当前位置:文档之家› 软土环境下深基坑施工引起的变形与控制

软土环境下深基坑施工引起的变形与控制

龙源期刊网 https://www.doczj.com/doc/9913862576.html,

软土环境下深基坑施工引起的变形与控制

作者:颜鹏飞

来源:《科学与财富》2014年第01期

摘要:随着经济建设的发展和人们生活水平的提高,近年来我国的各类建筑与市政工程得到飞速的发展,多层建筑及高层建筑的地下室、地下车库、地铁车站等工程施工,由于场地等各种条件的限制,离不开软土地区深基坑工程,而针对地下水位较高的软土地区,软土地区深基坑开挖不得不考虑地下水渗流的影响。本文基于有限元法和有限差分法,以某水利工程为背景,应用软件对软土地区深基坑开挖降水过程进行了模拟,研究软土地区深基坑开挖降水引起的软土地区深基坑渗流和变形特性。

关键词:软土地区;深基坑施工;变形控制

软土地区工程地质条件复杂,软土地区深基坑开挖过程中,必须确保软土地区深基坑本身安全及周边建筑物、岩土稳定的安全,故在软土地区深基坑施工工程中,进行软土地区深基坑及周围环境信息化监测是必不可少。施工时采集积累实测数据以供研究之用,通过进一步的分析可为南昌其它通道工程及地铁工程软土地区深基坑设计和施工方法提供参考类比。本文对软土地区深基坑的围护桩水平位移、桩顶水平位移与沉降、钢支撑轴力、混凝土支撑轴力以及地下水位进行了监测,对监测结果进行了深入的研究和分析,并将数值模拟分析结果的数据提取出来,与本章的监测结果进行了对比与分析。

1. 软土地区深基坑变形分析

1.1 孔隙水压力场分析

软土地区深基坑在开挖降水过程中,由于高压旋喷桩止水帷幕渗透系数远小于软土地区深基坑岩土体,起到了比较好的隔水作用,所以开挖 6m和开挖到坑底时,孔隙水压力变化不是很大。由于中风化砂岩渗透系数不高,达到渗流稳定状态需要较长的计算时间,所以在软土地区深基坑开挖降水模拟时,流固耦合计算以力学计算部分达到近似收敛则停止,开挖完成后,继续渗流计算直至到渗流稳定状态为止。

1.2 位移场分析

(1)竖向位移场分析

软土地区深基坑外的沉降值随距软土地区深基坑边的距离增大而增大,最大值位发生在距离软土地区深基坑边约为软土地区深基坑开挖深度2倍距离处,在开挖6.5m时,软土地区深基坑外沉降最大值为9.76mm,开挖至坑底时,两边沉降最大值为13.15mm,说明随着软土地区深基坑开挖的进行,两边土体的沉降值随开挖深度的增大而增大。在软土地区深基坑外两边的沉降量不相等,右侧的地表沉降比左侧的沉降要大,这是由于软土地区深基坑右侧靠近江

基坑变形监测技术方案设计

基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m 2,总建筑面积约23 万m 2,地下建筑面积约8.7 万m 2。 本工程基坑总面积约29300m 2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1. 《建筑变形测量规程》(JGJ/T8-97) 2. 《工程测量规范》(GB50026-93) 3. 《建筑基坑支护技术规程》JGJ120-99 4. 《国家一、二等水准测量规范》(GB12897-93) 5. 《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

软土基坑变形全过程控制方法

软土基坑变形全过程控制方法 【摘要】引对基坑变形的发生、传递、最终影响三个环节,提出了对蛮形进行全过程综合控制治理的概念,将基坑变形控制分为变形的源头控制、变形传递过程控制、保护目标变形的个别控制与治理三个部分,结合时空效应施工法和开发的新型工艺,建立了软土基坑全过程变形控制方法。【关键词】软土基坑全过程变形控制注浆1前言 在多年的城市软土地下工程实践中,工程技术人员和研究人员已经认识到,软土基坑设计预测和实际施工结果之间常有巨大差异,保守的设计和昂贵的加固措施并不一定能保证基坑周围岩土环境的变形要求。本文结合多年的工程实践经验,针对基坑变形的发生、传递、最终影响的各个环节,提出了对变形进行全过程综合控制治理的理念,将地下工程变形控制分为变形的源头控制、变形传递过程控制、保护目标变形的个别控制与治理三个阶段。以深基坑工程为例,在此全过程控制理念的指导下结合基坑工程时空效应施工法、微变形调整手段和远程监控管理方法,形成一套完整的地下工程微变形控制方法体系,并成功地应用于上海的地铁建设和其他的市政工程中,取得了巨大的经济和社会效益。

2基坑变形全过程控制理论 基坑变形系统是由三个元素构成的:变形来源、传播途径和保护对象。基坑开挖卸载引起围护结构向基坑内的变形,围护结构的变形引起其后面的土体位移以填充由于围护结构变形而出现的土体损失,并逐渐向离基坑更远处的土体传递,在一定时间内传递到地面和建筑物处引起地面以及建筑物的沉降。基坑开挖引起的岩土环境问题可以用一个直观的流程图来表示,如图1所示。 图1基坑变形系统示意图 这里将基坑支护结构、土体、坑外重要保护对象三者看成是类似于传染源、传播媒介、传染对象的一个有机系统。基坑周围环境保护的目的就是控制基坑变形的影响,保护基坑周围的重要建构筑物。从这个系统的传播机理可知,切断其中的任何一个环节都能有效地控制变形的发展,从而实现岩土工程环境保护的目的。基坑变形全过程控制理论就是基于对这个变形系统的认识,提出从全方位对基坑变形进行控制,进而最终有效地解决基坑变形。基坑变形全过程控制方

基坑变形监测方案

本设计主要针对某深基坑工程施工过程中基坑变形及引起周边环境变形进行监测的方法及相关数据处理方案的设计与分析。主要监测内容对基坑壁进行水平位移监测和沉降监测;内支撑格构柱进行沉降监测;周边临近基坑受基坑影响的建筑物作沉降监测;周边建筑沉降超预警值后要求进行倾斜观测。采用监测方法为精密二等水准、极坐标法、投点法,并对其可行性进行做了精度分析。 关键字:沉降观测;水平位移观测;倾斜观测;二等水准;极坐标

Abtract This desig n is mai nly for a deep foun datio n pit duri ng the con struct ion of foun dati on pit deformatio n and cause the deformati on of the surro unding en vir onment monitoring methods and data processing program design and analysis.The main mon itori ng content of the foun dati on pit wall for mon itori ng horiz on tal displaceme nt and settlement monitoring;In support of lattice column for subsidence monitoring; near an excavation foundation pit surrounding by effect of buildings for subsidence monitoring;The surrounding building settlement of super early warning value requirements of the tilt observation.The monitoring method for precision two level, the polar coordinate method, points method,And its feasibility was made precision an alysis. Keyword: Horizontal displacement observation; settlement observation; tilt observati on; two level; polar coord in ates

基坑变形控制

基坑变形控制 1概况 、下穿道概况 连云新城滨海大道(新城闸~西墅闸)新建工程,设计起点位于新城闸,桩号K0+000,终点位于西墅闸,桩号K2+,长2.887km。 下穿道工程为连云新城滨海大道中下穿纵五路隧道部分,下穿道采用箱形框架与U 型槽相结合的结构形式,中间箱型框架结构段120m,两端的U型槽结构段分别180m、170m。 隧道施工采用直壁式支护大开挖方法,基坑开挖宽度29m,基坑最深处距现状地表。基坑两侧为Ф800mm灌注桩,桩长20m,桩间距1m。灌注桩外侧施工双排Ф650mm水泥搅拌桩做止水用,坑底采用水泥搅拌桩加固,加固深度4m。坑内支撑采用Ф609mm钢管,支撑钢管水平间距,上下设置两层支撑,层间距。 本工程基坑变形控制保护等级为二级,基坑外地面最大沉降量≤100mm,围护结构最大水平位移≤100mm。 、工程地质情况 根据勘察过程中钻探揭露、取样分析、结合静力触探资料,参照区域性地层资料,将场地内上部地基土分为9个工程地质层。 ①-1层砂性填土:回填时间不超过3个月,不均匀混有少量碎石、角砾及少量砂性土。厚度:~3.30m,平均2.24m;层底标高:~2.04m,平均。 ②-1层冲填土:灰色~青灰色,流塑,光滑~稍有光滑,具腥味。场地普遍分布,厚度:~4.10m,平均2.64m;层底标高:~-1.12m,平均。 ②-2层淤泥:青灰色,流塑,光滑,具腥味,局部相变为淤泥质粘土。场地普遍分布,厚度:~13.80m,平均12.84m;层底标高:~-13.28m,平均。 ③层粘土夹粉质粘土:褐黄色,坚硬~硬塑,少量可塑,上部含少量粒径1~2cm 直径不等的钙质结核。场地普遍分布,厚度:~6.80m,平均5.63m;层底标高:~-18.82m,平均。 ④层粘土:褐黄色杂灰绿色,可塑,光滑。场地普遍分布,厚度:~5.70m,平均4.32m;层底标高:~-23.79m,平均。

基坑支护施工方案完整版

xxx工程 基 坑 支 护 施 工 方 案 编制人:日期:审核人:日期:审批人:日期:

目录 第一章工程概况 (1) 一、编制依据 (1) 二、工程概况 (1) 三、地基条件及水文特征 (2) 四、基坑周边环境概况 (2) 第二章施工方案 (2) 一、基坑土方开挖 (2) 二、降水工程施工方案 (3) 三、基坑支护方案 (4) 四、边坡变形观测方案 (5) 六、排水处理 (6) 七、基坑后期维护 (6) 第三章质量控制措施 (7) 一、关键工序质量控制措施 (7) (一)、修整面壁质量控制措施 (7) (二)、土钉制作质量控制措施 (7)

(三)、喷射作业质量控制措施 (7) 二、特殊工序质量控制措施 (7) 三、重要部位控制措施 (8) 第四章施工中有关问题的影响及处理措施 (8) 一、施工噪音 (8) 二、环境保护 (8) 第五章基坑支护施工过程中的应急预案 (9) 一、局部垮塌 (9) 二、裂缝处理 (9) 三、软弱层处理 (9) 第六章安全施工措施 (10) 一、管理目标 (10) 二、组织管理 (10) 三、安全防护管理 (11) 第七章应急预案 (13) 第八章文明施工措施 (15) 一、现场总平面管理 (15) 二、环保措施 (16)

三、施工操作现场文明施工管理措施 (17) 四、消防管理措施 (17)

第一章工程概况 一、编制依据 1.本工程岩土工程地质勘察报告 2.本工程业主有关要求 3.本工程有关设计图纸 4.选用规范 1)《建筑地基基础工程施工质量验收规范》GBJ50202-2002 2)《建筑基坑工程技术规范》YB9258-97 3)《工程测量规范》GB50026-93 4)《建筑变形测量规程》JGJ/T8-97 5)《建筑工程施工质量验收统一标准》GB50300-2001 6)《建筑施工安全检查标准》JGJ59-99 7)《建筑机械使用安全技术规程》JGJ33-2001 8)《基坑支护设计与施工》 9)《混凝土结构设计规范》GBJ10-89 10)《基坑土钉支护技术规程》(CECS96:97) 11)《国家一、二等水准测量规范》(GB12897-91) 12)《建筑物变形测量规程》 二、工程概况 工程名称:柴桑郡 建设单位:xxxxxxxxxxxxxxx

不规则基坑的土方计算

对于不规则基坑的土方,如电力分支井、虹吸滤池等,在放坡的情况下,计算土方的开挖量比较烦琐,查找有关书籍,未有现成的公式可供参考。出于实际工作的需要,根据可能遇到的基坑形状,归纳分析推导出计算公式如下: V=S底×H+L×C×H+1/2×L×K×H2 +N/3×K2× H3 ×Tg180°/n =( S底+L×C+1/2×L ×K×H)×H+ N/3×K2×H3×Tg180°/n 其中 S底——基础垫层面积 C——工作面操作宽度 L——基础垫层周长 K——放坡系数 H——基坑开挖深度 N——基坑凸角数减去凹角数之差 不规则基坑土方计算公式表 2004年2月1日 挖土方需放坡计算公式现在接触已经有三个了, 1、(A+2C+KH)(B+2C+KH)*H+1/3 K2 H3 (K2:放坡系数大平方;H3:高度三次方) 2、H/3(F1+F2+ㄏF1*F2)(F1:上底面积;F2:下底面积;ㄏF1*F2:上底面积乘以下底面积开根) 3、H/6

[ A1*B1+A*B+(A1+A)(B1+B)] (A1:上底面积一个边长;B1:上底面积另一个边长)(A:下底面积一个边长;B:下底面积另一个边长) 1公式:是建筑预算员常用的基坑土方计算公式,直接套用放坡系数; 2公式:是中学生计算棱台的体积公式;用于土方计算时需先计算边长,再计算面积,再计算体积; 3公式:是棱台体积公式的延伸,当A1/A=B1/B时成立。也不够方便,可用于现场测量结果的计算(施工计算),土方工程量近似计算。 1、平整场地: (1)园路、花架分别按路面、花架柱外皮间的面积乘1.4系数以平方米计 算; (2)水池、假山、步桥,按其底面积乘2以平方米计算。 2、人工挖、填土方按立方米计算,其挖、填土方的起点,应以设计地坪的标高为准,如设计地坪与自然地坪的标高高差在±30cm以上时,则按自然地坪 标高计算。 3、人工挖土方、基坑、槽沟按图示垫层外皮的宽、长,乘以挖土深度以立 方米计算。并乘以放坡系数。 4、路基挖土按垫层外皮尺寸以立方米计算。 5、回填土应扣除设计地坪以下埋入的基础垫层及基础所占体积,以立方米 计算。 6、余土或亏土是施工现场全部土方平衡后的余土或亏土,以立方米计算。 7、堆筑土山丘,按其图示底面积乘设计造型高度(连座按平均高度)乘以 0.7系数,以立方米计算。 8、围堰筑堤,根据设计图示不同提高,分别按堤顶中心线长度,以延长米 计算。 9、木桩钎(梅花桩),按设计图示尺寸以组计算,每组五根余数不足五根 或按一组计算。 10、围堰排水工程量,按堰内河道、池塘水面面积及平均深度以立方米计算。 11、河道、池塘挖淤泥及其超运距运输均按淤泥挖掘体积以立方米计算。

工程测量中深基坑变形观测方法

工程测量中深基坑变形观测方法 随着时代的发展和经济的进步,建筑物的高度不断攀升,而基坑深度也随之加深,这也带来了工程施工难度的不断加大。而深基坑工程变形监测作为促进施工有效进行的重要方式也开始发挥越来越重要的作用,成为促进深基坑工程施工高效进行的重要方式。所以,深基坑的变形监测在以后的工程施工过程中将发挥越来越重要的作用,要重视深基坑的变形监测,同时注重监测的精确性,促进基坑施工更好的开展起来。 标签:工程测量;基坑;变形;观测;方法 1深基坑变形的形成原因 在深基坑的开挖过程中,会造成深基坑底部的土层上升,引起土层的流变。而且这个过程会使得深基坑内外的土体和深基坑的支撑结构出现压力失衡的情况,压力的失衡就会造成土层水平方向的移动。致使支持墙内的土体对支护墙有一种被动的压力趋势,支护墙外的土体对支护墙产生主动的压力趋势。这些会造成支護墙的不均等侧向位移,并最终导致地表的沉降。 2深基坑变形监测的目的 在建筑的深基坑工程中,土体的应力会产生一些变化,这些变化会造成周边的地面沉降和土体的位移,而且深基坑收到相关水土压力的作用,也会造成深基坑维护结构的稳定。所以为了有效的保证深基坑的施工安全,就需要对深基坑的变形进行监测,对发现的威胁要及时的进行处理,以保证深基坑的施工安全。 3深基坑的监测内容和方法 3.1深基坑的监测内容 在深基坑的施工过程中,为了及时的掌握深基坑的安全状态,需要在施工的现场来对深基坑进行监测。并通过对现场的监测数据来分析深基坑的强度。监测可以有效的获知深基坑周边环境的变化,而且可以及时的获得潜在的险情,并作出一些及时的干预。在目前的深基坑施工过程中,需要监测的变形量主要有桩顶的水平和垂直位移、土体的压力、深基坑内外的水位和周边环境的沉降等。 3.2深基坑的监测方法 3.2.1深基坑现场巡视的方法对深基坑的现场巡视主要是依靠人眼的观测,并且可以用一些辅助的工具来对深基坑的维护结构质量和土体有无裂缝和位移以及周边的环境有无沉降等来观测。采用人工目测的方法可以监测比较多的内容,而且获得的信息更加的直观,可靠度也很高。如果再和仪器的监测数据进行融合分析,可以有效的预测深基坑的变形趋势。因此深基坑现场巡视法在实际中

土方钢筋砼计算例题

(二)土的工程性质 1.土的含水量 式中:G 湿——含水状态时土的质量 G 干——烘干后的质量 2.土的可松性 【例1-1】某建筑物外墙为条形毛石基础,基础平均截面面积为2.5m 2。基槽深1.5m ,底宽为2.0m ,边坡坡度为1:0.5。地基为粉土,Ks=1.25;Ks ′=1.05。计算100m 长的基槽挖方量、需留填方用松土量和弃土量。 【解】 挖方量 315.4121005.12 )5.05.122(2m V =????++= 填方量 335.1621005.25.412m V =?-= 填方需留松土体积 3s s 325.19305 .125.15.162m K K V V =?=?'=留 弃土量(松散) 32s 121.3225.19325.15.412m V K V V =-?=-=留弃 一、基坑、基槽和路堤的土方量计算 当基坑上口与下底两个面平行时(图1-2),其土方量即可按拟柱体的体积公式计算。即: 式中:H ——基坑深度(m ) F 1,F 2——基坑上下两底面积(m 2) F 0——F 1和F 2之间的中截面面积(m 2) 当基槽和路堤沿长度方向断面呈连续性变化时(图1-3),其土方量可以用同样方法分段计算。 即: ()2011146 F F F L V ++= 式中:V 1——第一段的土方量(m3) L 1——第一段的长度(m )。

将各段土方量相加即得总土方量,即: 式中:V 1,V 2,…,V n ——为各分段土的土方量(m 3)。 1.某矩形基坑,坑底面积为20mx26m ,深4m ,边坡系数为0.5,试计算该基坑的土方量。 解:底面积F1=20x26=520m2 (1分) 顶面积F2=(20+4x0.5x2)x (26+4x0.5x2)=720m2 (1分) 中截面面积F0=(20+4x0.5x2÷2)x (26+4x0.5x2÷2)=616m2 (1分) 土方量V=H/6(F1+4F0+F2)=4/6x (520+4x616+720)=2469.33m2 2、某基坑坑底面积为6mx10m ,深4m ,边坡系数为0.33,K p =1.25, K p ,=1.05,需回填空间的体积为120m 3 ,用体积为5 m 3 的汽车将余土外运,求余土外运车次及预留回填土的体积。 解:F 1=AB=6x10=60m 2 (1分) F 2=(A+2mH)(B+2mH)=(6+2x4x0.33)(10+2x4x0.33)=109.21m 2 (1分) F 0=(A+mH)(B+mH)=(6+4x0.33)(10+4x0.33)=82.86m 2 (1分) V 坑(自)=H/6(F 1+F 2+4F 0)=333.77m 3 (2分) V 坑(松)=V 坑(自)x1.25=417.21m 3 (1分) V 回(压)=120m 3 V 回(自)=V 回(压)/K P ,=114.29m3 (1分) V 回(松)=V 回(自)xKP=142.86m3 (1分) V 余(松)=V 坑(松)-V 回(松)=274.35m3 (1分) N=V 余(松)/V 0=54.87=55(车) (1分) 二、场地平整标高与土方量 (一)确定场地设计标高 1.初步设计标高 式中:H 0——所计算的场地设计标高(m ) N ——方格数; H 11,…,H 22——任一方格的四个角点的标高(m )。 如令:H 1——1个方格仅有的角点标高; H 2——2个方格共有的角点标高;

基坑变形监测方案

佳·5.4克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·5.4克拉项目部 二○一七年九月二十日

目录 一、编制依据 (1) 二、工程概况 (1) (一)工程简介 (1) (二)地层岩性 (1) (三)气象 (2) (四)地下水 (2) 三、施工部署 (3) (一)人员部署 (3) (二)监测管理程序 (3) (三)测量检测部署 (3) 四、深基坑监测要求 (3) (一)监测要求 (3) (二)、监测过程控制要求 (4) (三)、监测数据结果的要求 (4) 五、监测方法 (4) (一)监测仪器及要求 (5) (二)巡视检查 (5) (三)监测点的布置 (5) 六、监测期和监测频率 (5) 七、监测报警及异常情况下的监测措施 (6) 八、资料整理和分析反馈 (6) 九、作业安全及其它注意事项 (6) 十、雨季施工技术措施 (6) 十一、应急预案 (7) (一)应急救援部署 (7) (二)突发事件风险分析及预防 (8) 附图一:基坑监测点平面布置图

一、编制依据 1、佳·5.4克拉基坑开挖图; 2、佳·5.4克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·5.4克拉项目基坑支护结构设计》《佳·5.4克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·5.4克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约59.3m-82.7m,东西长约48.7m-118.5m。 本工程±0.000绝对标高为1198.000。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为11.77m;西塔筏板厚度为1 500mm,开挖深度为11.47m,,商铺为300厚的防水板,开挖深度为10.27m。 本基坑安全级别属于一级基坑。 (二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: ①粉质粘土(Q4al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑;土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为1.50~23.20m,层面标高 1195.19m~1214.05m。

基坑支护施工方案完整版

WORD格式 xxx 工程 基 坑 支 护 施 工 方 案 编制人:日期: 审核人:日期: 审批人:日期:

目录 第一章工程概况.................................................................................................... .1... 一、编制依据................................................................................................ .........1... 二、工程概况................................................................................................ .........1... 三、地基条件及水文特征.....................................................................................1... 四、基坑周边环境概况.........................................................................................2... 第二章施工方案.................................................................................................... ...2... 一、基坑土方开挖................................................................................................ .2... 二、降水工程施工方案.........................................................................................2... 三、基坑支护方案................................................................................................ .3... 四、边坡变形观测方案.........................................................................................4... 六、排水处理................................................................................................ .........5... 七、基坑后期维护................................................................................................ .5... 第三章质量控制措 施 ...............................................................................................5... 一、关键工序质量控制措施.................................................................................5... (一)、修整面壁质量控制措 施.......................................................................5.. (二)、土钉制作质量控制措 施.......................................................................5.. (三)、喷射作业质量控制措

(完整版)深基坑监测方案

************工程 基坑变形监测方案 编制人: 审批人: 施工单位:********************** 2014年10月17日

目录 1、工程概况 (1) 2、监测目的及要求 (1) 3、编制依据 (2) 4、工程地质概要 (2) 5、监测内容 (3) 6、监测频率 (7) 7、测量主要仪器设备 (9) 8、监测工作管理保证监测质量的措施 (9) 9、监测人员配备 (14) 10、监测资料的提交 (14)

基坑变形监测方案 1、工程概况: 1、工程名称:*************** 2、工程地点:***************。 3、建设单位:**************** 4、设计单位:**************** 5、勘察单位:**************** 6、监理单位:***************** 7、施工单位:***************** 8、结构形式:***************** 深基坑支护采用如下方案: 1.1 基坑支护方案 本工程基坑东侧采用钢筋砼排桩支护,北侧采用锚杆加土钉墙支护(详见专项施工方案)。 2、监测目的及要求 2.1.监测目的 在深基坑开挖的施工过程中,基坑内外的土体由原来的静止土压力状态向主动力土压力状态转变,应力状态的改变引起的变形,即使采取支护措施,一定数量的变形总是难以避免的。这些变形包括:深基坑坑内土体的隆起,基坑支护结构以及周围土体的沉降和侧向位移。无论那种位移的量超出了某种容许的范围,都将对基坑支护结构造成危害。因

此,在深基坑施工过程中,只有对基坑支护结构、基坑周围的土体进行综合、系统的监测,才能对工程情况有全面的了解。确保工程顺利进行。 2.2.深基坑工程监测的要求 在深基坑开挖与支护工程中,为满足支护结构及被护土体的稳定性,首先要防止破坏或极限状态发生。破坏或极限状态主要表现为静力平行的丧失,或支护结构的构造产生破坏。在破坏前,往往会在基坑侧向的不同部位上出现较多的变形或变形速率明显增大。支护结构物和被支护土体的过大位移将引起邻近建筑物的倾斜和开裂。如果进行周密的监测控制,无疑有利于采取应急措施,在很大程度上避免或减轻破坏的后果。 3、编制依据: 3.1《建筑基坑工程变形技术规范》(GB50497-2009) 3.2《城市测量规范》(CJJ8-99) 3.3《精密水准测量规范》(GB/T15314-940) 3.4《工程测量规范》(GB 50026-93) 3.5《建筑边坡工程技术规范》(GB50330-2007) 3.6 《建筑基坑支护技术技术规程》(JGJ120-99) 4、工程地质概要: 4.1本基坑地下水属潜水类型,其主要补给来源为大气降水。 4.2拟建场地浅层土层成份复杂,基坑工程正式施工前应对场地内的障碍物作进一步查明并给予清除,以确保围护体和坑内加固等正常施

(最新整理)2.1基坑变形控制

(完整)2.1基坑变形控制 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2.1基坑变形控制)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2.1基坑变形控制的全部内容。

第二章基坑变形与监测 2。1基坑变形控制 2。1。1基坑侧壁安全等级 随着城市建设的快速持续发展,怎样控制深基坑工程的变形和安全,避免由于深基坑的变形导致周围设施和环境的破坏、开裂、变形,就成为工程建设中的一个重要课题。近几年,我国深基坑工程正迅速发展,在工程的实践中有成功也有失败,深基坑中还有很多问题需要我们进一步去解决。深基坑工程不但要保证周围建筑物的正常使用和安全,更要保证深基坑维护结构的安全。所以,对深基坑变形控制的研究就越来越重要。根据《建筑基坑支护技术规程》(JGJ 120—2012)规定:基坑侧壁的安全等级分为三级(见表2—1)。 表2—1基坑侧壁安全等级重要性系数 2.对一级安全等级和支护结构有限定的二级基坑侧壁,对基坑周边环境及结构变形验算。2。1.2基坑支护的选型 当建筑物地下部分施工时,就必须开挖基坑、进行降水和对坑壁进行围挡,选择适合支护类型关系到整个工程的正常安全施工. 工程地质的多样性决定了基坑的复杂程度,工程上并没有相同的基坑,基坑支护结构的选

型主要应考虑以下几方面的因素: 1.工程地质与水文条件 (1)不同的水土环境决定了不同的施工方案,而设计施工前则应该做好详细的地质勘察。(2)上层环境的环境中的含水率,抗剪强度、密度、压缩量等技术参数是对基坑土体最直接的特征。 2、基坑开挖深度 (1)基坑侧壁的土压力随着开挖深度增加而增大,深度越大的基坑越复杂,深基坑的开挖必须经过专家论证方可实施. (2)基坑开挖要遵循科学的施工顺序,宜结合不用的开挖方法来降低深基坑带来的失稳问题。 3、降排水条件 (I)为保证坑底良好的作业面,应作良好的降排水措施。 (2)防止管涌流砂的危害,应对土层中水文条件进行实时监测。 4.周边环境对基坑侧壁位移影响 基坑周边原则上不能随易堆载土料以及其他大型机械,容易对基坑侧壁造成过大的侧压力,当附近有大型建筑物等重大荷载时,应对支护作严格要求并论证可行性。 5、施工季节 (1)雨季大量降水容易造成基坑侧壁造成过大负担,应考虑排水及防渗措施。 (2)无法避免时,应做好排水措施。 以下介绍基坑支护的类型并且选型的原则,如表2-2所示. 表2—2常用支护结构形式的选择

基坑变形监测方案 (1)

佳·克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·克拉项目部 二○一七年九月二十日

目录

附图一:基坑监测点平面布置图

一、编制依据 1、佳·克拉基坑开挖图; 2、佳·克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·克拉项目基坑支护结构设计》《佳·克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约,东西长约。 本工程±绝对标高为。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为;西塔筏板厚度为1500mm,开挖深度为,,商铺为300厚的防水板,开挖深度为。 本基坑安全级别属于一级基坑。

(二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑; ①粉质粘土(Q 4 土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为~,层面标高~。 al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色, ②圆砾(Q 4 重型动力触探试验修正值=~击,中密-密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中风化,圆砾一般粒径为~,偶含卵石及漂石。层面埋深~,厚度~,层面标高~。 ③强风化泥岩(N):该层分布于整个场地,半成岩,褐红色-灰绿色,微裂隙及风华裂隙较发育,中密-密实,矿物成分以蒙脱石、绿泥石,高岭石、白云母等为主,泥钙质胶结,碎屑结构,中厚层状构造,岩芯呈短柱状,具有遇水易软化的特点,强风化泥岩岩体基本质量等级Ⅴ级。层面埋深~,厚度~,层面标高~。 ④中风化泥岩(N):该层分布整个场地,半成岩,褐红色-灰绿色,见微裂隙,致密;矿物成分以蒙脱石、绿泥石、高岭石、白云母、长石、石英等为主,泥钙质胶结,碎屑结构,巨厚层状构造,岩芯呈短桩状,具有遇水易软化的特点,未经扰动时坚硬,岩体基本质量等级为Ⅳ级。层面埋深~,勘察厚度~(未揭穿),层面标高~。 (三)气象 天水市气候类型属暖温带轻冰冻中湿区,据天气气象局资料,本区多年平均气温℃,极端最高气温℃,极端最低气温℃,历年最冷月相对湿度平均62%,最热月平均湿度73%,年最大降水量,降水多集中在7、8、9月份,多暴雨,夏季多东北风,夏季平均风速s,冬季多东风,冬季平均风速s,30年遇最大风速s,年雷暴日天,年沙暴日天,年雾日数天,历年最大积雪厚度15cm,地表有季节性冻土,标准冻土深度,场地内无地表水。 (四)地下水 根据区域水文地质资料和勘察结果,拟建场地地下水为第四系松散岩类孔隙潜水,②圆砾

深基坑逆作法施工监测与变形分析

深基坑逆作法施工监测与变形分析 发表时间:2019-01-09T10:54:41.980Z 来源:《防护工程》2018年第30期作者:徐爱成 [导读] 在深基坑工程施工过程中,容易受到周边环境以及施工方法等各种因素的影响,也就容易导致出现基坑结构以及地面建筑物出现较大程度的沉降与变形情况,从而引发一些重大的安全事故。 徐爱成 上海海洋地质勘察设计有限公司 摘要:在深基坑工程施工过程中,容易受到周边环境以及施工方法等各种因素的影响,也就容易导致出现基坑结构以及地面建筑物出现较大程度的沉降与变形情况,从而引发一些重大的安全事故。本文结合某工程为例,主要阐述了逆作法施工技术,将地下室的楼板结构作为永久性支撑结构,从而加快了施工的进度,降低了工程成本,并有效的控制了建筑基坑的不均匀沉降以及变形。 关键词:深基坑工程;逆作法;基坑监测 随着城市化进程的不断加快以及人民生活水平的提高,建筑行业得到了迅猛的增长,但是由于城市用地面积越来越紧张,高层、超高层建筑等仍然不能够满足人们的高需求。因此,建筑的地下室也得到了广泛的利用。基坑工程是整个建筑工程中的基础部分。从某个角度来看,虽然基坑工程的施工技术大多类似,但是由于建筑当地的地质条件、水文条件等各方面都有所差异,此时,如果施工人员没有根据实际情况来确定施工方案,那么工程中往往会含有更多不确定因素,所以在施工过程中,相关负责人必须要对其进行严格监测,及时发现工程中存在的各种问题,并予以解决,从而消除存在在工程中的不确定因素。 在城市中,为了满足人们的高要求,通常会设置多层地下室结构,在这种情况下,逆作法是一种非常好的施工手段,它能够有效的解决深基坑支护难的问题。这种结构通常是将地下结构来作为深基坑的支护结构,在我国沿海地区,这样的施工手段随处可见。相对于普通支护施工手段而言,这种具有刚度大、稳定性高、安全可靠等优点。所以如果建筑的地基出现了变形,那么采用这种方式就能够对其有效的控制,但是这种方式唯一的缺点就是不便于土方基坑的开挖。 1 工程概况 1.1 工程简介 本工程主要有5栋30层高的住宅区组成,采用的是框剪结构。这5栋建筑的5层属于商用区域,上部为住宅区,在该建筑的下部有三层地下室。在本工程当中,与其他住宅以及商业区域有一路之隔,基坑与道路最近距离约13m;南侧最近距民宅及商住楼约25m;西侧紧邻商务楼及新城大道,最近距离约8m;北侧为工业品批发市场,离基坑最近距离约16m。 基坑开挖面积18270m2,支护结构580延长米,开挖深度约14m,±0.000标高相当于绝对高程4.150m,基坑周边自然地坪绝对标高平均为3.900m。支护结构采用直径1000mm的钻孔灌注桩+3道钢筋混凝土支撑,利用±0.000层平板结构作第一道内支撑,第二、三道内支撑顶面标高分别为一5.100m和一8.700m,基坑中间设钢立柱承受竖向荷载,采用逆作法施工。 1.2 地质条件 由于本工程位于沿海地区,我们对该工程的土质条件进行勘测,其土质大致以灰色层粘土为主,这种土质的可塑性较强,但由于含水量过大,所以压缩性也就非常大。 1.3 水文条件 在本工程中,地下水主要分为两大类,一是地上潜水;二是地下承压水。在进行开挖基坑的过程中,基坑内部所存在的地下水主要是潜水,而且这种水质主要位于上部土层当中。但是在表层的图层当中,由于含水性相对较差,所以表层存在的这种潜水量也就相对较小。另外,由于地下水位会受到外界气候条件的影响,每一年水位的变化一般在±1.0m左右,经勘测者对潜水位的勘测,其深度在0.3~1.3m之间。而地下的承压水会存在于基坑的最底部,而此处由于土层厚度不大,并且分布不够连续,所以其含水量也就不大,对于整个工程的施工并没有太大的影响。 2 监测方案 2.1 监测目的及内容 在深基坑施工过程中,要求相关负责人对其进行严格的检测,其检测目的有以下加点:1)保证深基坑工程的施工安全,这是监测的最基本要求;2)对周边环境以及建筑物起到保护作用;3)采用现代化、信息化系统进行严格的检测,这样才能够及时的发现施工过程中存在的各种问题。另外,监测人员必须按照施工及国家的相关规定,并且根据基坑工程的特点以及实际情况、个人的相关经验对工程进行严格的监测。 2.2 监测时间和监测频率 一般来说,施工全过程都需要监测人员在一旁检测,一直都是施工竣工为止。在基坑开挖之前,监测人员需要对各个项目进行测定,并应将次数控制在2次以上,然后将各个参数进行计算,为了提高数据的准确度,可以取各个参数的平均值。在基坑开挖过程中,监测人员必须坚持每天一次的频率进行检测,等到基础底板浇筑完成之后可以慢慢减少频率。如果在施工过程中出现了异常情况,那么监测人员需要随时对工程进行检测,以提高工程的安全系数。 3 监测成果分析 3.1 围护结构侧移 围护桩墙及周围土体深层水平位移的监测是确定基坑围护体系变形和受力的最重要观测手段,采用测斜手段进行观测。本工程不仅对围护桩侧向位移进行监测.且对围护桩外侧对应的土体深层位移也进行了监测。由监测结果可知,土体深层位移曲线与围护结构侧向位移很相似。监测全过程中,围护桩侧向位移及周边土体深层位移均在40mm内,基坑变形控制较好。基坑底板浇筑后,围护结构变形基本稳定,坑底附近侧移反而有小幅回归,这是因为随地下结构的施工,基础底板和结构梁对整个围护体系形成了有效约束。随结构自重逐渐增加,坑底以下被动区土体回弹受到限制并产生少量压缩,为整个围护体系提供的反力逐渐增加,从而使围护桩侧向位移及周边土体深层位

全面方格网计算土方量教材及例题[1]-2

全面方格网计算土方量教材及例题[1]-2

一、读识方格网图 方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1-3所示. 图1-3 方格网法计算土方工程量图 二、场地平整土方计算 考虑的因素: ① 满足生产工艺和运输的要求; ② 尽量利用地形,减少挖填方数量; ③争取在场区内挖填平衡,降低运输费; ④有一定泄水坡度,满足排水要求. ⑤场地设计标高一般在设计文件上规定,如无规定:

A.小型场地――挖填平衡法; B.大型场地――最佳平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。 1、初步标高(按挖填平衡),也就是设计标高。如果已知设计标高,1.2步可跳过。 场地初步标高: H0=(∑H1+2∑H2+3∑H3+4∑H4)/4M H1--一个方格所仅有角点的标高; H2、H3、H4--分别为两个、三个、四个方格共用角点的标高. M——方格个数. 2、地设计标高的调整 按泄水坡度、土的可松性、就近借弃土等调整. 按泄水坡度调整各角点设计标高: ①单向排水时,各方格角点设计标高为: Hn = H0 ±Li ②双向排水时,各方格角点设计标高为:Hn = H0± Lx ix± L yi y 3.计算场地各个角点的施工高度 施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算: 式中hn------角点施工高度即填挖高度(以“+”为填,“-”为挖),m; n------方格的角点编号(自然数列1,2,3,…,n). Hn------角点设计高程, H------角点原地面高程. 4.计算“零点”位置,确定零线 方格边线一端施工高程为“+”,若另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1-4所示).

相关主题
文本预览
相关文档 最新文档