出电压的波形。要判断D 是否导通,可 以以接地为参考点(电位零点),判断出D 两端电位的高 低,从而得知是否导通。 u o 与u i 的波形对比如右图所示: 7-3 试比较硅稳压管与普通二极管在结构和运用上有 何异同 (参考答案:见教材) 7-4 某人检修电子设备时,用测电位的办法,测出管脚①对地电位为-;管脚②对地电位

半导体基础知识和半导体器件工艺

半导体基础知识和半导体器件工艺 第一章半導體基礎知識 通常物質根據其導電性能不同可分成三類。第一類爲導體,它可以很好的傳導電流,如:金屬類,銅、銀、鋁、金等;電解液類:NaCl 水溶液,血液,普通水等以及其他一些物體。第二類爲絕緣體,電流不能通過,如橡膠、玻璃、陶瓷、木板等。第三類爲半導體,其導電能力介於導體和絕緣體之間,如四族元素Ge鍺、Si矽等,三、五族元素的化合物GaAs砷化鎵等,二、六族元素的化合物氧化物、硫化物等。 物體的導電能力可以用電阻率來表示。電阻率定義爲長1 釐米、截面積爲1 平方釐米的物質的電阻值,單位爲歐姆*釐米。電阻率越小說明該物質的導電性能越好。通常導體的電阻率在10-4 歐姆*釐米以下,絕緣體的電阻率在109 歐姆*釐米以上。 半導體的性質既不象一般的導體,也不同于普通的絕緣體,同時也不僅僅由於它的導電能力介於導體和絕緣體之間,而是由於半導體具有以下的特殊性質: (1) 溫度的變化能顯著的改變半導體的導電能力。當溫度升高時,電阻率會降低。 比如Si在200C時電阻率比室溫時的電阻率低幾千倍。可以利用半導體的這個特性製成自動控制用的熱敏元件 (如熱敏電阻等),但是由於半導體的這一特性,容易引起熱不穩定性,在製作半導體器件時需要考慮器件自身産生的熱量,需要考慮器件使用環境的溫度等,考慮如何散熱,否則將導致器件失效、報廢。 (2)半導體在受到外界光照的作用是導電能力大大提高。如硫化鎘受到光照後導電能力可提高幾十到幾百倍,利用這一特點,可製成光敏三極管、光敏電阻等。

(3)在純淨的半導體中加入微量(千萬分之一)的其他元素(這個過程我們稱爲摻雜),可使他的導電能力提高百萬倍。這是半導體的最初的特徵。例如在原子密度爲 5*1022/cm3 的矽中摻進大約5X1015/cm3 磷原子,比例爲10-7(即千萬分之一),矽的導電能力提高了幾十萬倍。 物質是由原子構成的,而原子是由原子核和圍繞它運動的電子組成的。電子很輕、很小,帶負電,在一定的軌道上運轉;原子核帶正電,電荷量與電子的總電荷量相同,兩者相互吸引。當原子的外層電子缺少後,整個原子呈現正電,缺少電子的地方産生一個空位,帶正電,成爲電洞。物體導電通常是由電子和電洞導電。 前面提到摻雜其他元素能改變半導體的導電能力,而參與導電的又分爲電子和電洞,這樣摻雜的元素(即雜質)可分爲兩種:施主雜質與受主雜質。 將施主雜質加到矽半導體中後,他與鄰近的4個矽原子作用,産生許多自由電子參與導電,而雜質本身失去電子形成正離子,但不是電洞,不能接受電子。這時的半導體叫N 型半導體。施主雜質主要爲五族元素:銻、磷、砷等。將施主雜質加到半導體中後,他與鄰近的4 個矽原子作用,産生許多電洞參與導電,這時的半導體叫p 型半導體。受主雜質主要爲三族元素:鋁、鎵、銦、硼等。電洞和電子都是載子,在相同大小的電場作用下,電子導電的速度比電洞快。電洞和電子運動速度的大小用遷移率來表示,遷移率愈大,截流子運動速度愈快。\ 假如把一些電洞注入到一塊N型半導體中,N型就多出一部分少數載子一一電洞, 但由於N型半導體中有大量的電子存在,當電洞和電子碰在一起時,會發生作用, 正負電中和,這種現象稱爲複合 單個N型半導體或P型半導體是沒有什麽用途的。但使一塊完整的半導體的一部分是N 型,另一部分爲P型,並在兩端加上電壓,我們會發現有很奇怪的現象。如果將P型半導體接電源的正極,N型半導體接電源的負極,然後緩慢地加電壓。當電壓很小時,一般小

半导体基础知识和半导体器件工艺

半导体基础知识和半导 体器件工艺 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

半导体基础知识和半导体器件工艺 第一章半导体基础知识 通常物质根据其导电性能不同可分成三类。第一类爲导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其他一些物体。第二类爲绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。第三类爲半导体,其导电能力介於导体和绝缘体之间,如四族元素Ge锗、Si矽等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。 物体的导电能力可以用电阻率来表示。电阻率定义爲长1厘米、截面积爲1平方厘米的物质的电阻值,单位爲欧姆*厘米。电阻率越小说明该物质的导电性能越好。通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。 半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由於它的导电能力介於导体和绝缘体之间,而是由於半导体具有以下的特殊性质: (1) 温度的变化能显着的改变半导体的导电能力。当温度升高时,电阻率会降低。比如Si在200℃时电阻率比室温时的电阻率低几千倍。可以利用半导体的这个特性制成自动控制用的热敏元件(如热敏电阻等),但是由於半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身産生的

热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。 (2) 半导体在受到外界光照的作用是导电能力大大提高。如硫化镉受到光照後导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。 (3) 在纯净的半导体中加入微量(千万分之一)的其他元素(这个过程我们称爲掺杂),可使他的导电能力提高百万倍。这是半导体的最初的特徵。例如在原子密度爲5*1022/cm3的矽中掺进大约5X1015/cm3磷原子,比例爲10-7(即千万分之一),矽的导电能力提高了几十万倍。 物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。当原子的外层电子缺少後,整个原子呈现正电,缺少电子的地方産生一个空位,带正电,成爲电洞。物体导电通常是由电子和电洞导电。 前面提到掺杂其他元素能改变半导体的导电能力,而参与导电的又分爲电子和电洞,这样掺杂的元素(即杂质)可分爲两种:施主杂质与受主杂质。 将施主杂质加到矽半导体中後,他与邻近的4个矽原子作用,産生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。这时的半导体叫N型半导体。施主杂质主要爲五族元素:锑、磷、砷等。 将施主杂质加到半导体中後,他与邻近的4个矽原子作用,産生许多电洞参与导电,这时的半导体叫p型半导体。受主杂质主要爲三族元素:铝、镓、铟、硼等。

半导体器件工艺课程设计

2016年半导体器件与工艺课程设计 设计报告 项目名称 SRAM读写特性设计 参与者姜云飞黄思贤牛永文 所在学院电子科学与应用物理学院 专业年级电子科学与技术13-1班 指导教师宣晓峰 报告人牛永文 时间 2016.6

一、课程设计的内容与题目要求 1、内容 设计一个SRAM与非门,分析其读写特性。 SRAM结构 2、题目要求 的NMOS,在MDRAW下对器件1)MDRAW工具分别设计一个栅长为0.18m 必要的位置进行网格加密; 2)先通过dessis模拟确定NMOS的转移特性,确定器件结构、掺杂及阈值电压等无错误。 3)再根据设计目标,确定SRAM的网表,其负载电容取3e-13F(模拟在位线负载电容等); 4)编制dessis模拟程序,在模拟程序中设定SRAM中各组件的连接,分析此器件的读写特性; 5)应用INSPECT工具对比输入信号、输出信号和电流信号,查看其性能; 6)调节电路设计以及NMOS的结构(栅宽、栅氧厚度、掺杂等),优化其读写速度。 二、课程设计的工艺流程 1、器件构建

的NMOS管(如图1.1) 运用MDRAW工具设计一个栅长为0.18m 图 1.1 2、器件掺杂 运用MDRAW对设计好的NMOS进行掺杂(如图1.2和图.3) 图 1.2

图1.3 3、网络生成 掺杂完成后,点击Mesh—Build Mesh,构建网络(如图1.4) 图1.4

三、课程设计的仿真结果 1、dessis模拟NMOS管的特性 1)dessis程序的编写 File{ Grid=”Nmos2_mdr.grd” Doping=”Nmos2_mdr.dat” Plot=”nmos_des.dat” Current=”nmos_des.plt” Output=”nmos_des.log” } Electrode{ {Name=”source”Voltage=0.0} {Name=”drain”Voltage=0.1} {Name=”gate”Voltage=0.0 Barrier=-0.55} {Name=”s”Voltage=0.0} } Plot{ eDensityhDensityeCurrenthCurrent Potential SpaceChargeElectricField eMobilityhMobilityeVelocityhVelocity Doping DonorConcebtration AcceptorConcentration } Physics{ Mobility (DopingDepHighFieldSatEnormal) EffectivelntrinsicDensity(BandGapNarrowing (OldSlotboom)) } Math{ Extrapolate RelErrControl } Solve{ Poisson Coupled{Poisson Electron} Quasistatioonary (Maxstep=0.05 Goal{name=”gate” voltage=2.0}) {Coupled{Poisson Electron}}

1章 常用半导体器件 习题

第一章题解-1 第一章 常用半导体器件 习 题 1.1 选择合适答案填入空内。 (1)在本征半导体中加入 元素可形成N 型半导体,加入 元素可形成P 型半导体。 A. 五价 B. 四价 C. 三价 (2)当温度升高时,二极管的反向饱和电流将 。 A. 增大 B. 不变 C. 减小 (3)工作在放大区的某三极管,如果当I B 从12μA 增大到22μA 时,I C 从1m A 变为2m A ,那么它的β约为 。 A. 83 B. 91 C. 100 (4)当场效应管的漏极直流电流I D 从2m A 变为4m A 时,它的低频跨导g m 将 。 A.增大 B.不变 C.减小 解:(1)A ,C (2)A (3)C (4)A 1.2 能否将1.5V 的干电池以正向接法接到二极管两端?为什么? 解:不能。因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V 时,管子会因电流过大而烧坏。 1.3 电路如图P1.3所示,已知u i =10s in ωt (v),试画出u i 与u O 的波形。设二极管正向导通电压可忽略不计。 图P1.3

第一章题解-2 解图P1.3 解:u i 和u o 的波形如解图P1.3所示。 1.4 电路如图P1.4所示,已知u i =5s in ωt (V),二极管导通电压U D =0.7V 。试画出u i 与u O 的波形,并标出幅值。 图P1.4 解图P1.4 解:波形如解图P1.4所示。 1.5 电路如图P1.5(a )所示,其输入电压u I1和u I2的波形如图(b )所示,二极管导通电压U D =0.7V 。试画出输出电压u O 的波形,并标出幅值。 图P1.5 解:u O 的波形如解图P1.5所示。

相关主题
文本预览
相关文档 最新文档