当前位置:文档之家› §1-6 线性时不变系统的基本特性

§1-6 线性时不变系统的基本特性

线性规划的概念

3.6:线性规划 目录: (1)线性规划的基本概念 (2)线性规划在实际问题中的应用 【知识点1:线性规划的基本概念】 (1)如果对于变量x 、y 的约束条件,都是关于x 、y 的一次不等式,则称这些约束条件为__线性约束条件__(),z f x y =是欲求函数的最大值或最小值所涉及的变量x 、y 的解析式,叫做__目标函数_,当(),f x y 是x 、y 的一次解析式时,(),z f x y =叫做_线性目标函数__. (2)求线性目标函数在线性约束条件下的最大值或最小值问题,称为__线性规划问题__ ;满足线性约束条件的解(),x y 叫做__可行解_;由所有可行解组成的集合叫做__可行域_;使目标函数取得最大值或最小值的可行解叫做_最优解__ 例题:若变量x 、y 满足约束条件2 10x y x y +≤?? ≥??≥? ,则z x y =+的最大值和最小值分别为 ( B ) A. 4和3 B. 4和2 C. 3和2 D. 2和0 分析:本题考查了不等式组表示平面区域,目标函数最值求法. 解:画出可行域如图 作020l x y +=: 所以当直线2z x y =+过()20A , 时z 最大,过()1,0B 时z 最小max min 4, 2.z z == 变式1:已知2z x y =+,式子中变量x 、y 满足条件11y x x y y ≤?? +≤??≥-? ,则z 的最大值是__3___ 解:不等式组表示的平面区域如图所示.

作直线0:20l x y +=,平移直线0l ,当直线0l 经过 平面区域的点()21A -,时,z 取最大值2213?-=. 变式2:设2z x y =+,式中变量x 、y 满足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最小值 分析:由于所给约束条件及目标函数均为关于x 、y 的一次式,所以此问题是简单线性 规划问题,使用图解法求解 解:作出不等式组表示的平面区域(即可行域),如图所示. 把2z x y =+变形为2y x z =-+,得到斜率为-2,在y 轴上的截距为z ,随z 变化的一族平行直线. 由图可看出,当直线2z x y =+经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小. 解方程组430 35250x y x y -+=??+-=?,得A 点坐标为()5,2, 解方程组1 430x x y =??-+=? ,得B 点坐标为()1,1 所以max min 25212,211 3.z z =?+==?+= 变式3:若变量x 、y 满足约束条件6 321x y x y x +≤?? -≤-??≥? ,则23z x y =+的最小值为( C ) A. 17 B. 14 C. 5 D. 3

线性系统理论大纲

北京化工大学 攻读博士学位研究生入学考试 《线性系统理论》考试大纲 一、适用的招生专业 控制理论与控制工程; 二、考试的基本要求 要求考试比较系统地理解线性系统状态空间设计方法的基本概念和基本理论,掌握线 性系统的状态空间分析和设计方法,要求考试具有抽象思维能力、逻辑推理能力、运算能力 和综合运用所学的知识分析问题和解决问题的能力。 三、考试的主要内容与要求 (▲表示应掌握;■表示应理解;?表示应了解) 1.▲线性系统的状态空间描述 传递函数表达与状态空间描述之间的相互转换;代数等价;组合系统的状态空间描述。2.线性系统的运动分析 ▲状态转移矩阵的定义、性质;▲定常和时变系统的状态转移矩阵求解;▲定常和时变系统的状态运动分析;■连续系统的离散化;■离散系统的运动分析。 3.线性系统能控性和能观性分析 ▲能控性及能观性定义;▲时变和定常系统的能控性及能观测性判别;■对偶原理;▲能控、能观规范型;?结构分解。 4.线性系统稳定性分析 ▲Lyapunov意义下的运动稳定性定义;■Lyapunov稳定性理论;■线性系统的Lyapunov稳定性分析;?离散系统的状态运动稳定性及判据。 5.线性系统的综合设计理论 ▲状态反馈和输出反馈的比较;极点配置问题的定义,▲极点配置条件;单变量系统的极点配置算法;■状态反馈的镇定问题;?输入——输出静态、动态解耦的定义、条件和算法;?跟踪控制;?线性二次型最优问题;▲观测器的提法、分类、与存在条件;▲全维状态观测器的设计;?降维状态观测器的设计;■观测器状态反馈控制系统及分离原理。 四、考试参考书 郑大钟,线性系统理论。北京:化学工业出版社。

解线性方程组的基本思想

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 【 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 @ 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 & (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s ! 解:(a )稳定; (b )稳定; (c )不稳定。

简单的线性规划问题附答案)

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 知识点二 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b ,当z 变化时,方程表 示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?

线性系统复习大纲

第一部分 1.什么是线性系统,线性系统怎么分类? 2.状态空间描述和输入输出描述的基本概念及其关系? 3.系统状态空间描述建模,主要是指电路,力学模型,机电装置的状态空间描 述数学建模。 4.状态方程的约当标准形及其性质。 5.传递函数矩阵概念,传递函数矩阵与状态空间描述之间的关系(已知状态空 间描述求传递函数矩阵和已知传递函数矩阵进行状态空间描述实现)。 6.线性坐标变换。 7.组合系统的状态空间描述,输入输出描述建模。 8.矩阵指数函数及其性质。 9.线性系统的运动求解:系统矩阵特征值,特征向量都运动的影响。 10.脉冲响应阵与传递函数的关系,卷积定理。 11.状态转移矩阵及其性质。 12.线性系统离散化及其性质,求解。 13.线性系统与离散系统的能控性、能达性、能观性、能测性及其判据。 14.能控性指数,能观性指数,对偶定理。 15.能控能观标准型及其结构分解,结构分解后各部分的输入输出描述,状态空 间描述之间的关系,会对约当标准型。 16.线性系统内部稳定,BIBO稳定概念及其性质。 17.连续的离散系统李雅普诺夫稳定概念及其各种判据定理。会用李雅普诺夫方 法判定连续系统、离散系统的稳定性。 18.状态反馈、输入输出反馈性能比较。 19.极点配置及其算法。 20.镇定条件,镇定与极点配置的关系(算法不考,但对于一个线性系统能进行 是否能镇定条件判断)。 21.解耦控制形式,分类,各种解耦方法特点,系统能否解耦判断,会进行积分 性解耦算法。 22.跟踪问题及其结构框图,内膜原理(会建立跟踪问题的内膜),可跟踪条件。 23.各种线性二次型最优控制问题指标含义,掌握最优控制及其性能指标求法。 24.无限时间最优控制的稳定裕度,反馈增益可动范围及其物理意义。 25.状态观测器设计,分类及其特点,掌握全维和降维观测器设计方法。 26.状态观测器设计与状态反馈设计之间的关系问题。

线性基本概念

第一讲 基本概念 一.线性方程组的基本概念 线性方程组的一般形式为: ???????=+++=+++=+++, ,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 个数1C ,2C , …, n C 构成,它满足:当每个方程中的 未知数1x 都用1C 替代时都成为等式. 对线性方程组讨论的主要问题两个: (1)判断解的情况. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. ???=+=+f ey dx c by ax 如果两条直线是相交的则有一个解;如果两条直线是重合的则有无穷 多个解;如果两条直线平行且不重合则无解。 (2)求解,特别是在有无穷多解时求通解. 齐次线性方程组: 021====n b b b 的线性方程组.0,0,…,0 总 是齐次线性方程组的解,称为零解.

因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷 多解(即有非零解). 二.矩阵和向量 1.基本概念 矩阵和向量都是描写事物形态的数量形式的发展. 矩阵由数排列成的矩形表格, 两边界以圆括号或方括号, m 行n 列的表格称为m ?n 矩阵. 这些数称为他的元素,位于第i 行j 列的元素称为 (i,j)位元素. 5401 23-是一个2?3矩阵. 对于上面的线性方程组,称矩阵 mn m m n n a a a a a a a a a A 21222 2111211 =和m mn m m n n b b b a a a a a a a a a A 212 12222111211)(=β 为其系数矩阵和增广矩阵. 增广矩阵体现了方程组的全部信息,而齐 次方程组只用系数矩阵就体现其全部信息. 2009年的一个题中,一个方程组的系数矩阵为

实验二线性时不变系统,信号与系统,南京理工大学紫金学院实验报告

信号与系统实验报告 实验名称: 线性时不变系统 姓名: 学号: 班级:通信 时间:2013.5 南京理工大学紫金学院电光系

一、 实验目的 1、 掌握线性时不变系统的特性; 2、 学会验证线性时不变系统的性质。 二、实验基本原理 线性时不变系统具有如下的一些基本特性。 1.线性特性(包含叠加性与均匀性) 对于给定的系统,11()()x t t 、y 和22()()x t t 、y 分别代表两对激励与响应。 对于叠加性:当11()()x t y t ??→,22()()x t y t ??→ 则1212()()()()x t x t y t y t +??→+ 图2.1 对于均匀性: 当()()x t y t ??→, 则()()kx t ky t ??→,0k ≠ 图2.2 综合以上,则当激励是1122()()k x t k x t ?+?时,则对应的响应为 1122()()k y t k y t ?+?。对于线性时不变系统,如果起始状态为零,则系统满足叠加 性与均匀性(线性性)。 2.时不变特性 对于时不变系统, 当11()()x t t ??→y , 则1010()()x t t t t -??→-y

图2.3 3. 微分特性 对于线性时不变系统,当()()x t t ??→y 则 ()() dx t dy t dt dt ??→ 图2.4 4. 因果性 因果系统是指系统在时刻0t 的响应只与0t t =和0t t <时刻的输入有关。 也就是说,激励是产生响应的原因,响应是激励引起的后果,这种特性称为因果性。通常由电阻器、电感线圈、电容器构成的实际物理系统都是因果系统。 二、 实验内容及结果 记录实验过程中的输入输出波形。 1、线性特性 1).叠加性观察 (1) 设置信号产生模块为模式3(11) ; (2) 用按键1使对应的“信号A 组”的输出1-x 2信号(信号A 组的信号输出指示灯为001011):记录波形为x1(t )

信号与系统 线性时不变系统实验报告

信号与系统实验报告 实验名称:线性时不变系统 姓名: 学号: 班级: 时间:

一、 实验目的 1、 掌握线性时不变系统的特性; 2、 学会验证线性时不变系统的性质。 二、实验基本原理 线性时不变系统具有如下的一些基本特性。 1.线性特性(包含叠加性与均匀性) 对于给定的系统,11()()x t t 、y 和22()()x t t 、y 分别代表两对激励与响应。 对于叠加性:当11()()x t y t ??→,22()()x t y t ??→ 则1212()()()()x t x t y t y t +??→+ 图2.1 对于均匀性: 当()()x t y t ??→, 则()()kx t ky t ??→,0k ≠ 图2.2 综合以上,则当激励是1122()()k x t k x t ?+?时,则对应的响应为 1122()()k y t k y t ?+?。对于线性时不变系统,如果起始状态为零,则系统满足叠加 性与均匀性(线性性)。 2.时不变特性 对于时不变系统, 当11()()x t t ??→y , 则1010()()x t t t t -??→-y

图2.3 3. 微分特性 对于线性时不变系统,当()()x t t ??→y 则 ()() dx t dy t dt dt ??→ 图2.4 4. 因果性 因果系统是指系统在时刻0t 的响应只与0t t =和0t t <时刻的输入有关。 也就是说,激励是产生响应的原因,响应是激励引起的后果,这种特性称为因果性。通常由电阻器、电感线圈、电容器构成的实际物理系统都是因果系统。 二、 实验内容及结果 记录实验过程中的输入输出波形。 1、线性特性 1).叠加性观察 (1) 设置信号产生模块为模式3(11) ; (2) 用按键1使对应的“信号A 组”的输出1-x 2信号(信号A 组的信号输出指示灯为001011):记录波形为x1(t )

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

MATLAB实验报告——运用MATLAB求解和分析线性时不变系统资料

MATLAB实验报告 课程名称 MATLAB程序设计实验日期 2015 年 05 月 11 日学生姓名学号班级 实验名称运用MATLAB求解和分析线性时不变系统 实验仪器MATLAB7.1 Windows XP 实验目的1.熟悉线性时不变LTI系统在典型激励信号下的响应及其特征。 2.掌握线性LTI系统单位冲激响应的求解方法。 3.熟悉MATLAB的相关函数的调用格式和作用。 4.会用MATLAB对系统进行时域分析。 实验基本原理1.Impulse函数 功能:计算并画出系统的冲激响应。 调用格式: Impulse(sys):其中sys 可以是利用命令tf,zpk或ss建立的系统函数。 Impulse(sys,t)计算并画出系统在向量t定义的时间内的冲激响应。Y=impulse(sys,t):保存系统的输出值。 2.Step函数 功能:计算并画出系统的阶跃响应曲线。

调用格式: Step(sys):其中sys可以是利用命令tf,zpk,或ss 建立的系统。 Step(sys,t):计算并画出系统在向量t定义的时间内的阶跃响应。 3.Lsim函数 功能:计算并画出系统在任意输入下的零状态响应。 调用格式: Lsim(sys,x,t):其中sys可以是利用命令tf,zpk或ss建立的系统函数,x是系统的输入,t定义的是时间范围。 Lsim(sys,x,t,zi):计算出系统在任意输入和零状态下的全响应,sys必须是状态空间形式的系统函数,zi是系统的原始状态。 4.roots函数 功能:计算齐次多项式的根。 调用格式: r=roots(b):计算多项式b的根,r为多项式的根。 5.impz函数 功能: 求离散系统单位脉冲响应,并绘制其时域波形。 调用格式:impz(b ,a) :以默认方式绘出向量a , b 定义的离散系统的单位脉冲响应的离散时域波形. impz(b ,a ,n) :绘出由向量a , b定义的离散系统在0—n (n必须为整数)离散时间范围内的单位序列响应的时域波形. impz(b ,a ,n1:n2) : 绘出由向量a , b定义的离散系统在n1—n2

线性方程组和矩阵知识总结.doc

线性方程组和矩阵知识总结 吴荣魁 2013201363 线性方程组的基本概念 ???????=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112222212111212111 其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量它满足:当每个方中的未知数xi 都用ki 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. 对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解 b1=b2=…=bm=0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. 线性方程组的解法 ???????=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112222212111212111 (1)、写出线性方程组的增广矩阵。 (2)、用初等行变换把增广矩阵化为阶梯形矩阵。 (3)、看阶梯形矩阵的最后一个非零行的首非零元是否在最后一列。如果是,则方程组无解;反之方程组有解。 (4)、在有解的情况下,找出阶梯形矩阵中非零行的个数r 。如果r=n ,则方程组有唯一解;如果r

线性代数的基本概念

《线性代数》根据“卓越工程师教育培养计划”的基本要求,突出基本概念、基本理论、基本技能,注重培养学生数学素质。教材在满足教学要求的前提下,适当降低理论推导的要求,但重视阐明基本理论的脉络。习题配置 中也突出基本题、概念题和与工程相关的实际应用题等。 由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这 个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促 成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线 性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数 学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。 矩阵和行列式行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常 有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。 1693 年4 月,莱布尼茨在写给洛比达的一封 信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解 伏题元法》中也提出了行列式的概念与算法。 1750 年,瑞士数学家克莱姆 (G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学 家贝祖 (E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具 使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相 分离的人,是法国数学家范德蒙 (A-T.Vandermonde,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开 行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。 1772 年,拉普拉斯在一篇论文中证明 了范德蒙提出的一些规则,推广了他的展开行列式的方法。 继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。 1815 年, 柯西在一篇论文中给出了行列式的第一个系统的、几乎是近代的处理。其中主要结果之一是行列式的乘法定理。另外,他第一个把行列式的元素排成方阵,采用双足标记法;引进了行列式特征方程的术语;给出了相似行列 式概念;改进了拉普拉斯的行列式展开定理并给出了一个证明等。 19 世纪的半个多世纪中,对行列式理论研究始终不渝的作者之一是詹姆士?西尔维斯特 (J.Sylvester,1814-1894) 。他是一个活泼、敏感、兴奋、热情,甚至容易激动的人,然而由于是犹太人的缘故,他受到剑桥大学 的不平等对待。西尔维斯特用火一般的热情介绍他的学术思想,他的重要成就之一是改进了从一个次和一个次的多项式中消去 x 的方法,他称之为配析法,并给出形成的行列式为零时这两个多项式方程有公共根充分必要 条件这一结果,但没有给出证明。 继柯西之后,在行列式理论方面最多产的人就是德国数学家雅可比 (J.Jacobi,1804-1851) ,他引进了函数 行列式,即“雅可比行列式”,指出函数行列式在多重积分的变量替换中的作用,给出了函数行列式的导数公式。雅可比的著名论文《论行列式的形成和性质》标志着行列式系统理论的建成。由于行列式在数学分析、几 何学、线性方程组理论、二次型理论等多方面的应用,促使行列式理论自身在19世纪也得到了很大发展。整个19 世纪都有行列式的新结果。除了一般行列式的大量定理之外,还有许多有关特殊行列式的其他定理都相继得到。 矩阵矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重 要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个 述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为 了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列 式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。 英国数学家凯莱 (A.Cayley,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先 引进矩阵以简化记号。 1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了 关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念, 指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩

离散线性时不变系统分析

实验六 离散线性时不变系统分析 一、 实验目的 1. 掌握离散LSI 系统的单位序列响应、单位阶跃响应和任意激励下响应的MATLAB 求解方法。 2. 掌握离散LSI 系统的频域分析方法; 3. 掌握离散LSI 系统的复频域分析方法; 4. 掌握离散LSI 系统的零极点分布与系统特性的关系。 二、实验原理及方法 1. 离散LSI 系统的时域分析 描述一个N 阶线性时不变离散时间系统的数学模型是线性常系统差分方程,N 阶LSI 离散系统的差分方程一般形式为 ) ()(0 0i n x b k n y a M i i N k k -=-∑∑== (6.1) 也可用系统函数来表示 12001212120()()()()()1M i M i i M N N k N k k b z b b z b z b z Y z b z H z X z a z a z a z a z a z ----=----=++++====++++∑∑ (6.2) 系统函数()H z 反映了系统响应和激励间的关系。一旦上式中k a ,i b 的数据确定了,系统的性质也就确定了。特别注意0a 必须进行归一化处理,即01a =。 对于复杂信号激励下的线性系统,可以将激励信号在时域中分解为单位序列或单位阶跃序列的线性叠加,把这些单元激励信号分别加于系统求其响应,然后把这些响应叠加,即可得到复杂信号作用于系统的零状态响应。因此,求解系统的单位序列响应和单位阶跃响应尤为重要。由图6-1可以看出一个离散LSI 系统响应与激励的关系。 图6-1 离散LSI 系统响应与激励的关系 (1) 单位序列响应(单位响应) 单位响应()h n 是指离散LSI 系统在单位序列()n δ激励下的零状态响应,因此()h n 满足线性常系数差分方程(6.1)及零初始状态,即 00()()N M k i k i a h n k b n i δ==-=-∑∑, (1)(2)0h h -=-== (6.3) 按照定义,它也可表示为 ()()()h n h n n δ=* (6.4) 对于离散LSI 系统,若其输入信号为()x n ,单位响应为()h n ,则其零状态响应()zs y n 为 ()()*()zs y n x n h n = (6.5) 可见,()h n 能够刻画和表征系统的固有特性,与何种激励无关。一旦知道了系统的单位响应()h n ,就可求得系统对任何输入信号()x n 所产生的零状态响应()zs y n 。 MATLAB 提供了专门用于求连续系统冲激响应的函数impz(),其调用格式有

信号与线性系统的几个基本问题

信号与线性系统的几个基本问题

第一课什么是卷积卷积有什么用什么是傅利叶变换什么是拉普拉斯变换引子很多朋友和我一样,工科电子类专业,学了一堆信号方面地课,什 么都没学懂,背了公式考了试,然后毕业了. 先说"卷积有什么用"这个问题.(有人抢答,"卷积"是为了学习"信号与系统"这门课地后续章节而存在地.我大吼一声,把他拖出去枪毙!> 讲一个故事: 张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程.一天, 他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限地输入信号只会产生有限地输出. 然后,经理让张三测试当输入sin(t>(t<1秒>信号地时候(有信号发生器>,该产品输出什么样地波形.张三照做了,花了一个波形图. "很好!"经理说.然后经理给了张三一叠A4纸: "这里有几千种信号,都用公式说明了,输入信号地持续时间也是确定地.你分别测试以下我们产品地输出波形是什么吧!" 这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?"

于是上帝出现了: "张三,你只要做一次测试,就能用数学地方法,画出所有输入波形对应地输出波形". 上帝接着说:"给产品一个脉冲信号,能量是1焦耳,输出地波形图画出来!" 张三照办了,"然后呢?" 上帝又说,"对于某个输入波形,你想象把它微分成无数个小地脉冲,输入给产品,叠加出来地结果就是你地输出波形.你可以想象这些小脉冲排着队进入你地产品,每个产生一个小地输出,你画出时序图地时候,输入信号地波形好像是反过来进入系统地." 张三领悟了:" 哦,输出地结果就积分出来啦!感谢上帝.这个方法叫什么名字呢?" 上帝说:"叫卷积!" 从此,张三地工作轻松多了.每次经理让他测试一些信号地输出结果,张三都只需要在A4纸上做微积分就是提交任务了! ---------------------------------------- 张三愉快地工作着,直到有一天,平静地生活被打破.

线性规划基本概念及模型构建

LP (Linear Programming)

Alex 有一个家庭农场。除了农场上的农作物以外,他还饲养了一些猪拿到市场上出售,猪可获得的饲料及其所含成分如下表:Alex如何喂养猪更好? 成分/每公斤 玉米槽料苜蓿每日最小需求量碳水化合物 蛋白质 维他命 成本(美分)903010842080207240606060200180150 问题1:科学养猪线性规划建模(猪饲料的配方)饲养成本最小

--- 每天玉米、槽料、苜蓿各喂多少公斤? --- 必须满足要求12--- 追求成本最低 Min. 84x 1+ 72x 2+ 60x 3 3x 1x 2x 3 知识点 建模三要素 决策变量约 束目标 90x 1+ 20x 2+ 40x 3 ≥ 20030x 1+ 80x 2+ 60x 3 ≥ 18010x 1+ 20x 2+ 60x 3 ≥ 150 x i ≥0 , i =1,2,3 成分/每公 斤 玉米槽料苜蓿每日最小需求量碳水化合物 蛋白质 维他命 成本(美分)903010842080207240606060200180150

s.t. 90x 1+ 20x 2+ 40x 3 ≥ 200 30x 1 + 80x 2+ 60x 3 ≥ 180 10x 1+ 20x 2+ 60x 3 ≥ 150 x i ≥0 , i =1,2,3 Min . 84x 1+ 72x 2+ 60x 3 目标函数约束函数符号中必含等号符号的右侧为常数线性--变量均为1次方 Max. 或 Min.线性--所有变量均为1次方常规约束:变量非负!知识点 模型表示

?线性规划模型能求解出来吗? 能!--- 万能的单纯形法 结合软件 QSB应用

线性系统结构的基本特性

第七章 线性系统结构的基本特性 A7-1 分别用不同的方法判断下列系统的能控性: (1) u X =001X 310011011+ - &(2) = =X ]111[100X 341010121 -+ - y u X &(3) + X 00731041Y U 010014024- 0 0 01 4- 0 00 0 3- 00 0 0 2X = =X &A7-2 确定使下列系统完全能控时,待定参数的取值范围。 (1) ?= X y u ]11[10X X 4321 + =αααα&(2) ?=X 20033010U 631X 0000005432111 = + - - αααααααY X &A7-3 分别用不同的方法,判断A7-1(2)、(3)以及下列各系统的能观测性。 (1) = =X ]02[120X 12610 + -- y u X &

(2) ?=X 802401Y X 200020012 = - - X &A7-4 确定使A7-2各系统完全能观测时待定参数的取值范围。 A7-5 确定使下列系统能控能观测时待定参数的取值范围。 (1) = X y u ]01[11X X 4321 + =αααα&(2) = =]X 00[1X 410301000321ααα + - - y u X &A7-6 图2-61所示小功率位置随动系统的状态方程为 == + X ]0/[10/1K/T 10X -- =T K y X T c r θθ& 试分析参数K 和T 对系统能控性与能观测性的影响。 A7-7 图题A7-7所示RLC 网络的输入量为u(t),输出量为i(t)(可以测量): (1)分析控制电压u(t)对电容电压和电感电流的能控条件; 图题A7-7 (2)分析该网络的能观测条件。 A7-8 设系统的传递函数为 8 1472)(3++++=s s G s s s α 分析当a 为多大时,系统将变成为或不完全能控或不完全能观测。 A7-9 用零极相消观点证明,图题A7-9所示单变量闭环系统的能控性和能观测性,与开环系统的能控性和能观测性是一致的。 图题A7-9 7 A7-11 通过线性非奇异变换,将A7-1(1)系统化为能控规范形。 A6-12 对于能控规范形

线性系统

线性系统理论论文 论文题目:线性系统理论综述 —连续系统线性二次最优控制学院: 年级: 专业: 姓名: 学号: 指导教师:

目录 摘要 (3) 前言 (3) 第一章线性系统理论概述 (3) 1.1线性系统理论的研究对象 (4) 1.2 线性系统理论的主要任务 (4) 1.3 线性系统的主要学派 (5) 1.4 现代线性系统的主要特点 (5) 1.5 线性系统的发展 (6) 第二章连续系统线性二次最优控制 (6) 2.1最优控制问题 (6) 2.2最优控制的性能指标 (7) 2.3 最优控制问题的求解方法 (8) 2.4 线性二次型最优控制 (9) 2.5 连续系统线性二次型最优控制实例 (10) 2.6 小结 (13) 总结 (13) 参考文献 (13)

摘要 线性系统理论是现代控制理论中最基本、最重要也是最成熟的一个分支,是生产过程控制、信息处理、通信系统、网络系统等多方面的基础理论。本文对线性系统的历史背景、研究现状和发展趋势作了简单的综述。线性二次最优控制理论内容丰富、应用广泛,引起广泛地关注并取得了丰硕成果。最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。本文基于连续系统线性二次最优控制,提出新的控制算法并结合实例进行了仿真验证。 关键字:线性系统;线性二次最优控制;控制系统;连续系统 前言 线性系统理主要阐述线性系统时域理论,给出了线性系统状态空间的概念、组成方法和基本性质,进而导出系统的状态空间描述。以状态空间法为主要工具研究多变量线性系统的理论[1]。随着计算机技术的发展,以线性系统为对象的计算方法和计算辅助设计问题也受到普遍的重视。与经典线性控制理论相比,现代线性系统主要特点是:研究对象一般是多变量线性系统,而经典线性理论则以单输入单输出系统为对象;除输入和输出变量外,还描述系统内部状态的变量;在分析和综合方面以时域方法为主而经典理论主要采用频域方法;使用更多数据工具。 随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。本文介绍了最优控制的基本原理,并给定了一个具体的连续线性二次型控制系统[4],利用MATLAB软件对其最优控制矩阵进行了求解,通过仿真实验,设计得到最优控制效果比较好,达到了设计的目的。 第一章线性系统理论概述 作为现代控制理论中最基本、最成熟的分支之一—线性系统理论,具有其基本的重要性。回顾线性系统几十年的发展历程可以看到,它的每一个进步几乎都

相关主题
文本预览
相关文档 最新文档