当前位置:文档之家› 复合材料水泥基复合材料

复合材料水泥基复合材料

新型水泥基复合材料在军事工程中的

最近几场高技术局部战争都已表明,对弱小落后的国家来讲,提高军事工程防护等级及抗打击能力非常重要。随着精确制导武器、新型钻地弹等开始在高技术战争中大量使用,对防护工程的威胁和破坏越来越大。另外,从这几场战争可以看出,机场、桥梁及重要交通设施已成为战争初期受打击的对象。因此,迫切需要研制开发具有高防护等级及战时快速抢修能力的新材料。本文主要介绍高强超高强混凝土、MDF水泥材料、DSP水泥混凝土、RPC活性粉末混凝土、土聚水泥材料及磷酸盐水泥混凝土几种新型水泥基复合材料,并分析这些材料在军事防护工程和抢修抢建工程的应用前景。 一、防护工程用新型水泥基材料 (一)xx、超xx混凝土 随着高效减水剂及活性掺合料在混凝土工程中的应用,混凝土的强度等级得到了很大程度的提高。目前,配制IOOMPa以上的混凝土对我们来说已经不是一件难事。如80年代,军队××和地方××大学合作,在某基地成功进行了宽13m,高21m的防护大门施工,其抗压强度达到88.4MPa。又如,部队××学院与地方××大学合作研究的高抗爆水泥基复合材料不但具有高抗压强度,还具有很好的韧性和抗爆性。这些高强、超高强混凝土的开发使用大大提高了我军军事工程的防护等级。实现混凝土高强化的途径可见图l。 (二)无宏观缺陷水泥材料(MDF) 无宏观缺陷水泥材料(Macrodefect-free Cements,简称为MDF材料),是1979年英国化学工业公司和牛津大学最早开始研究的。MDF的抗压强度高达300MPa,抗弯强度150MPa,抗拉强度可达140MPa,弹性模量达50GPa,这是传统的水泥胶凝材料无法比拟的。MDF的原材料中90%-99%是高标号的硅酸盐水泥或铝酸盐水泥,4%-7%的水溶性树脂,水灰比一般在0.20以下。由于低水灰比,要使各种组成材料均匀混合,必须采用强力式高效剪切搅拌机,成型时则采用热压工艺。 (三)DSP材料

《水泥基复合材料》课程复习大纲

《水泥基复合材料》知识要点 1.混凝土的概念及分类。 2.混凝土的组成材料及各组成材料的作用。 3.工程对混凝土拌和所用水泥的要求。 4.集料对混凝土性能可产生哪些影响? 5.集料的主要技术性质。 6.评定普通集料强度的方法有哪几种?其中哪一种为集料的真实强度? 7.普通混凝土粗集料为什么对其颗粒形状及表面状态进行评定?理解棱角系数的概念。我国对颗粒形状要求是如何规定的? 8.理解集料级配概念,论述集料的颗粒级配对工程的意义。说明连续级配及间断级配集料进行堆积时,哪一种可获得更小的空隙率? 9.说明集料最大粒径对混凝土在经济及性能上可能形成的影响。 10.理解流变学概念,说明三大流变基元的流变学方程及在固定荷载作用下变形特征。 11.利用麦克斯威模型解释应力松弛。 12.画出勃格斯模型的流变学基元组成。画出在外力一定时,勃格斯模型的变形规律。 13.画出混凝土拌和物的流变学模型,指出混凝土拌和物的变形规律。 14.指出混凝土拌和物的《混凝土学》定义及ASTMC125定义。说明二者的区别。 15.混凝土工作性测试有哪些方法?我国主要采用哪两种方法?指出混凝土坍落度测试的流变学实质。 16.影响混凝土拌和物工作性的因素有哪些?能否加以定量说明? 17.什么是混凝土的内、外分层?指出其危害。 18.什么是混凝土的界面过度区?说明混凝土界面过度区对混凝土性能的影响。 19.影响混凝土界面过度区结构的因素有哪些?如何提高界面过度区强度? 掌握、理解中心质假说的内容。中心质假说理论指出的理想复合材料结构模型包括哪些内容?何为负中心质,吴中伟教授怎样解释负中心质对混凝土结构及其性能的积极作用? 20. 21.混凝土的变形性能分为哪两大类? 22.说明混凝土的干缩机理及影响因素。如何减少混凝土的干缩? 23.什么是混凝土的自干燥及自收缩?什么是混凝土的塑性收缩?

水泥基复合材料

水泥基复合材料 艾ai青摘要: 本文论述了水泥基材料改性用聚合物种类、聚合物改性机理、聚合物改性水泥基材料研究进展和发展趋势。加入了聚合物材料后,水泥基材料的性能,如强度、变形能力、粘结性能、防水性能、耐久性能等都会有所改善,改善的程度与聚灰比、聚合物的品种和性能有很大关系。但也存在不足之处,如抗压强度提高不大,有时还降低,最高使用温度不如普通混凝土等。笔者认为,研究如何大幅度提高聚合物改性水泥基材料的抗压强度和最高使用温度很有意义。 关键词: 关键词聚合物改性水泥基材料进展机理性能 1.引言 普通混凝土因抗压比低,干缩变形大,抗渗性、抗裂性、耐腐蚀性差,密度大,其使用范围受到很大限制。随着工业的发展,出现了钢筋混凝土、自应力混凝土和纤维混凝土。但在这些改进中,胶结材料水泥的性能没有发生改变,因此也限制了混凝土性能的提高。水泥混凝土(砂浆)的一个新动向就是水泥混凝土(砂浆)与有机高分子材料复合,这样可以有效地改善混凝土(砂浆)的性能。因为有机高分子聚合物的长分子链结构以及大分子中的键节或链段的自旋转性,决定其具有与无机非金属材料不同的性质—弹性和塑性[1]。所以在水泥混凝土(砂浆)中加入少量有机高分子聚合物,既可以使混凝土获得高密实度,又不至于使混凝土(砂浆)的脆性加大,这样便可制得高强度、高抗渗和高耐腐蚀性的混凝土。如今,聚合物改性砂浆和混凝土不仅在混凝土结构的修补和维护方面成为一种非常重要的材料,就是在新的建筑中也获得越来越广泛的应用,尤其是在桥面、停车场、码头、瓷砖和石材粘结、建筑防水、防腐等工程领域。 2. 聚合物改性水泥基复合材料 1.1. 改性用聚合物种类 聚合物改性水泥基复合材料是指在水泥混合时加入了分散在水中或者可以在水中分散的聚合物材料,包括掺和不掺骨料的复合材料、水泥浆、砂浆和混凝土。用于水泥混凝土(砂浆)改性的聚合物有四类,即水溶性聚合物、聚合物乳液(或分散体)、可再分散的粉料和液体聚合物。聚合物乳液通常是将可聚合单体在水中进行乳液聚合而获得的,但也有一些聚合物乳液不是通过单体乳液聚合而获得的,如天然橡胶胶乳是直接从橡胶树上获得,再经适当浓缩制成的;环氧乳液则一般是用乳化剂将环氧树脂乳化而成的。可再分散的聚合物粉料一般是由聚合物乳液经喷雾干燥而成的,聚合物粉末与聚合物乳液就像是奶粉与牛奶一样。它对水泥砂浆和混凝土的改性机理与聚合物乳液是相同的,只不过它往往是先与水泥和骨料进行干混,再加水湿拌才重新乳化成乳液。水溶性聚合物品种很多,可以分为三大类:天然水溶性、半合成水溶性和合成水溶性。一般说,水溶性聚合物的用量非常小,通常在水泥质量的0。5%以下,对硬化砂浆和混凝土的强度没有大的影响[2]。因此,水溶性聚合物主要用来改善水泥砂浆和混凝土的工作特性,有时候也可以把其归类为增黏剂。用于水泥改性用的液体聚合物有环氧树脂和不饱和聚脂,在与水泥混合时还要加入固化剂。与聚合物乳液改性相比,使用液体聚合物时聚合物用量要更多,因为聚合物不亲水,分散不是很容易,所以用液体聚合物改性混凝土的情形要比其他类型聚合物少得多。聚合物水泥砂浆的配比一般为,水泥∶砂=1∶2~3(质量比);聚灰比=5%~20%;

水泥基复合材料

水泥基复合材料 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

水泥基复合材料 1. 混凝土概述 水泥基复合材料指以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体与其他各种无机、金属、有机材料组合而得到的具有新性能的材料。 混凝土材料发生了几次重大变革,其中三次最为突出。 1. 19世纪中叶法国首先出现了钢筋混凝土 2. 1928年法国发明了预应力钢筋混凝土 3.近30年来聚合物复合混凝土及混凝土外加剂的出现 混凝土材料按胶结材料分类:无机胶结材料混凝土,有机胶结材料混凝土,无机与有机复合胶结材料混凝土。按容重分类:特重混凝土,重混凝土,轻混凝土,特轻混凝土。按混凝土结构分类:普通结构混凝土,细粒混凝土,大孔混凝土,多孔混凝土。按用途分类结构用混凝土,隔热混凝土,装饰混凝土,耐酸混凝土等。 混凝土的性质:混凝土混合料必须具有良好的和易性以保证获得良好的浇灌质量。①流动性:指混合料在本身自重或在机械振捣的外力作用下产生流动或坍落能均匀密实地填满模板的性质。②黏聚性:指混合料具有一定的黏聚力在运输或浇筑过程中不致出现分层离析使混凝土保持整体均匀的性能。③保水性:指混合料在施工过程中具有保水能力保水性好的混料不易产生严重泌水现象。 2. 高性能混凝土

混凝土:由胶结材料水泥和粗细集料石子和沙按适当比例拌和均匀经搅拌振捣成型在一定条件下养护而成的复合材料。 高强混凝土(high-strength concrete,HSC)与高性能混凝土(high-performance concrete)的首要区别是后者强调耐久性。高性能混凝土不仅要具备高的强度而且应具备高密实性和高体积稳定性。 高性能混凝土在微观结构方面的特点:由于存在大量未水化的水泥颗粒浆体所占比例降低浆料的总孔隙率小,孔径尺寸较小,仅最小的孔为水饱和浆体-集料界面与浆体本体无明显区别消除了薄弱区游离氧化钙含量低。 高性能混凝土的特性:有自密实性;体积稳定性好;强度高,其抗压强度已有超过200MPa;水灰比较低,水化反应终止得较早,水化热总量相应降低;在较长的持续期后,高性能混凝土的总收缩应变量与其强度成反比,早期收缩率随着强度的提高而增大;徐变变形显着低于普通混凝土;Cl-渗透率低于普通水泥更符合环保要求;具有较高的密实性和抗渗性抗化学腐蚀性显着优于普通强度混凝土;高温作用下会产生爆裂、剥落。 3. 纤维增强水泥基复合材料 纤维增强水泥基复合材料是由不连续的纤维均匀地分散于水泥混凝土基材中形成的复合材料. 纤维与水泥浆基材的黏结比较牢固形成了遍布结构全体的纤维网。当基本材料受拉力过高开裂时拉力可逐步转移到横跨裂纹的纤维上增大了混凝土结构的变形能力。纤维的拉伸强度较高

浅谈水泥基混凝土材料

浅谈水泥基混凝土复合材料 姓名:陈聪学号:S11085213015 专业:建筑与土木工程44班 摘要: 随着社会快速发展,单一的水泥材料已经不能满足人们日常工程需求,高性能水泥基复合材料既是在近代科技成就的基础上发展起来的,又将在高新技术工程领域中开发应用。本文结合相关论文资料[1]对近年来出现的几种高性能水泥基复合材料进行了初步阐述。 关键词: 高性能水泥基功能复合材料发展状况困惑展望 Abstract:With the development of society, single cement material already can't satisfy people's daily engineering requirements, high performance cement-based composite materials is developed on the basis of modern scientific and technological achievements, and in the development of new and high technology in the field of engineering application. Based on the related papers [1] to the trend in recent years several high performance cement-based composite material has carried on the preliminary in this paper. Keywords:High performance cement-based functional composites; status of development ; Perplexity; Prospect; 第一章前言 论文[1]介绍了国内外水泥基功能复合材料的研究进展及应用,重点对几种重要的水泥基功能复合材料,如导电、压电、介电、磁性、屏蔽等材料的组成、特性、工艺及发展状况进行了综述。 通过查询相关资料[4],对水泥基功能复合材料有了初步的了解,功能材料是指通过光、电、磁、力、热、化学、生物化学等作用后,具有特定功能(导电性、压电性、热电性、磁性和防辐射性)的新材料[1]。随着科学技术的迅速发展,功能单一的传统水泥材料,已不能适应日新月异的多功能工程需要,现代建筑对水泥基复合材料提出了新的挑战,不仅要求水泥基复合材料要有高强度,而且还应具有声、光、电、磁、热等功能,以适应多功能和智能

纤维增强水泥基复合材料

纤维增强型水泥基复合材料 一、纤维增强型水泥基复合材料的概述 纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。 普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。 加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。 二、纤维增强型水泥基复合材料的力学性能 在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。 ? 2.1 抗拉强度 ?在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。 ? ? 2.2 抗裂性

在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生; 在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。 ? 2.3 抗渗性 纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。 2.4 抗冲击及抗变形性能 在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。 2.5 抗冻性 纤维可以缓解温度变化而引起的水泥基复合材料内部应力的作用,从而防止水泥固化过程中微裂纹的形成和扩散,提高材料的抗冻性;同时,水泥基复合材料抗渗能力的提高也有利于其抗冻能力的提高。 ?纤维的纤维掺量对混凝土强度的影响很大 ?合成纤维可有效地控制由混凝土内应力产生的裂缝,使混凝土早期收缩裂缝减少50~90%,显著提高混凝土的抗渗性和耐久性,使混凝 土内钢筋锈蚀时间推迟2.5倍。除抗裂外,合成纤维还能提高混凝土的粘 聚性和抗碎裂性。 ?以聚丙烯合成纤维为例 ?掺入聚丙烯合成纤维后,混凝土的性能将发生变化,当纤维含量适当时,混凝土抗压强度、抗弯强度等均有不同程度的提高。纤维掺量对混凝土强 度的影响见下表。 三、几种主要增强型水泥基复合材料的应用现状

水泥基复合材料的制备

水泥基复合材料的制备 一、实验目的 (1)了解水泥各种技术性质定义,进一步理解水泥胶凝和硬化的原理,水灰比、掺合料对水泥强度的影响; (2)掌握玻璃纤维增强水泥基复合材料的制备工艺和操作方法; (3)学习水泥相关仪器,例如胶砂搅拌机、振实机等的使用。 二、实验内容 以水泥为基体材料、玻璃纤维为增强材料,制备水泥基复合材料。 三、实验原理 水泥,粉状水硬性无机胶凝材料,加水搅拌后成浆体,能在空气中硬化或者在水中更好的硬化,并能把砂、石等材料牢固地胶结在一起。用它胶结碎石制成的混凝土,硬化后不但强度较高,而且还能抵抗淡水或含盐水的侵蚀。长期以来,它作为一种重要的胶凝材料,广泛应用于土木建筑、水利、国防等工程。 硅酸盐水泥的化学成分:硅酸三钙(3CaO·SiO2,简式C3S),硅酸二钙(2CaO·SiO2,简式C2S),铝酸三钙(3CaO·Al2O3,简式C3A),铁铝酸四钙(4CaO·Al2O3·Fe2O3,简式C4AF)。 水泥的胶凝和硬化: 1)、3CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2; 2)、2CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2; 3)、3CaO·Al2O3+6H2O→3CaO·Al2O3·6H2O(水化铝酸钙,不稳定); 3CaO·Al2O3+3CaSO4·2 H2O+26H2O→3CaO·Al2O3·3CaSO4·32H2O(钙矾石,三硫型水化铝酸钙); 3CaO·Al2O3·3CaSO4·32H2O+2(3CaO·Al2O3)+4 H2O→3(3CaO·Al2O3·CaSO4·12H2O)(单硫型水化铝酸钙); 4)、4CaO·Al2O3·Fe2O3+7H2O→3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O。 当水泥拌水后,半水石膏迅速水化为二水石膏,形成针状结晶网状结构,从而引起浆体固化。 本实验采用短玻璃纤维为增强材料,将其混合在水泥胶砂里,入模成型,经过养护固化之后,形成复合材料,得到产品。 四、实验仪器和药品 1、原材料:水泥(PC32.5)、河沙、玻璃纤维等; 2、仪器:水泥胶砂搅拌机、水泥胶砂振实机、水泥板块标准模具、天平等。 五、实验步骤 1、模具准备 将水泥板块标准模具表面擦洗干净、拼装、涂抹脱模剂,备用。 2、水泥胶砂原料称量 分别称量水292.5g,水泥450g,河沙1350g,备用。 3、玻璃纤维称量 各组按照配比要求,分别称取20g、30g、40g玻璃纤维,备用。 4、胶砂的搅拌与振实

水泥基复合材料

一、选题的意义及国内的研究概况(选题的意义包括课题的来源和课题意义): 1.课题来源: 教师假拟 2.课题意义: P.K.Mehta 在评述水泥基材料时指出,水泥基材料既不像钢材那样坚固,也不像钢材那样坚韧,而成为应用最广泛的材料的三个主要原因是其具有很好的耐水性、优异的可加工性和显著的经济性]1[。因此,水泥基材料仍然是当今应用最为广泛的建筑材料。然而,水泥基材料属于脆性材料,它的的抗拉、抗弯强度低,极限应变小,抗冲强度差,脆性大,易开裂,存在着严重的耐久性问题,往往引发突发性的且难以控制的建筑物的破坏,造成了巨大的经济损失,并严重污染环境,因此,作为一种结构材料在应用中受到很大限制]2[。通过纤维增强水泥和纤维增强混凝土复合材料,是强化与韧化的水泥和混凝土、进一步提高了其阻裂能力和耐久性,是获得高性能水泥和混凝土的有效途径。 3.国内外发展概况 自1990年提出高性能混凝土以来,高性能混凝土的内涵已经有了一个不断完善和发展的过程。美国十分强调高强度和高耐久性;日本学者更关注施工性。我国吴中伟院士]3[则综合了各种论点提出了较为全面的高性能混凝土的定义,他认为高性能混凝土时一种新型的高技术混凝土,是在大幅度提高常规混凝土性能的基础上,采用现代混凝土技术,选用优质原材料,在妥善的质量控制制成的具有耐久性高、抗阻裂能力强、工作性良好、实用性强、提及稳定性好以及经济合理的水泥基复合材料。邓家才]4[等用压缩韧性指数衡量了碳纤维对水泥基复合材料韧性的增强作用,发现碳纤维水泥基复合材料的压缩韧性指数明显大于基准水泥基复合材料(增加59%~110%),并且随着碳纤维掺量的增加,变形能力和承载能力增强。罗建林,段中东]5[以改性

高性能纤维增强水泥基复合材料的研究

第24卷 第6期2002年6月 武 汉 理 工 大 学 学 报 JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY V ol.24 No.6 Jun.2002 文章编号:1671-4431(2002)06-0015-04 高性能纤维增强水泥基复合材料的研究 王悦辉 谢永贤 林宗寿 涂成厚 (武汉理工大学)   摘 要: 介绍了在高性能蒸养水泥中掺入钢纤维制备出高性能水泥基复合材料的研究结果。研究了水灰比(W/C)、砂灰比(S/C)、钢纤维掺量对水泥基复合材料性能的影响;并用XRD 、SEM 分析其微观结构和形貌。试验结果表明:将钢纤维掺入到高性能蒸养水泥中并采用适当的工艺,可制备出抗压强度达133M Pa ,抗折强度达24.5M Pa 的高性能水泥基复合材料。 关键词: 高性能蒸养水泥; 钢纤维; 复合材料中图分类号: T U 5 文献标识码: A 收稿日期:2001-11-20.作者简介:王悦辉(1974-),女,硕士;武汉,武汉理工大学材料学院(430070). 高性能混凝土是当今混凝土材料的发展趋势,降低混凝土结构物能源、资源的消耗,减少污染以获得可持续发展的环境,也正成为混凝土界关注的热点。虽然高性能混凝土的抗压强度比普通混凝土成倍提高,但抗折强度却提高很少,表现为脆性显著增大。为了改善混凝土的脆性,通常在混凝土中掺入钢纤维,制成钢纤维混凝土,改善混凝土的脆性。钢纤维混凝土具有抗拉、抗折强度高,弯曲韧性、抗冲击耐疲劳、阻裂限缩能力优异等特点,在工程中得到广泛的应用,取得了良好的技术经济效果。 钢纤维混凝土是以混凝土为基体,非连续的短纤维作为增强材料所构成的水泥基复合材料,钢纤维在混凝土中各向随机分布,跨越混凝土中存在的微细裂隙,并对裂隙产生约束作用,阻止裂隙扩展,从而达到增强的作用。其增强效果主要取决于钢纤维的尺寸,基体的粘结强度及掺量。前两者可由选用的钢纤维原材料来确定,钢纤维的掺量太小增强效果不明显,太大则不易搅拌分散。钢纤维虽然能大大提高混凝土的抗拉强度和韧性,但对混凝土的抗压强度影响较小。而由本试验制得的高性能水泥基材料,在水泥中掺入超细矿渣,具有良好的火山灰效应和微粒充填效应,能改善混凝土的密实性,提高抗压强度和抗渗性。在实验中应用以下基本原理配制超高性能混凝土: (1)去除混凝土中原有的粗骨料,从而消除粗骨料和水泥浆体之间的薄弱界面,增加了整个基体的均质性;(2)以多元粉体细颗粒优化级配,提高整个基体的堆积密度;(3)通过掺加微细的钢纤维,增强韧性;(4)优化搅拌、成型和养护制度;(5)采用外掺硬石膏的蒸养水泥,进一步提高制品强度。 1 试验研究 1.1 试验原材料 (1)水泥 试验用水泥采用作者已研究开发的高性能蒸养水泥[1]。其最佳配比如表1所示。(2)细集料 标准砂,粒径0.25~0.65mm 。(3)减水剂 采用UNF5高效减水剂,掺量为1.0%。(4)钢纤维 选用东洲钢纤维发展公司生产的冷板型钢纤维,见表2。试验用配比见表3、表4、表5、表6。1.2 试件制备 钢纤维在水泥砂浆中的分散、搅拌工艺:采用先干后湿的搅拌工艺,水和高效减水剂混合均匀,按配比将水泥、砂、钢纤维加入到水泥胶砂搅拌机内干搅2min;加入水和高效减水剂湿拌10min,达到钢纤维在水泥砂浆中均匀分散的目的。这种方法可避免钢纤维尚未分散即被水泥砂浆包裹成钢纤球现象。

水泥基功能复合材料器件及混凝土结构监测-济南大学科技处

水泥基功能复合材料、器件及混凝土结构监测 1.成果名称及应用领域 团队长期致力于土木工程结构健康监测方面的相关研究工作,在结构超声诊断、结构 损伤定位、应力/应变监测、交通监测等方面显示了一定的优势。研究成果涉及压电材料 与传感器技术 、超声监测技术 、结构应力/应变监测技术、声发射结构损伤监测技术、压 电交通监测技术。 为有效解决了传统智能材料与混凝土相容性差的问题,开发了一系列压电复合材料与 传感器,包括声发射传感器、应力监测传感器 、超声传感器和压电交通传感器,用于大 型混凝土工程结构健康监测。 声发射传感器的应用领域:确定声发射源的部位、分析声发射源的性质、确定声发 射发生的时间或载荷、评定声发射源的严重性。其特点是工作频率范围宽、灵敏度高,能 够有效覆盖混凝土的损伤频段。 压力传感器的应用领域:通过在道路或桥梁引桥处埋设交通传感器,监测车辆速度、流量及载重等,实现超载、超速预警。其特点是传感器成本低、安装简单、监测设备简单。 超声传感器的应用领域:可作为埋入式传感器用于各种类型的混凝土结构损伤超声 探测。 其特点是造价低、与混凝土相容性好、精度高且耐久性良好。 正交异性压电传感器的应用领域:在不同应力方向上具有不同的感知灵敏度,主要 应用于混凝土结构的损伤源定位。 目前,研发的水泥基压电复合监测系统已经在京沪高铁、胶州跨海大桥及南水北调等 国家重点工程,取得了显著的社会和经济效益 2.预期效益 随着大型土木工程结构的不断涌现和已有的建(构)筑物不断老化,重大工程的安全 性已引起人们的密切关注。为保障重大土木工程结构的安全性、适用性与耐久性,采用监 测材料对其实施在线健康监测是各国政府关注的焦点。 与其它用于混凝土结构健康检/监测的监测材料相比,水泥基压电传感器不仅与混凝 土相容性好,性能优良,而且需外部设备少,价格低廉。 目前,淄博宇海电子陶瓷有限 公司、保定市宏声声学电子器材有限公司采用我们研发的压电复合材料与器件及其制备技术,已生产出0‐3型、1‐3型、1‐3‐2型和2‐2型等多种类型的压电复合材料及器件; 北京 软岛科技有限公司、北京一洋应振测试技术有限公司、山东广信工程试验检测集团有限公 司等配套采用了水泥基压电超声、声发射等传感器,替代了国内外价格昂贵的同类产品, 产生了良好的经济和社会效益。

玻璃纤维增强水泥基复合材料

低水平热储量聚合物相变材料的热传导的调查和研究 姓名:张金标学号:Z09016025 摘要:一种新型的低水平热储量材料已经被阐述。这是一个水与水溶性聚合和交联单体的稳定聚合如聚丙烯酰胺.介绍了定量结果的热物理性质的材料。这些参数是用来描述在板的有限厚度相变前理论方法的进展,计算结果发现,在良好的协议与实验数据的考虑时间冻结和解冻样品。 关键词:能量储存潜热模拟冷储存 命名 A, B, C, D =无量纲数 C, =热容量(kJ kg-’K-l) E, e =浓度(m) k =导热系数(Wm-’K-r) L =潜热(kJ kg-‘) n =整数 Q, q=热量(kJ) r, s =指数 7’=温度(K) t, u =时间(s) x =空间坐标 希腊符号 a = 无量纲系数 x = 扩散系数(m2 s-l) p = 密度(kg m-‘) D = 表面(m2) t = 持续时间(s) 下标 a =理论 b = 最后 c = 相位变换 f = 冰点 i = 冰 WI = 中间 f = 解冻 w =水 o = 最大限度 相变材料的热传导 介绍 各种方式的储热,在一个相对较小的空间,在一个恒定的温度,潜热存储似乎是最有效的一个积累了相当数量的能量,这是很好的适应了各种方案的加热或冷却

建筑物,特别是应用在生产涉及低温间隔,如冷却过程和空调.目前,由于其较高的 成本,选择这样一个系统是唯一的理由时,它提供了重要的优势,存储系统采用显热储存。潜热蓄热系统的设计可以作为一个热交换器之间的相变材料(相变材料)和回收液。传热表面通常是最昂贵的一部分存储系统, 和这对一个显着的成本刑罚潜热的设备。许多调查已进行了解决这一问题,采用直接接触之间的存储介质和回收液。同时,直接接触传热,需要一个稳定的形式 编码,不粘在一起的熔点以上温度。前实验表明,[4-61 很难保持分离而出现不 稳定,导致凝血和聚。到现在为止,没有令人满意的解决这个问题已被发现。一个充满希望的解决方案被提出,使用新材料,保持一致的固体的相变温度以 下。这个想法是包括在一个三维网络聚合物的聚合过程。相变元件,因此,保留在网络,因为界面应力和化学键,无渗出的水发生在一个阶段的变化周期。这种方法含有相变材料应用在水中聚丙烯酰胺。最后的材料仍然是一个好的形状确定样本,无需涂层,并可以直接使用在一个存储单元的 第一部分是本文致力于该结果有关的热物性参数的材料。一个比较之间的物质和商业化是提出并显示实际潜力的这种物质积累大量的能量。 其次是研究材料的热行为的有限扩张的动态条件下的冻结和解冻。许多研究已被用于传热问题的相变,并详细列出了出版的文献关于这一主题可以从隆拿甸尼[ 7]。仿真模型先前制定的[ 8]为样品材料受温度的一步在边界。该方法,在这 一部分,是在这里给出一个完整的描述的进展冻结或融合前板。数值结果显示出很好的符合我们的实验数据和结果的文学经典。最后,用数值计算结果获得全球表达有关时间冻结或解冻的不同参数的问题。 热管材料的研究 准备材料[ 9]可概括如下。首先,混合制成的溶液从两个最初的途径获得:丙烯酰胺和,和起始途径(过硫酸钾)。该混合物,然后保持在313钾,和聚合完成后约12小时。结构材料是图式中图1。样品平行六面体几何实现研究。该材料具有一致性的凝胶,是透明的和非毒性。这是必要的,保持它在有机纲要避免水分蒸发。该材料具有满足2矛盾的制约:最大水的热容量高和最大的聚合物,刚性好;材料含有90%的水似乎是一个很好的妥协。这里报告的结果获得了这一公式。 知识的确切价值的热参数是一个必要的调整一个模型描述的热行为和,因此,为了更好地利用材料。研究开发了热扩散性的测定。实验细胞只允许正常的热通

高延性纤维增强水泥基复合材料的研究进展及应用

史才军等:混凝土中氯离子迁移特征的表征 · 531 · 第35卷第4期 高延性纤维增强水泥基复合材料的研究进展及应用 LI Victor C (Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109–2125, USA) 摘要:高延性水泥基复合材料(engineered cementitious composite,ECC)是经系统的微观力学设计,在拉伸和剪切荷载下呈现高延展性的一种纤维增强水泥基复合材料。综述了ECC的研究进展,介绍了配筋ECC结构的耐久性、安全性及可持续性等混凝土必须满足的关键性能。根据ECC近来的应用情况及在工程上推广应用的需要,总结了ECC长期性能方面的研究结果。 关键词:复合材料;纤维;延展性;耐久性;可持续性;安全性;设计;基础设施 中图分类号:TQ172 文献标识码:A 文章编号:0454–5648(2007)04–0531–06 PROGRESS AND APPLICATION OF ENGINEERED CEMENTITIOUS COMPOSITES LI Victor C (Department of Materials Science and Engineering, the University of Michigan, Ann Arbor, MI 48109–2125, USA) Abstract: Engineered cementitious composite (ECC) is a fiber reinforced cement based composite material systematically designed on the basis of micromechanics and engineered to achieve high ductility under tensile and shear loading. ECC as an emerging con-struction material is overviewed. Emphasis is placed on the accumulated knowledge on durability, safety, and sustainability of rein-forced ECC (R/ECC) structures, recognizing that the concrete of the future must meet these characteristics. In light of recent and fu-ture full-scale field applications of ECC, the limited studies on long-term performance of ECC are also summarized. Key words: composite; fiber; ductility; durability; sustainability; safety; design; infrastructure 混凝土作为建筑材料,其性能已经有了一定程度的改善,但应用于基础设施建设时仍有不足之处,主要存在以下3方面的问题:(1)极端荷载下的脆性破坏。通常所观察到的破坏模式,比如开裂、剥落、冲击或爆炸荷载下的破碎均与混凝土不良的拉伸行为有关[1–3]。(2)正常工作荷载下的破坏。在正常工作荷载下,钢筋混凝土结构耐久性不足的主要原因是混凝土的开裂引发的钢筋锈蚀及其他相关问题[4]。(3)钢筋混凝土结构的可持续性问题[5–7]。基础设施面临的挑战要求未来混凝土必须满足高延展性、高耐久性、可持续性,确保人造设施与自然环境之间的和谐共处。1 高延性纤维增强水泥基复合材料 高延性纤维增强水泥基复合材料(engineered cementitious composite,ECC)是经系统设计,在拉伸和剪切荷载下呈现高延展性的一种纤维增强水泥基复合材料[8–10]。采用基于微观力学的材料设计方法、纤维体积掺量仅为2%的ECC,其单轴拉伸荷载下最大应变大于3%[8–11]。使用掺量适中的短纤维能满足不同的施工要求,包括自密实ECC[12]和喷射ECC[13]。目前,通过挤压成型已经生产出了ECC结构构件[14]。在增强结构的安全性、耐久性及可持续性方面,ECC有很大的优势。 图1是聚乙烯醇(polyvinyl alcohol,PVA)纤维 收稿日期:2006–12–25。修改稿收到日期:2007–01–10。 基金项目:美国国家自然基金会MUSES Biocomplexity计划(CMS–0223971, CMS–0329416)基金资助。 第一作者:LI Victor C (1954~),男,教授。Received date:2006–12–25. Approved date: 2007–01–10. First author: LI Victor C (1954—), male, professor. E-mail: vcli@https://www.doczj.com/doc/9c18789323.html, 第35卷第4期2007年4月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 35,No. 4 April,2007

扫描电镜在水泥基复合材料中的应用

扫描电镜及其在水泥基材料研究中的应用 (哈尔滨工业大学土木学院,黑龙江哈尔滨150001) 摘要:本文首先论述了扫描电镜的工作原理及制样方法,再讨论了扫描电镜在水泥材料科学研究中的应用。扫描电镜能对水泥矿物进行形貌分析,结构分析、定性定量的微区成分分析, 能够较为精确地确定物质化学组成和晶体结构、组织结构及其位向关系以及化学结合状态。 关键词:扫描电镜、形貌分析、结构分析、水泥定性分析、定量分析 引言水泥作为一种结构材料,其强度以及物理、化学性能与内部微观结构有着密切的关系。水泥浆体是一种多相、多组分、多孔的非均匀固体材料, 其内部微观结构和组成不仅复杂且容易受各种外界因素的影响。因而, 对水泥的研究客观上受到仪器条件的限制。电子显微分析技术的发展为水泥的组成和结构、水泥的水化、水泥浆体与集料反应的研究提供有了效的分析方法。扫描电镜自七十年代开始应用于水泥的研究, 第五届国际水泥化学会议上又有人发表扫描电镜(S EM )应用方面的研究报告, 以后的各届国际水泥化学会议上以及有关水泥、混凝土研究的文献中运用SEM 照片说明科学现象的报告日益增多。 1 扫描电镜的原理 扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在

样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类。 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。扫描电子显微镜(SEM)中的各种信号及其功能如表1所示。 图1 扫描电子显微镜的工作原理图2 电子束探针照射试样产生的各种信息 表1 扫描电镜中主要信号及其功能

浅谈纤维增强水泥基复合材料

浅谈纤维增强水泥基复合材料 (卢静娴)一、什么是纤维增强水泥基复合材料? 纤维增强水泥基复合材料是由水泥净浆、砂浆或水泥混凝土作基材,以非连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。纤维在其中起着阻止水泥基体中微裂缝的扩展和跨越裂缝承受拉应力的作用,因而使复合材料的抗抗折强度以及断裂能较未增强的水泥基体有明显的提高。 二、纤维增强水泥基复合材料有哪些特质?(主要指力学性能) 纤维增强水泥基复合材料具有抗裂、大延性、高韧性、抗冲击、抗渗、抗剪、耐高温、耐腐蚀、良好的化学稳定性和优越的能量吸收能力,在减小混凝土裂缝、提高混凝土耐久性、改善混凝土脆性破坏、电学性能等方面都起了重要作用。在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。 1.抗拉强度 内部缺陷是水泥基复合材料破坏的主要因素,任意分布的短切纤维在复合材料硬化过程中改变了其内部结构,减少了内部缺陷,提高了材料的连续性。在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。

在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生;在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。宏观上看,当基体材料受到应力作用产生微裂缝后,纤维能够承担因基体开裂转移给它的应力,基体收缩产生的能量被高强度、低弹性模量的纤维所吸收,有效增加了材料的韧性,提高了其初裂强度、延迟了裂缝的产生,同时,纤维的乱向分布还有助于减弱水泥基复合材料的塑性收缩及冷冻时的张力。 3.抗渗性 内部孔隙率、孔分布和孔特征是影响水泥基复合材料抗渗性的主要因素。以纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。 4.抗冲击及抗变形能力 在纤维增强水泥基复合材料受拉(弯)时,即使基材中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷,并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。

水泥基复合材料定义及常见种类

建筑构件,如内、外墙板、天花板等。 第二章纤维水泥基复合材料 水泥基复合材料可分为水泥基和增强体两部分!目前比较热门的水泥基复合材料为:纤维水泥基复合材料。它通常是指以水泥净浆,砂浆或者混凝土为基体,以非连续的短纤维或连续的长纤维作增强材料所组成的水泥基复合材料,也叫纤维混凝土。 在混凝土中加入纤维,可以强化、韧化水泥砂浆,提高水泥基复合材料拉伸、弯曲以及冲击强度,控制裂纹的扩展,改善失效模式和未成型时材料的流动性,是改善其性能的最有效途径。 纤维在水泥基体中至少有以下三个主要作用[2]: 1,提高基体开裂的应力水平,即使水泥基体能承受更高的应力。 2,改善基体的应变能或延展性,从而增加它吸收能量的能力或提高它的韧性。纤维对基体韧性的改善往往比较显著,甚至在它对基体的增强作用小的情况下也是如此。 3,能够阻止裂纹的扩展或改变裂纹前进的方向,减少裂纹的宽度和平均断裂空间。对于早期的水泥基材料来说,由于纤维的存在,阻碍了骨科的离析和分层,保证了早期均匀的泌水性,从而阻止沉降裂纹的产生。不定向分布的纤维有助于削弱砂浆或者混凝土塑性收缩及冻融时的张力,收缩的能量被分散到无数的具有高抗拉强度的纤维上,从而极为有效地增强了混凝土或砂浆的韧性,抑制了微细胞的产生和发展。 第三章纳米水泥基复合材料

水泥是大众建材,用量大,人们还未充分重视使用纳米技术对其进行改性。其实,水泥硬化浆体(水泥石)是由众多的纳米级粒子(水化硅酸钙凝胶)和众多的纳米级孔和毛细孔(结构缺陷)以及尺寸较大的结晶型水化产物(大晶体对强度和韧性都不太有利)所组成的。借鉴当今纳米技术在陶瓷和聚合物领域内的研究和应用成果,应用纳米技术对水泥进行改性的研究,可望进一步改善水泥的微观结构,以提高其物理力学性能和耐久性。 最近,国内外许多学者利用纳米技术,用一定的纳米矿粉代替一部分普通混凝土掺合料,以提高混凝土材料的密实性,从而改善材料的性能。其内在机理是:纳米矿粉表面能高,表面缺陷多,易与水泥石中的水化产物产生化学键合,CSH凝胶可在纳米SiO2和纳米CaCO3表面形成键合;钙矾石可在纳米Al2O3或Fe2O3和CaCO3表面生成;Ca (OH)2更多的在纳米SiO2表面形成键合,并生成CSH凝胶。更重要的是在水泥硬化浆体原有网络结构的基础上又建立了一个新的网络,它以纳米矿粉为网络的结点,键合更多纳米级的CSH凝胶,并键合成三维网络结构,可大大的提高水泥硬化浆体的物理力学性能和耐久性。同时,纳米矿粉还能有效的填充大小在10~100nm的微孔。由于这类纳米矿粉多数是晶态的,它们的掺入提高了水泥石中的晶胶比,可降低水泥石的徐变。纳米矿粉的掺量一般为水泥质量的1%~3%时就有明显的效果[5]。 采用纳米技术改善水泥硬化浆体的结构,可望在纳米矿粉-超细矿粉-高效减水剂-水溶性聚合物-水泥系统中,制得性能优异的、高性能的水泥硬化浆体-纳米复合水泥结构材料,并广泛应用于高性能或超高性能的水泥基涂料、砂浆和混凝土材料中。在不远的将来,继超细矿粉之后,纳米矿粉将有可能成为超高性能混凝土材料的又一重要组分。这也是传统水泥材料的改进和又一次革命[6]。 第四章水泥基复合吸波材料 隐身技术是一种通过控制和降低武器系统和其它军事目标的特征信号,使其难以发现、识别、跟踪和攻击的综合性技术。因而它广泛应用于运动军事目标,如飞机、导弹、坦克、潜艇等,同时也可用于非运动军事目标,如雷达站、军用机场、军事掩体等。 通过对水泥基复合材料进行改性,使它能够吸收电磁波,从而达到对雷达的隐身性能,即得到所谓的水泥基复合吸波材料。水泥基吸波材料是在水泥或混凝土中掺入吸波剂而具有吸收电磁波功能的一类新型材料。在民用方面,它即可以用来屏蔽电磁波对人体的辐射,达到净化电磁波污染环境的目的;还可以用来防止计算机中心的数据泄密,起到保密作用;在军事上,水泥基复合吸波材料可以起到干扰雷达探测目标,减弱回波信号,使雷达无法探测到地

相关主题
文本预览
相关文档 最新文档