当前位置:文档之家› 实验29 铁电性能测量实验讲义

实验29 铁电性能测量实验讲义

实验29 铁电性能测量实验讲义
实验29 铁电性能测量实验讲义

铁电体电滞回线的测量

铁电材料是一类具有自发极化,而且其自

发极化矢量在外电场作用下可以翻转的电介质材料,它具有优异的铁电、压电、介电、

热释电及电光性能,在非挥发性铁电存储器、

压电驱动器、电容器、红外探测器和电光调

制器等领域有重要的应用。铁电材料的主要

特征是具有铁电性,即极化强度与外电场之间具有电滞回线的关系,如图1所示。电滞

回线是铁电体的重要特征和重要判据之一,

通过电滞回线的测量可以得到自发极化强度

P s 、剩余极化强度P r 、矫顽场E c 等重要铁电参数,理解铁电畴极化翻转的动力学过程。

【实验目的】

1. 了解铁电测试仪的工作原理和使用方法。

2. 掌握电滞回线的测量及分析方法。

3. 理解铁电材料物理特性及其产生机理。

【实验仪器】

本实验采用美国Radiant Technology 公司生产的RT Premier Ⅱ型标准铁电测试仪,该仪器可以测量铁电材料的电滞回线、漏电流、疲劳、印痕、PUND (Positive Up Negative Down)等性能,而且配备了变温系统和热释电软件还可以测量热释电性能。

【实验原理】

铁电体的自发极化强度并非整个晶体为同一方向,而是包括各个不同方向的自发极化区域,其中具有相同自发极化方向的小区域叫做铁电畴。电滞回线的产生是由于铁电晶体中存在铁电畴。铁电体未加电场时,由于自发极化取向的任意性和热运动的影响,宏观上不呈现极化现象。当加上外电场大于铁电体的矫顽场时,沿电场方向的电畴由于新畴核的形成和畴壁的运动,体积迅速扩大,而逆电场方向的电畴体积则减小或消失,即逆电场方向的电畴转化为顺电场方向,因此表面电荷Q (极化强度P )和外电压V (电场强度

E )之间构成电滞回线的关系。另外由于铁电体本

身是一种电介质材料,两面涂上电极构成电容器

之后还存在着电容效应和电阻效应,因此一个铁

电试样的等效电路如图2所示。其中C F 对应于电

畴反转的等效电容,C D 对应于线性感应极化的等

效电容,R C 对应于试样的漏电流和感应极化损耗

相对应的等效电阻。如果在试样两端加上交变电压,则试样两端的电荷Q 将由三部分组成:

图2 铁电测试等效电路图 图1 铁电体的电滞回线

(1) 铁电效应:铁电体(Ferroelectric)的电畴翻转过程所提供的电荷Q F ,当E E c 时,铁电畴迅速翻转,电荷Q F 突变。当铁电畴全部反转之后,继续增大电场强度,电荷Q F 保持不变,所以理想铁电材料的电滞回线为一矩形,如图3 (a)所示。

(2) 电容效应:铁电体属于电介质(Dielectric)材料,上下表面涂上电极之后,相当于一电容器,在外电场作用下会发生感应极化,产生电荷Q D 。感应极化所提供的电荷Q D 和电压V 成正比,是一条过原点的直线,如图3 (b)所示。

(3) 电阻效应:即电导(Conductive)和感应极化损耗所提供的电荷Q C ,Q C 是材料中电流与时间的积分,其中电流与电压V 成正比。积分得到的电荷Q C 与电压V 的关系为一椭圆,如图3 (c)所示。

因此试样两端的全电荷Q 是由Q F 、Q D 、Q C 三部分叠加而成的,即Q 和电压V 的关系是图3 (a)、3 (b)、3 (c)三部分的叠加,所以实际测量得到电滞回线如图1所示。

由上述可见,只有电荷Q F 与电压V 的关系才真正反映了铁电体中的电畴翻转过程。实际测量得到的全电滞回线(图1)包含了与铁电畴极化翻转过程无关的Q D 和Q C 的影响。由图3可知,电容效应Q D 使得Q F 的饱和支、上升支和下降支发生倾斜,但是从理论上来说对于Q F 和V c 的数值没有影响。而电阻效应提供的电荷Q C 则不同,Q C 使Q F 的饱和支畸变成一个环状端。对Q F 和V c 的数值都有影响,使测得的数值偏高,造成误差。当电容效应和电阻效应很大时,Q 和V 的关系将与Q F 和V 的关系相差很大,以致掩盖了电畴翻转过程的特征,形成一个损耗椭圆,以致一些研究者把一部分并无电畴过程的电介质也认为是铁电体。所以正确的获得电滞回线和铁电参数是准确表征铁电性能的前提。

测量电滞回线的方法很多,其中应用最广泛的是Sawyer –Tower 方法,它是一种建立较早,已被大家广泛接受的非线性器件的测量方法,目前仍然是大家用来判断测试结果是否可靠的一个对比标准。图4是改进的Sawyer –Tower 方法的测试原理示意图,它将待测器件与一个标准感应电容串C 0联,测量待测样品上的电压降(V 2-V 1)。其中标准电容C 0的电容量远大于试样C x ,因此加到示波器x 偏向屏上的电压和加在试样C x 上的电压非常接近;而加到示波管y 偏向屏上的电压则与试样C x 两端的电荷成正比。因此可以得到铁电样品表面电荷随电压的变化关系,分别除以电极面积和样品厚度即可得到极化强度P 与电场强度E 之间的关系曲线。

图3 电荷Q F 、Q D 、Q C 与电压V 的关系

本实验中的铁电性能测试采用美国Radiant Technology 公司生产的RT Premier Ⅱ型标准铁电测试仪。该仪器采用 Radiant Technologies 公司开发的虚地模式,如图5所示。待测的样品一个电极接仪器的驱动电压端(Drive),另一个电极接仪器的数据采集端(Return)。Return 端与集成运算放大器的一个输入端相连,集成运算放大器的另一个输入端接地。集成运算放大器的特点是输入端的电流几乎为0,并且两个输入端的电位差几乎为0,因此,相当于Return 端接地,称为虚地。样品极化的改变造成电极上电荷的变化,形成电流。流过待测样品的电流不能进入集成运算放大器,而是全部流过横跨集成运算放大器输入输出两端的放大电阻。电流经过放大、积分就还原成样品表面的电荷,而单位面积上的电荷即是极化。这一虚地模式可以消除Sawyer –Tower 方法中感应电容产生的逆电压和测试电路中的寄生电容对测试信号的影响。

图5 Premier Ⅱ铁电测试仪虚地模式电路示意图

电滞回线(Hysteresis loop )的测量

图6是测量电滞回线所用的三角波测试脉冲。第一个负脉冲为预极化脉冲,它只是将待测样品极化到负剩余极化( P r )的状态,并不记录数据。间隔1s 后,施加一个三角波来测试记录数据,整个三角波实际是由一系列的小电压台阶构成的,每隔一定时间(V oltage step delay ),测试电压上升一定值(V oltage step size ),然后测试一次,并通过积分样品上感应的电流可以算出电极表面的电荷,除以电极面积即可得到此电压下的剩余极化强度值。

图4 Sawyer –Tower 电路

Drive

【实验内容及步骤】 主要通过操作铁电测试仪控制软件Vision ,测量铁电材料的电滞回线并从回线上得出剩余极化强度P r ,自发极化强度P s ,以及矫顽场E c 。调整测试电压强度和频率,得到不同电压强度,不同频率下的电滞回线,研究剩余极化强度P r ,和矫顽场E c 随电压强度和频率的变化关系。

1、启动铁电测试仪,运行铁电测试软件Vision 。

2、将信号输入端(Drive )和接收端(return )通过导线连接到待测铁电材料的上下电极。

3、运行电滞回线测量程序,设定测试电压强度和频率等参数进行测试。如图7所示。

图7 电滞回线测量设置界面

4、执行程序得到电滞回线,如图8所示,可以得到该测试条件下的自发极图6 电滞回线测试脉冲

化强度P、剩余极化强度P r和矫顽场E c,导出数据,。

图8 电滞回线测试结果

5、分别改变测试的电场强度和频率测量一系列电滞回线。

【数据处理】

将测试数据导出为text格式文件,用Origin或其他作图软件打开,并画出电滞回线图。

测量不同条件下的剩余极化强度P r和矫顽场E c,填入下表。分别以电场强度E和电场频率f为横坐标,以P r和E c为纵坐标画图,观察P r和E c随E和f 的变化规律。

表1 不同电场强度下的P r和E c值

表2 不同电场频率下的P r和E c值

【注意事项】

根据所测材料的不同选择不同的电压,薄膜一般比较薄(约几百nm),所需电压较低(约几十伏),一般选内置低压电源(Internal V oltage Source),测量范围为0-100 V。陶瓷一般选用经过放大器输出的外部高电压(External High V oltage ),测量范围为0-9999 V。

高压测试时务必小心,用耐高压硅油掩盖待测样品,高压输出灯亮时,切勿碰触样品、探针和机箱,以免触电。高压测试时请将低压测试线从主机面板插孔拔出。测试时先从低压测起,逐步提高电压,以防样品被击穿。

【思考问题】

1.如何从电滞回线得出剩余极化强度、饱和极化强度和矫顽场的大小?

2.电滞回线的形状与哪些因数相关,如何判断其铁电性能的好坏?

3. 电滞回线的面积具有什么物理意义?

4. 如何建立铁电材料性能和应用之间的联系?

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S S RD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

光电器件测试

光电器件性能测试与应用 一、实验目的: 1.了解光敏二极管、三极管的结构及工作原理。 2.掌握常用光敏器件的性能和极限参数。 3.体验光敏器件的具体应用。 二、光敏器件的工作原理 2.1 光敏二极管是一种光伏效应器件。由于势垒区内建电场的作用。PN 结、肖特基结(即金属半导体结)等在受光照时会产生一个光生电动势,这就是光伏效应。以光伏效应为工作机理的器件通称为光伏效应器件。因此,光敏二极管、光敏三极管及均效应光敏管,光激可控硅等特种光敏器件,都属于光伏效应器件。 在光照下,若入射光子的能量大于禁带宽度,则PN 结内会产生光生电子空穴对,这些光生载流子存在了一段长短不同的时间后,又会因复合而消失。如图2-1所示,势垒区两边 产生的载流子中总有一部分能在复合前扩散到 势垒区的边界,基中少子受势垒区电场的吸引被扫向对面区域,多子则受势垒区电场的排斥而留在本区。势垒区内产生的光生电子和光生空穴一经产生使受到电场的作用。分别被扫向N 区和P 区,这样,就产生出由势垒区中产生的电子空穴对及势垒区两边能运动到势垒区的少子所构成的光电流I L ,它的方向是由N 区经势垒区流向P 区,即与光照对PN 结的反向饱和电流方向相同,因此,若I L 仅表示光电流的数值,则这个光电流应写为﹣I L ,以保持PN 结电流的习惯方向。 当PN 结短路时,这个光电流将全部流过 短接回路,即从势垒区和P 区流入N 区的光生电子将通过短接回路全部流到P 区电极处,与P 区流出的光生空穴复合,因此,短路时外接回路中的电流是I L ,方向由P 端(“端”指外端电极处,下同)流向N 端,即I =﹣I L ,这时,PN 结中的载流子浓度维持平衡值,势垒高度亦无变化。 当PN 结开路或接有负载时,势垒区电场收集的光生载流子便不能或不能全部流出,P 区和N 区就分别出现光生空穴和光生电子的积累,它使P 区电位升高,N 区电位降低,造成 了一个光生电动势,这电动势使势垒高度下降,相当于加在PN 结上的正向偏压,只不过这是光照造成的而不是用电源馈送的,故称为光生电压。它使P 区光生空穴和N 区光生电子分别向N 区和P 区回注,并分别在N 区与P 区与电子和空穴复合,形成了由P 区以势垒区指向N 区的正向注入电流I J ,若PN 结开路,则流过势垒区的总电流应为零,I J 有最大值,即 max max ()0,J L J L I I I I +?==

测试技术试验指导书

《机械工程测试技术》实验指导书 编者:郑华文刘畅 昆明理工大学机电学院实验中心 2014年5月

说明和评分 1学生按照实验预约表进行实验;在实验前,需对理论教学中相关内容做做复习并对实验指导书进行预习,熟悉实验内容和要求后才能进入实验室进行实验。在实验中,不允许大声喧哗和进行与实验不相关的事情。 2进入实验室后,应遵守实验室守则,学生自己应发挥主动性和独立性,按小组进行实验,在操作时应对实验仪器和设备的使用方法有所了解,避免盲目操作引起设备损坏,在动手操作时,应注意观察和记录。 3根据内容和要求进行试验,应掌握开关及的顺序和步骤:1)不允许带负荷开机。输出设备不允许有短路,输入设备量程处于最大,输出设备衰减应处于较小。2)在实验系统上电以后,实验模块和实验箱,接入或拔出元件,不允许带电操作,在插拔前要确认不带电,插接完成后,才对实验模块和试验箱上电。3)试验箱上元件的插拔所用连线,在插拔式用手拿住插头插拔,不允许直接拉线插拔。4)实验中,按组进行试验,实验元件也需按组取用,不允许几组混用元件和设备。 4在实验过程中,在计算机上,按组建立相关实验文件,实验中的过程、数据、图表和实验结果,按组记录后,各位同学拷贝实验相关数据文件等,在实验报告中应有反应。对实验中的现象和数据进行观察和记录。 实验评分标准: 1)实验成绩评分按实验实作和实验报告综合评分:实验实作以学生在实验室中完成实验表现和实验结果记录文件评定,评定为合格和不合格;实验报告成绩:按照学生完成实验报告的要求,对实验现象的观察、思考和实验结果的分析等情况评定成绩。初评百分制评定。 2)综合实验成绩评定按百分制。

2016磁滞回线的测量

实验名称:用示波器观测铁磁材料的动态磁滞回线姓名学号班级 桌号教室基础教学楼1101 实验日期 2016年月日节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读 本实验报告!并携带计算器,否则实验无法按时完成!

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几 个重要概念 1、饱和磁感应强度B S 、饱和磁场强度H S 和磁化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值 H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞 B H B ~H H μ B ~H S f d e

光电探测器特性测试实验

光电探测器特性测试实验 光电探测器是一种将辐射能转换成电讯号的器件,是光电系统的核心组成部分,在光电系统中的作用是发现信号、测量信号,并为随后的应用提取某些必要的信息。光电探测器的种类很多,新的器件也不断出现,按探测机理的物理效应可分为两大类:一类是利用各种光子效应的光子探测器,另一类是利用温度变化的热探测器。 1、光敏电阻 光敏电阻是用光电导体制成的光电器件,又称光导管.它是基于半导体光电效应工作的。光敏电阻没有极性,纯粹是一个电阻器件,使用时可加直流电压,也可以加交流电压。当无光照时,光敏电阻值(暗电阻)很大,电路中电流很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减少,因此电路中电流迅速增加。 光敏电阻的暗电阻越大.而亮电阻越小.则性能越好,也就是说,暗电流要小,光电流要大,这样的光敏电阻的灵敏度就高。实际上,大多数光敏电阻的暗电阻往往超过1M欧,甚至高达100MΩ,而亮电阻即使在正常白昼条件下也可降到1kΩ以下,可见光敏电阻的灵敏度是相当高的。 频率特性:非平衡载流子的产生与复合都有一个时间过程,在一定程度上影响了光敏电阻对变化光照的响应。

光谱响应特性:由所用半导体材料的禁带宽度决定。PbS 2、 光敏二极管 光敏二极管是一种光伏探测器,主要利用了PN 结的光伏效应。对光伏探测器总的伏安特性可表达为 s kT qV s s D I e I I I I --=-=)1(0 式中I 中是流过探测器总电流,I so 二极管反向饱和电流,I s 是光照时的光电流,q 是电子电荷,V 是探测器两端电压,k 为玻耳兹曼常数,T 器件绝对温度。 当入射光的强度发生变化,通过光敏二极管的电流随之变化,于是在光敏二极管的二端电压也发生变化。光照时导通,光不照时,处于截止状态,并且光电流和照度成线性关系。 光照特性:输出的饱和光电流与光照度之间的关系。 光谱特性:取决于所采用材料的禁带宽度,同事也与结构工艺有着密切的关系。 频率特性:由光生载流子的渡越时间和L R j C 的乘积决定。 伏安特性:在零偏压下,光电二极管仍有光电流,这是光生伏特效应所产生的短路电流。 3、 光敏三极管 在光敏二极管的基础上,为了获得内增益,就利用了晶体三极管的电流放大作用,用Ge 或Si 单晶体制造NPN 或PNP 型光敏三极管。 光敏三极管可以等效一个光电二极管与另一个一般晶体管基极和集电极并联:集电极-基极产生的电流,输入到三极管的基极再放大。不同之处是,集电极电流(光电流)由集电结上产生的I φ控制。集电极起双重作用:把光信号变成电信号起光电二极管作用;使光电流再放大起一般三极管的集电结作用。一般光敏三极管只引出E 、C 两个电极,体积小,光电特性是非线性的,广泛应用于光电自动控制作光电开关应用。

温度测量实验报告

温度测量实验报告 上海交通大学材料科学与工程学院 实验目的 1.掌握炉温实时控制系统结构图及其电压控制原理; 2.通过数据采集板卡,对温度信号(输入为电压模拟量)采集和滤波; 3.通过数据采集板卡,输出模拟电压量到调节器; 4.通过观测温度曲线,实施手动调节输出电压,使得温度曲线与理想波形尽量接近; 5.用增量式PID控制算法控制炉温曲线。 实验原理 (一)炉温实时控制系统结构图 (二)输出控制电压与工作电压的关系 加热炉加热电压=板卡输出控制电压×220 10 (三)电压控制原理 (四)温度与电压的关系

温度=电压× 700℃ (五)PID控制算法公式 ?u k= Ae k? Be k ? 1+ Ce(k ? 2) 其中:A=K P(1+ T T I + T D T );B=K P(1+2T D T );C=K P T D T 。 u k=u k ? 1+ ?u(k) 手动控制炉温参数选择及理由 加热电压:4V 理由:本套实验装置加热速度很快,若加热电压过高(高于5V)则会导致升温过快从而有可能损坏实验装置,而若加热电压过低则会导致升温过慢,浪费时间。综合实际情况以及上述分析,本组成员决定将加热电压设置为4V。 PID炉温控制参数选择及理由 表1 PID炉温控制参数 选取理由 周期:由于温度滞后性较大,因此周期应当大一些。此处本组采用了推荐值0.2s。 K P:由实际经验可知,K P的最佳范围在0.5-1.5之间。此处本组取了中间值1。 T I:实际操作过程中,本组同学发现若T I较小,超调量就会很大。所以这里将T I取得大一些,设置为20s。T D:小组成员发现炉温滞后现象非常严重,因此T D不得不调大一些,取成0.9s。

数字电子技术实验讲义(试用)

数字电子技术实验 简要讲义 适用专业:电气专业 编写人:于云华、何进 中国石油大学胜利学院机械与控制工程学院 2015.3

目录 实验一:基本仪器熟悉使用和基本逻辑门电路功能测试 (3) 实验二:小规模组合逻辑电路设计 (4) 实验三:中规模组合逻辑电路设计 (5) 实验四:触发器的功能测试及其应用 (7) 实验五:计数器的功能测试及其应用 (8) 实验六:计数、译码与显示综合电路的设计 (9)

实验一:基本仪器熟悉使用和常用门电路逻辑功能测试 (建议实验学时:2学时) 一、实验目的: 1、熟悉实验仪器与设备,学会识别常用数字集成芯片的引脚分配; 2、掌握门电路的逻辑功能测试方法; 3、掌握简单组合逻辑电路的设计。 二、实验内容: 1、测试常用数字集成逻辑芯片的逻辑功能:74LS00,74LS02,74LS04,74LS08,74LS20,74LS32,74LS86等(预习时查出每个芯片的逻辑功能、内部结构以及管脚分配)。 2、采用两输入端与非门74LS00实现以下逻辑功能: ① F=ABC ② F=ABC③ F=A+B ④ F=A B+A B 三、实验步骤:(学生根据自己实验情况简要总结步骤和内容)主要包括: 1、实验电路设计原理图;如:实现F=A+B的电路原理图: 2、实验真值表; 3、实验测试结果记录。如: 输入输出 A B F3 00灭

四、实验总结: (学生根据自己实验情况,简要总结实验中遇到的问题及其解决办法)注:本实验室提供的数字集成芯片有: 74LS00, 74LS02,74LS04,74LS08,74LS20,74LS32,74LS74,74LS90,74LS112, 74LS138,74LS153, 74LS161 实验二:小规模组合逻辑电路设计 (建议实验学时:3学时) 一、实验目的: 1、学习使用基本门电路设计、实现小规模组合逻辑电路。 2、学会测试、调试小规模组合逻辑电路的输入、输出逻辑关系。 二、实验内容: 1、用最少的门电路设计三输入变量的奇偶校验电路:当三个输入端有奇数个1时,输出为高,否则为低。(预习时画出电路原理图,注明所用芯片型号) 2、用最少的门电路实现1位二进制全加器电路。(预习时画出电路原理图,注明所用芯片型号) 3、用门电路实现“判断输入者与受血者的血型符合规定的电路”,测试其功能。要求如下:人类由四种基本血型:A、B、AB、O 型。输血者与受血者的血型必须符合下述原则: O型血可以输给任意血型的人,但O型血的人只能接受O型血; AB型血只能输给AB型血的人,但AB血型的人能够接受所有血型的血; A 型血能给A型与AB型血的人;但A型血的人能够接受A型与O型血; B型血能给B型与AB型血的人,而B型血的人能够接受B型与O型血。 试设计一个检验输血者与受血者血型是否符合上述规定的逻辑电路,如果符合规定电路,输出高电平(提示:电路只需要四个输入端,它们组成一组二进制数码,每组数码代表一对输血与受血的血型对)。 约定“00”代表“O”型 “01”代表“A”型 “10”代表“B”型 “11”代表“AB”型(预习时画出电路原理图,注明所用芯片型号) 三、实验步骤:(学生根据自己实验情况简要总结步骤和内容),与实验一说明类似。

2016磁滞回线的测量(实验报告)(1)

2016磁滞回线的测量(实验报告)(1)

石家 庄铁道大学物理实验中心 第2页 共24页 实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。

3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 石家庄铁道大学物理实验中心第3页共24页

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几个重 要概念 1、饱和磁感应强度B S、饱和磁场强度H S和磁 石家庄铁道大学物理实验中心第4页共24页

石家庄铁道大学物理实验中心 第5页 共24页 化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。

石家庄铁 道 大 学 物 理 实 验 中 心 第6页 共24页 图 1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、 磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化

光电二三极管特性测试实验报告

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

电工学电子技术实验讲义

电工与电子技术实验讲义

实验一 晶体管共射极单管放大电路 一、实验目的 (1)熟悉电子电路实验中常用的示波器、函数信号发生器的主要技术指标、性能及使用方法。 (2)掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。 (3)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 (4)掌握放大器电压放大倍数、输入电阻* 、输出电阻* 的测试方法。 二、实验原理 图2-1为电阻分压式工作点稳定的共射极单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R F 和R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号i u 后,在放大器的输出端便可得到一个与i u 相位相反、幅值被放大了的输出信号0u ,从而实现了电压放大。 图2-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻RB1和RB2的电流远大于晶体管V 的基极电流IB 时(一般5-10倍), 则其静态工作点可用下式估算 )(E F C C CC CE F E BE B E R R R I U U R R U U I ++-=+-= 电压放大倍数 //(1)C L u be F R R A r R β β=-++ 输入电阻 be B B i r R R R ////21= 输出电阻 C R R ≈0 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。 在设计前应测量所用元器件的参数,为电路设计提供必要的依据;在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质的放大器,必定是理论设计与实验调整相结合的产物。

用示波器观察铁磁材料的动态磁滞回线-实验报告

用示波器观察铁磁材料的动态磁滞回线-实验报告

2 B a B B s c a' b' H H m o B r H c 图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S SRD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

光电探测器特性测量实验报告

实验1 光电探测器光谱响应特性实验 实验目的 1. 加深对光谱响应概念的理解; 2. 掌握光谱响应的测试方法; 3. 熟悉热释电探测器和硅光电二极管的使用。 实验内容 1. 用热释电探测器测量钨丝灯的光谱特性曲线; 2. 用比较法测量硅光电二极管的光谱响应曲线。 实验原理 光谱响应度是光电探测器对单色入射辐射的响应能力。电压光谱响应度 ()v R λ定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号 电压,用公式表示,则为 () ()() v V R P λλλ= (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示 () ()() i I R P λλλ= (1-2) 式中,()P λ为波长为λ时的入射光功率;()V λ为光电探测器在入射光功率 ()P λ作用下的输出信号电压;()I λ则为输出用电流表示的输出信号电流。为简 写起见,()v R λ和()i R λ均可以用()R λ表示。但在具体计算时应区分()v R λ和()i R λ,显然,二者具有不同的单位。 通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长的辐射照射下光电探测器输出的电信号()V λ。然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率()P λ需要利用参考探测器(基准探测器)。即使用一个光

谱响应度为()f R λ的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。由参考探测器的电信号输出(例如为电压信号)()f V λ可得单色辐射功率()=()()f P V R λλλ,再通过(1-1)式计算即可得到待测探测器的光谱响应度。 本实验采用单色仪对钨丝灯辐射进行分光,得到单色光功率()P λ ,这里用响应度和波长无关的热释电探测器作参考探测器,测得()P λ入射时的输出电压为()f V λ。若用f R 表示热释电探测器的响应度,则显然有 ()()f f f V P R K λλ= (1-3) 这里f K 为热释电探测器前放和主放放大倍数的乘织,即总的放大倍数。在本实验中=100300f K ?,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,=900/f R V W 。 然后在相同的光功率()P λ下,用硅光电二极管测量相应的单色光,得到输出电压()b V λ,从而得到光电二极管的光谱相应度 ()() ()()()b b f f f V K V R P V R K λλλλλ= = (1-4) 式中b K 为硅光电二极管测量时总的放大倍数,这里=150300b K ?。 实验仪器 单色仪、热释电探测器组件、光电二极管探测器组件、选频放大器、光源。

居里温度的测定_实验报告

钙钛矿锰氧化物居里温度的测定 物理学院 111120160 徐聪 摘要:本文阐述了居里温度的物理意义及测量方法,测定了钙钛矿锰氧化物样品 在不同实验条件下的居里温度,最后对本实验进行了讨论。 关键词:居里温度,钙钛矿锰氧化物,磁化强度,交换作用 1. 引言 磁性材料的自发磁化来自磁性电子间的交换作用。在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。 不同材料的居里温度是不同的。材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。因此,深入研究和测定材料的居里温度有着重要意义。 2.居里温度的测量方法 测量材料的居里温度可以采用许多方法。常用的测量方法有: (1)通过测量材料的饱和磁化强度的温度依赖性得到曲线,从而得到降为零时对应的居里温度。这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及等。 (2)通过测定样品材料在弱磁场下的初始磁导率的温度依赖性,利用霍普金森效应,确定居里温度。 (3)通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。 (4)通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量在居里温度附近的反常转折点来确定居里温度。 3. 钙钛矿锰氧化物 钙钛矿锰氧化物指的是成分为(R是二价稀土金属离子,为一价碱土金属离子)的一大类具有型钙钛矿结构的锰氧化物。理想的型(为稀土或碱土金属离子,为离子)钙钛矿具有空间群为的立方结构,如以稀土离子作为立方晶格的顶点,则离子和离子分别处在体心和面心的位置,同时,离子又位于六个氧离子组成的八面体的重心,如图1(a)所示。图1(b)则是以离子为立

测试技术实验指导书(2017年04)

《机械工程测试技术基础》 实验指导书 戴新编 广州大学 2017.4

前言 测试技术顾名思义是测量和试验的技术。测试技术学习的最终目的是要解决实际问题,所以和理论课程相比,测试技术的实践环节显得更为关键。《机械工程测试技术实验》旨在提高学生综合应用从各门课程中学到的单元技术知识,独立构建、调试测试系统的能力,强化学生对测试系统工程实际的感性认识。它综合体现了各种单元技术在测试工程实际中的应用,是测试专业的学生接触工程实际的开始。 测试技术覆盖了很多知识领域,从测试信号的基本概念到现代测试信号分析方法,从传感器的基本原理到一个复杂大型的测试系统的建立,但在实际中,无法在一门课程里囊括所有这些知识和经验。本指导书根据目前实验室现有的实验条件及教学计划中的学时数,紧密结合理论教学,选择了一些重要的基本内容,实验主要为验证性实验,采用传统的实验模式,由实验教师指导学生完成实验。 通过实验,希望能够使学生牢固、熟练地掌握各种测试仪器的使用,学会调试测试系统的基本方法,包括传感器的使用,信号调理电路、数字化电路及显示单元的调试,在此基础上初步学会自行组建测试系统,并能够独立调试。 具体内容应包括:a.常用测试仪器的使用:在传感器使用及系统组建、调试的过程掌握示波器、数字万用表、信号发生器、稳压电源等的使用。b.传感器的使用:熟悉热电偶传感器、加速度传感器、液位传感器、转速传感器等原理及使用。c.常见物理量测试实验:温度测试实验、转速测试实验、液位测试实验、振动测试实验。由于条件限制,以上的实验内容还只能部分涉及。 实验完成后按要求应提交实验报告。实验报告是一种工程技术文件,是实验研究的产物。学生完成教学实验写出的报告,会为将来进行工程实验、科学研究书写实验报告打下基础,乃至于养成一种习惯,因此应按工程实际要求学生:内容如实,数据可靠;语言明确、简洁;书写工整、规范。实验报告的基本内容应包括实验题目、实验目的、实验仪器和设备(必要时画出连接图)、实验方法、实验结果(包括图表、数字、文字、表达式等)、对实验方法或结

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告 铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。2测定样品的基本磁化曲线作H 曲线。3测定样品的Hc、Br、Bm和 Hm?6?1Bm等参数。4测绘样品的磁滞回线。【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。其特征是在外磁场作用下能被强烈磁化故磁导率很高。另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。

所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。铁磁材料的相对磁导率可高达数千乃至数万这一特点是它用途广泛的主要原因之一。图2-3 铁磁材料μ与H 关系曲线图2-4 不同铁磁材料的磁滞回线可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据图2-4为常见的两种典型的磁滞回线其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小是制造变压器、电机、和交流磁铁的主要材料。而硬磁材料的磁滞回线较宽矫顽力大剩磁强可用来制造永磁体。3利用示波器观测磁滞回线的原理图2-5 原理电路图利用示波器观测磁滞回线的原理电路如图2-5所示。待测样品为EI型矽钢片其上均匀地绕以磁化线圈N及副线圈n。交流电压u加在磁化线圈上线路中串联了一取样电阻R1。将R1两端的电压UH加到示波器的X输入端上对DC4322B 示波器为通道Ⅰ。副线圈n与电阻R2和电容C串联成一回路。电容C两端的电压UB加到示波器的Y输入端上对DC4322B示波器为通道Ⅱ。下面我们来说明为什么这样的电路能够显示和测量磁滞回线。

光伏探测器光电特性实验讲义

光伏探测器光电特性实验 光电二极管与光电池是根据光伏效应制成的pn 结光电器件,短路电流与入射光强成正比是其一个突出优点,在精确测量光强时常用作光探测器。光敏电阻是基于光电导效应原理工作的半导体光电器件,灵敏度高,体积小,重量轻,常用于自动化技术中的光控电路。 【实验目的】 1. 观测光电二极管的光电特性; 2. 观测光电池的光电特性。 【仪器仪器】 光电二极管,光电池,直流电源,小灯泡(6V ,0.15A ),数字万用电表两块(其中一块表有直流电流200A μ量程),电阻箱,实验暗箱等。如图1所示。 图1 光伏探测器光电特性实验仪实验装置 技术指标 1.直流电源 0-4V 连续可调,显示分辨率0.01V ; 2.电阻箱 0-99999.9Ω可调,分辨率0.1Ω; 3.数字万用表 电流测量分辨率0.01A μ(20A μ档); 4.光敏电阻 暗电阻大于4M Ω; 5.小灯泡 额定电压6.3V ,额定电流0.1A 。 6. 传感器移动范围 约17cm

【实验原理】 1. 光伏效应 当光照射在pn 结上时,由光子所产生的电子与空穴将分别向n 区和p 区集结,使pn 结两端产生 电动势。这一现象称为光伏效应,如图2所示。利用半导体pn 结光伏效应可制成光伏探测器,常用的光伏探测器有光电池、光电二极管、光电三极管等。 光电池是根据光伏效应制成的pn 结光电器件。不需要加偏压就可以把光能转化为电能。光电池的用途,一是用作 探测器;二是作为太阳能电池,将太阳能转化为电能。光电池的结构示意图及应用电路如图3所示。 光电池的光照特性主要有伏安特性、入射光强-电流(电压)特性和入射光功率-负载特性。 2. 光照下的pn 结特性 光照下pn 结的伏安特性曲线如图4所示。无光照时,pn 结的伏安特性曲线和普通二极管的一样。有光照时,pn 结吸收光能,产生反向光电流,光照越强,光电流越大。 光伏器件用作探测器时,需要加反偏压或是不加偏压。不加偏压时,光伏器件工作在图4的第四象限,称为光伏 图2 pn 结光伏效应原理图 (b ) (a ) 图3 光电池的结构示意图(a )及基本应用电路(b ) 图4 光伏探测器的伏安特性曲线

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

相关主题
文本预览
相关文档 最新文档