当前位置:文档之家› 植物激素和植物生长调节剂的差别解读

植物激素和植物生长调节剂的差别解读

植物激素和植物生长调节剂的差别解读
植物激素和植物生长调节剂的差别解读

植物激素和植物生长调节剂的差别植物生长调节剂与植物激素并不是一个概念。植物激素是指植物体内各器官分泌的一些数量微少而效应很大的有机物质,也

称内源激素,它从特定的器官形成后,就地或运输到别的部位发挥生理作用,调节植物的生长发育过程。其特点有: (1内生性,即在植物生命活动过程中细胞内部接受特定的环境信息的诱导形成的代谢产物。 (2移动性,即具有远距离运输作用,它的移动速度和方式随激素的种类和植物器官的特性而异。 (3微量性,即在极低的浓度下就有明显的生理效应。目前内源激素公认的有生长素、赤霉素、细胞分裂素、脱落酸和乙烯五大类,另外有人也将油菜素甾体类、茉莉酸类也列为植物激素。一、生长素:代号为IAA。生长素有多方面的生理效应,这与其浓度有关。生长素的生理效应表现在两个层次上。在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向

地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。生长素具体的生理效应表现为: 第一、促进生长,生长素在较低的浓度下可促进生长,而高浓度时则抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。。另外,不同器官对生长素的敏感性不同。第二、促进插条不定根的形成,用生长素类物质促进插条形成不定根的方法已在苗木的无性繁殖上广泛应用。第三、对养分的调运作用。生长素具有很强的吸引与调运养分的效应,利用这一特性,用生长素处理,可促使子房及其周围组织膨大而获得无子果实。第四、生长素的其他效应。例如促进菠萝开花、引起顶端优势(即顶芽对侧芽生长的抑制、诱导雌花分化(但效果不如乙烯、促进形成层细胞向木质部细胞分化、促进光合产物的运输、叶片的扩大和气孔的开放等。此外,生长素还可抑制花朵脱落、叶片老化和块根形成等。二、赤霉素:代号为GA。赤霉素的生理效应为: 第一、促进茎的伸长生长。这主要是能促进细胞的伸长。用赤霉素处理,能显著促进植株茎的伸长生长,特别是对矮生突变品种的效果特别明显;还能促进节间的伸长。不存在超最适浓

度的抑制作用,即使赤霉素浓度很高,仍可表现出最大的促进效应,这与生长素促进植物生长具有最适浓度的情况显著不同。不同植物品种对赤霉素的反应有很大的差异。在蔬菜(芹菜、莴苣、韭菜、牧草、茶叶和苎麻等作物上使用可获得高产。第二、诱导开花。某些高等植物花芽的分化是受日照长度和温度影响的。若对这些未经春化的植物施用赤霉素,则不经低温过程也能诱导开花,且效果很明显。此外,赤霉素也能代替长日照诱导某些长日照植物开花,但赤霉素对短日植物的花芽分化无促进作用。对花芽已经分化的植物,赤霉素对其花的开放具有显著的促进效应。如赤霉素能促进甜叶菊、铁树及柏科、衫科植物的开花。第三、打破休眠。对于需光和需低温才能萌发的种子,如莴苣、、紫苏、李和苹果等的种子,赤霉素可代替光照和低温打破休眠。第四、促进雄花分化。对于雌雄异花的植物,用赤霉素处理后,雄花的比例增加;对于雌雄异株植物的雌株,如用赤霉素处理,也会开出雄花。赤霉素在这方面的效应与生长素和乙烯相反。第五、其他生理效应。赤霉素还可以加强生长素对养分的动员效应,促进某些植物坐果和单性结实、延缓叶片衰老等。此外,赤霉素也可以促进细胞的分裂和分化,赤霉素对不定根的形成起抑制作用,这与生长素相反。三、细胞分裂素:其代号为CTK。细胞分裂素有多种生理效应。其生理效应表现为: 第一、促进细胞分裂,细胞分裂素的主要生理能就是促进细胞的分裂。生长素、赤霉素和细胞分裂素都有促进细胞分裂的效应,但他们各自所起的作用不同。生长素只促进核的分裂,而与细胞质的分裂无关。而细胞分裂素主要是对细胞质的分裂起作用。第二、促进芽的分化。促进芽的分化是细胞分裂素重要的生理效应之一,有些离体叶细胞分裂素处理后主脉基部和叶缘都能产生芽。第三、促进细胞扩大。细胞分裂素可促进一些双子叶植物如菜豆、萝卜的子叶或叶圆片扩大,这种扩大主要是因为促进了细胞的横向。第四、促进侧芽发育,消除顶端优势。细胞能解除由生长素所引起的顶端优势,促进侧芽生长发育。如豌豆苗若以细胞分裂素溶液滴加于叶腋部位,腋芽则可生长发育。第五、延缓叶片衰老。如果在离体叶片上局部涂以细胞分裂素,则叶片其余部位变黄衰老时,涂抹激动素的部位仍保持鲜绿。由于细胞分裂素有保绿及延缓衰老等作用,故可用来处理水果和鲜花等以保鲜、保绿,防止落果。例如用细胞分裂素处理柑橘幼果,可显著防止落果,而且果梗加粗,果实浓绿,果个也比对照显著。第六、打破种子休眠。

需光种子,如莴苣和等在黑暗中不能萌发,用细胞分裂素则可代替光照打破这类种子的休眠,促进其萌发。四、脱落酸:代号为ABA。脱落酸的生理能有以下几种: 第一、促进休眠。外用ABA时,可使旺盛生长的枝条停止生长而进入休眠,这是它最初也被称为"休眠素"的原因。在秋天的短日条件下,叶中甲瓦龙酸合成GA的量减少,而合成的ABA量不断增加,使芽进入休眠状态以便越冬。种子休眠与种子中存在脱落酸有关,如桃、蔷薇的休眠种子的外种皮中存在脱落酸,所以只有通过层积处理,脱落酸水平降低后,种子才能正常发芽。第二、促进气孔关闭。ABA可引起气孔关闭,降低蒸腾,这是ABA最重要的生理效应之一。科尼什(K.Cornish,1986发现水分胁迫下叶片保卫细胞中的ABA含量是正常水分条件下含量的18倍。ABA促使气孔关闭的原因是它使保卫细胞中的K 外渗,从而使保卫细胞的水势高于周围细胞的水势而失水。ABA还能促进根系的吸水与溢泌速率,增加其向地上部的供水量,因此ABA是植物体内调节蒸腾的激素,也可作为抗蒸腾剂使用。第三、抑制生长。ABA能抑制整株植物或离体器官的生长,也能抑制种子的萌发。ABA的抑制效应比植物体内的另一类天然抑制剂--酚要高千倍。酚类物质是通过毒害发挥其抑制效应的,是不可逆的,而ABA的抑制效应则是可逆的,一旦去除ABA,枝条的生长或种子的萌发又会立即开始。第四、促进脱落。ABA是在研究棉花幼铃脱落时发现的。ABA促进器官脱落主要是促进了离层的形成。将ABA涂抹于去除叶片的棉花外植体叶柄切口上,几天后叶柄就开始脱落,此效应十分明显,已被用于脱落酸的生物检定。第五、增加抗逆性。一般来说,干旱、寒冷、高温、盐渍和水涝等逆境都能使植物体内ABA迅速增加,同时抗逆性增强。如ABA可显著降低高温对叶绿体超微结构的破坏,增加叶绿体的热稳定性;ABA可诱导某些酶的重新合成而增加植物的抗冷性、抗涝性和抗盐性。因此,ABA被称为应激激素或胁迫激素(stress hormone。五、乙烯:代号为ACC。乙烯的生理效应具体为: 第一、改变生长习性。乙烯对植物生长的典型效应是:抑制茎的伸长生长、促进茎或根的横向及茎的横向生长(即使茎失去负向重力性,这就是乙烯所特有的"三重反应"(triple response 乙烯促使茎横向生长是由于它引起偏上生长所造成的。所谓偏上生长,是指器官的上部生长速度快于下部的现象。乙烯对茎与叶柄都有偏上生长的作用,从而造成了茎横生和叶下

垂。第二、促进成熟。催熟是乙烯最主要和最显著的效应,因此乙烯也称为催熟激素。乙烯对果实成熟、棉铃开裂、水稻的灌浆与成熟都有显著的效果。

在实际生活中我们知道,一旦箱里出现了一只烂苹果,如不立即除去,它会很快使整个一箱苹果都烂掉。这是由于腐烂苹果产生的乙烯比正常苹果的多,触发了附近

的苹果也大量产生乙烯,使箱内乙烯的浓度在较短时间内剧增,诱导呼吸跃变,加快苹果完熟和贮藏物质消耗的缘故。又如柿子,即使在树上已成熟,但仍很涩口,不能食用,只有经过后熟过程后才能食用。由于乙烯是气体,易扩散,故散放的柿子后熟过程很慢,放置十天半月后仍难食用。若将容器密闭(如用塑料袋封装,果实产生的乙烯就不会扩散掉,再加上自身催化作用,后熟过程加快,一般5天后就可食用了。第三、促

进脱落。乙烯是控制叶片脱落的主要激素。这是因为乙烯能促进细胞壁降解酶--纤维素酶的合办成并且控制纤维素酶由原生质体释放到细胞壁中,从而促进细胞衰老

和细胞壁的分解,引起离区近茎侧的细胞膨胀,从而迫使叶片、花或果实机械地脱离。第四、促进开花和雌花分化。乙烯可促进菠萝和其它一些植物开花,还可改变花的性别,促进黄瓜雌花分化,并使雌、雄异花同株的雌花着生节位下降。乙烯在这方面的效应与IAA相似,而与GA相反,现在知道IAA增加雌花分化就是由于IAA

诱导产生乙烯的结果。第五、乙烯的其它效应。乙烯还可诱导插枝不定根的形成,促进根的生长和分化,打破种子和芽的休眠,诱导次生物质(如橡胶树的乳胶的分泌等。在植物体内,除了以上五大类植物激素外,还含有自身合成的多种微量有机物,以极低的浓度调节植物的生长发育过程。植物激素---萘乙酸特点是广谱型植物生长调节剂,能促进细胞分裂与扩大,诱导形成不定根增加坐果,防止落果,改变雌、雄花比率等。可经叶片、树枝的嫩表皮,种子进入到植株内,随营养流输导到全株. 性能一种萘类植物生长调节剂。低毒。对皮肤、粘膜有刺激作用。诱导单性结实,形成无籽果实,促进开花。低浓度促进植物的生长发育,高浓度引起内源乙烯的生成,从而有催熟增产的作用,还可提高某些作物的抗寒、旱、涝及盐的能力。应用萘乙酸广谱多用途。促进坐果:番茄在盛花期以50毫克/升浸花,促进坐果,授精前处理形成无籽果;乙烯利本身并没有生理活性,释放的乙烯是一种具有多种生理能的植物激素,已经明确的生理效应有:促进果实生理成熟(目前生产上为了提早香蕉、柑橘、桃子、番茄等水果的上市时间,普遍使用乙烯利处理,促进叶片衰老和

脱落,促进种子发芽和植株开花,促进根和苗的生长。如果施用不当会叶片、果实的脱落,矮化植株,改变雌雄的比率,诱导某些作物雄性不育等。

果蔬中常用植物生长调节剂分析方法研究进展

果蔬中常用植物生长调节剂分析方法研究进展 摘要:植物生长调节剂是一类具有植物激素活性的人工合成农药,可用于调节 果蔬的生长和贮藏。近年来,植物生长调节剂在果蔬生产中的使用越来越多,而 产生的安全事件不断增多。果蔬中植物生长调节剂的残留问题已经引起社会的广 泛关注,痕量植物生长调节剂残留的分析技术也在不断发展。文中概述了国内外 检测果蔬中植物生长调节剂残留的主要分析方法及其优缺点,包括气相色谱(GC)、高效液相色(HPLC)、质谱联用技术、酶联免疫吸附测定(ELISA)、 毛细管电泳(CE)及其他分析法,并对其发展趋势进行了展望。 关键词:水果蔬菜;植物生长调节剂;分析方法 一、果蔬中常用的调节剂 调节剂按其功能可分为五类:生长素类、细胞分裂类、赤霉素类、催熟剂类 以及生长抑制剂类。当前,在果蔬生产中使用比较多的有:赤霉素、氯吡脲、乙 烯利、矮壮素、多效唑等,它们大多属低毒类农药,也有少数微毒或者无毒,然 而某些调节剂或其水解产物具有潜在的致癌、致畸或者导致突变作用(例如:丁 酰肼的水解产物不对称二甲基肼具有致畸作用)也应得到应有的重视。 二、果蔬中常用调节剂的分析方法 2.1气相色谱(GC)分析法 目前GC 技术主要应用于乙烯利的检测,也可用于丁酰肼等调节剂的分析, 但需要进行衍生化反应,前面的处理过程较为繁琐。由于大部分的调节剂相对分 子质量较大、极性较强、不易气化或者受热易分解,所以,GC 技术在调节剂的残留分析中应用不多,虽然衍生化处理后可以采用GC 分析某些调节剂,但衍生化 过程通常都会耗时费力,不符合实际检测中简单、快速的要求,更不适用于大批 量样品的分析。而乙烯利等少数调节剂虽然其特殊性质采用GC 分析操作比较简便,但是灵敏度还有待进一步提高。 2.2高效液相色谱(HPLC)分析法 与GC 相比,HPLC 可用于检测果蔬中大多数调节剂的残留,正常情况下无需 衍生化反应,前面处理过程比较简单,可是,在分析基质比较复杂的样品时,其 选择性与灵敏度不及GC。Newsome 等采用高压离子交换液相色谱法分析了马来 酰肼及其β-D- 葡糖苷。样品采用甲醇提取,在马铃薯、大头菜、甜菜及胡萝卜中 的平均加标回收率为87%。而Kobayashi 等改用水提取,建立了测定农产品中马 来酰肼残留的HPLC法,方法的回收率为92.6%~104.9%,LOD 为0.5μg/g。虽然HPLC分析马来酰肼与美国官方分析化学师协会(AOAC)采用的蒸馏-分光光度法 相比更加快速、灵敏、准确,但样品中干扰杂质的分离相对困难。所以潘广文等 建立了马铃薯、洋葱、大蒜中马来酰肼的高效离子排斥色谱(HPIEC)法,该方法不但样品处理步骤简单,分析周期短并且不受杂质干扰。固相萃取(SPE)是HPLC 分析中最常用的前处理技术:Hu Jiye 等采用酸化乙腈提取、氨基柱净化、丙酮洗脱后以HPLC-UV(紫外检测器)分析了西瓜中氯吡脲的残留;而Kobayashi 等改用丙酮提取,Chem Elut柱和Oasis HLB 以及Bond Elut PSA 迷你柱双柱净化后,也用HPLC 分析了农产品中氯吡脲的残留;Zhang Hua等又以乙酸乙酯提取,ENVI-18 柱净化后采用反相高效液相色谱法(RP-HPLC)分析了果蔬中氯吡脲的残留。 虽然SPE 技术对微量以及痕量目标化合物的提取、分离能力较为强,但其操作比 较繁琐、耗时,并且成本较高,不适合大批量样品的快速筛查。所以,胡江涛等 以分散固相萃取-高效液相色谱(DSPE-HPLC)快速分析了猕猴桃中氯吡脲残的残

植物生长调节剂复配大全

植物生长调节剂复配 大全

植物生长调节剂复配大全 植物生长调节剂可促进作物生长、提高作物的座果率等,同时还能与多种农药品种进行复配,常用的植物生长调节剂的复配可分为:植物生长调节剂之间混复配、植物生长调节剂与杀菌剂复配、植物生长调节剂与肥料复配等,下面让我们一起来了解下吧。 一、植物生长调节剂之间复配 以前大家认为植物生长调节剂具有专用性,不能复配使用,而现代植物生理学研究证明:不同的植物生长调节剂复配使用后,将产生意想不到的好效果。生长促进剂与生长抑制剂复配使用后发现,对一些植物可抑制营养生长而促进生殖生长,在植物控制旺长、抗倒伏的同时,使果实膨大,提高产量改善品质。 1、复硝酚钠萘乙酸钠 它是一种省工、低成本、高效、优质的新型复合植物生长调节剂。复硝酚钠作为一种综合调节作物生长平衡的调节剂,可全面促进作物生长,而与萘乙酸钠复配,一方面强化萘乙酸钠的生根作用,另一方面又增强复硝酚钠生根速效性,二者共同促进,使生根效果更快,吸收营养更强劲,更全面,加速促进作物伸张健壮,不倒伏,节间粗壮,分枝、分蘖增多,抗病,抗倒伏。 2、DA-6 乙烯利(或复硝酚钠乙烯利) 它是一种复合型玉米专用的矮化、健壮、防倒型调节剂。单用乙烯利,表现为有矮化作用,且叶片增宽、叶色深绿、叶片向上、次生根增多,但易出现叶片早衰现象。 3、复硝酚钠赤霉素 复硝酚钠与赤霉素同作为速效性调节剂,均能在施用后短时间内发生作用,使作物显示出很好生长效果,而复硝酚钠与赤霉素复配使用,据中牟县枣树科学研究所应用中威春雨1号(正宗复硝酚钠)研究表明,在加合二者效果的同时,复硝酚钠的持效性特点,能补赤霉素的这一缺陷,同时通过综合调控生长平衡,避免赤霉素使用过量造成对植株体的伤害,从而使枣树显着增产,品质也明显提高。 4、萘乙酸钠吲哚丁酸盐 它是世界上应用最为广泛的复合生根剂,在果树、林木、蔬菜、花卉及一些观赏植物上推广应用广泛。该混剂可经由根、叶、发芽的种子吸收,刺激根部内鞘部位细胞分裂生长,使侧根生长快而多,提高植株吸收养分和水分能力,达到植株整体生长健壮。 由于该剂在促进植物扦插生根中往往出现增效或加合作用,从而使一些难以生根的植物也能插枝生根。 二、植物生长调节剂与肥料复配

植物生长调节剂在园艺植物上的应用

植物生长调节剂在园艺植物上的应用 一、实验目的 了解植物生长调节剂的种类、作用、使用方法以及在园艺植物上的应用效果。 二、实验原理 植物生长调节剂目前已广泛应用于园艺植物生长的各个环节,对提高产量、改进品质、方便管理起到了重要作用。植物生长调节剂主要有生长素类、赤霉素类、细胞分裂素类、乙烯及生长抑制剂。不同的植物生长调节剂种类、不同的浓度、不同的使用方法,在各种园艺植物及同一种园艺植物不同生长期上有着不同的使用效果。 三、材料和用具 1.材料95%酒精、生产用赤霉素、多效唑、小白菜等蔬菜种子、鲜切花等。 2.用具喷雾器、喷壶、烧杯、容量瓶、天平、毛笔、三角瓶等。 四、内容和方法 1基础知识 植物生长调节剂可用于园艺植物生产中从播种到收获的各个时期: 1.1在育苗中的应用 (1)打破休眠、促进发芽大多数落叶果树的种子都有自然休眠期,蔬菜花卉的块茎、鳞茎采收后也有一段自然休眠期。用赤霉素处理可缩短桃、葡萄种子的层积处理时间,可提高柑橘种子的发芽率;乙烯可打破草莓和苹果种子的休眠;用赤霉素对蔬菜花卉的块茎、鳞茎进行浸种可促进发芽;用赤霉素处理牡丹花芽也可打破休眠促进开花。

(2)促进扦插生根各种生长素都有促进扦插生根的作用。但不同的药剂种类处理效果不一样,其中以吲哚丁酸效果最好,还有萘乙酸、吲哚乙酸、吲哚丙酸等。 (3)促进嫁接苗伤口愈合对嫁接伤口,特别是芽接伤口涂抹吲哚乙酸可促进愈合。 1.2对营养生长的调节 (1)促进生长赤霉素和生长素类可促进各种园艺植物的茎蔓和枝梢迅速生长,节间变长。 特别是绿叶蔬菜类用赤霉素处理可以加速生长,提高产量。 (2)抑制生长、矮化植株乙烯利、矮壮素、多效唑等对草本和木本植物都有抑制生长的作用,用脂肪酸、甲基酸等处理苹果、梨树的新梢顶端可起到化学摘心的作用。 1.3对花芽分化的调节 (1)促进花芽分化和开花乙烯利可促进菠萝、苹果、梨等形成花芽;多效唑能明显地抑制营养生长,从而促进苹果、桃、核桃等的花芽形成,对黄瓜、菜豆、番茄等也有效;用赤霉素处理蔬菜可促进抽薹开花,替代春化处理;用赤霉素处理山茶花、仙客来、君子兰等都有提前开花的作用。 (2)抑制或延迟花芽形成促进生长的植物生长调节剂都可促进生长而抑制花芽的形成。比如用赤霉素处理可延迟葡萄、核果类的开花,用处理能使菊花延迟开花。 (3)调节雌雄花比例在荔枝上使用多效唑,不但可促进秋梢成花,而且可以促进雌花数量;在瓜类中,特别是黄瓜、瓠瓜上应用乙烯利可促进雌花分化,用赤霉素则可促进雄花分化。 1.4对果实生长发育的调控 (1)促进坐果、诱导单性结实多效唑、矮壮素、萘乙酸、赤霉素等能提高苹果、葡萄、枣、山楂、梨和杏等的坐果率;2,较低浓度时提高番茄坐果率,较

五种植物激素的比较

五种植物激素的比较 名称产生部位生理作用 对应的生长 调节剂 应用 生长素 幼根、幼芽及发 育的种子 促进生长,促进果 实发育 萘乙酸、2, 4-D ①促进扦插枝条的生根; ②促进果实发育,防止落 花落果;③农业除草剂赤霉素 幼芽、幼根、未 成熟的种子等幼 嫩的组织和器官 ①促进细胞伸长, 引起植株长高;② 促进种子萌发和 果实发育 ①促进植物茎秆伸长;② 解除种子和其他部位休 眠,提早用来播种 细胞分裂素 正在进行细胞分 裂的器官(如幼 嫩根尖) ①促进细胞分裂 和组织分化;②延 缓衰老 青鲜素 蔬菜贮藏中,常用它来保 持蔬菜鲜绿,延长贮存时 间乙烯 植物各部位,成 熟的果实中更多 促进果实成熟乙烯利 处理瓜类幼苗,能增加雌 花形成率,增产 脱落酸 根冠、萎蔫的叶 片等 抑制细胞分裂,促 进叶和果实衰老 与脱落 落叶与棉铃在未成熟前的 大量脱落 多种激素的共同调节:在植物生长发育的过程中,任何一种生理活动都不是受单一激素控制的,而是多种激素相互作用的结果。这些激素之间,有的是相互促进的;有的是相互拮抗的。举例分析如下: (1)相互促进方面的有 ①促进果实成熟:乙烯、脱落酸。 ②促进种子发芽:细胞分裂素、赤霉素。 ③促进植物生长:细胞分裂素、生长素。 ④诱导愈伤组织分化成根或芽:生长素、细胞分裂素。 ⑤延缓叶片衰老:生长素、细胞分裂素。 ⑥促进果实坐果和生长:生长素、细胞分裂素、赤霉素。 (2)相互拮抗方面的有 ①顶端优势:生长素促进顶芽生长,细胞分裂素和赤霉素都促进侧芽生长。 ②防止器官脱落:生长素抑制花朵脱落,脱落酸促进叶、花、果的脱落。 ③种子发芽:赤霉素、细胞分裂素促进,脱落酸抑制。 ④叶子衰老:生长素、细胞分裂素抑制,脱落酸促进。 例1、从某植物长势一致的黄化苗上切取等长幼茎段(无叶和侧芽),将茎段自顶端向下对称纵切至约 3 4 处后,浸没在不同浓度的生长素溶液中。一段时间后,茎段的半边茎会向切面侧弯曲生长形成如图甲所示的弯曲角度(α),且α与生长浓度的关系如图乙所示。请回答问题。 (1)从图乙可知,在两个不同浓度的生长素溶液中,茎段半边茎生长产生的弯曲角度可以相

常用植物生长调节剂及其应用

常用植物生长调节剂及其应用 山东丁世民刘玉娥 在植物栽培中,您可能使用过植物生长调节剂,但对每种调节剂的调节机理及具体用法,可能就了解不多了。这里介绍几种常用的植物生长调节剂及应用实例,或许对您有所帮助。 萘乙酸(α-萘乙酸、NAA、α-naphthaleneacetic acid) 属于广谱型植物生长调节剂,能促进细胞分裂与扩大,诱导形成不定根,提高坐果率,防止落果,改变雌、雄花比例,延长休眠,维持顶端优势等;对人畜低毒。常见剂型为70%钠盐原粉: 在园林花卉中的具体应用实例有: ①促进生根将侧柏插枝用200~400毫克/千克萘乙酸浸12小时;仙客来用1~10毫克/千克萘乙酸浸球茎6~12 小时。 ②减少落果菊花在短日照处理后6~9天,用50~100毫克/千克萘乙酸喷洒叶片,每30天1次;叶子花、香豌豆、兰花用50毫克/千克萘乙酸在蕾期喷洒离层部。 ③减少落果用10毫克/千克萘乙酸在花谢后7天喷洒文竹,10~15天后再喷1次。 赤霉素(赤霉酸、九二○、gibberellicacid) 广谱型植物生长调节剂,能促进植物生长发育,提高产量,改善品质;迅速打破种子、块茎、鳞茎等器官的休眠,促进发芽;减少蕾、花及果实的脱落,使2年生的植物在当年开花。常见剂型有:85%结晶粉、4%乳油。 在园林植物中的具体应用实例如表1、表2。 表1 赤霉素打破休眠、促进萌发应用实例 表2 赤霉素促进开花应用实例

丁酰联(二甲基琥珀酰阱、调节剂九九五、B9、daminozide) 属于生长抑制剂,可抑制内源激素赤霉素的生物合成、从而抑制新枝生长、缩短节间、增加叶片厚度及叶绿素含量,防止落花,促进坐果,诱导不定根形成,刺激根系生长,提高抗寒力。常用剂型有:85%、90%可溶性粉剂,4%乳油。 在园林植物中的具体应用实例为有: ①促进生根如麝香石竹、大丽花,可用5000毫克/千克丁酰肼处理插枝,快蘸5秒;一品红,可用2500毫克/千克丁酰肼处理插枝,快蘸15秒。 ②促进开花用5000毫克/千克丁酰肼对叶子花进行叶面喷洒,同时进行8小时短日照处理;用2500毫克/千克丁酰肼在杜鹃发新枝时进行叶面喷洒,同时进行8小时短日照处理。 ③延迟开花用1000毫克/千克丁酰肼在杜鹃开花前1~2个月喷洒蕾部。 ④延长花期用2500毫克/千克丁酰肼处理菊花,在短日照开始后3周叶面喷洒1次,5周后再喷1次。 ⑤矮化作用用2500毫克/千克丁酰肼处理菊花,在花芽分化期进行叶面喷洒;用2500~5000毫克/千克丁酰肼对矮牵牛进行叶面喷洒。 多效唑(高效唑、氯丁唑、PP333,PaclobutrMol) 为内源激素赤霉素的合成抑制剂,能抑制植物的纵向伸长,使分蘖或分枝增多,茎变粗,植株矮化紧凑。它主要通过根系吸收,叶吸收量少,作用较小,但能增产。经过多效唑处理的菊花、月季、天竺葵、一品红以及一些花灌木,株形明显受到调整,更具观赏价值。常见的剂型为15%可湿性粉剂。 在园林植物中的具体应用实例有: ①矮牵牛将15%多效唑可湿性粉剂稀释后进行土壤浇灌,每盆1~2毫.克(有效含量)。

植物生长调节剂(plant growth regulator)

香焦生的时候运输,用乙烯利催熟。土豆有矮壮素。果菜运输中用乙烯拮抗剂。 植物生长调节剂 植物生长调节剂(plant growth regulator)是指人工合成(或从微生物中提取)的,由外部施用于植物,可以调节植物生长发育的非营养的化学物质,具有相似生理和生物学效应。微量使用这类物质,就能对植物的生长发育起到促进或抑制的作用,达到控制植物生长发育的目的,但用量过大会对植物造成伤害。 植物生长调节剂大致可分为六类,即:生长素、赤霉素、细胞分裂素、脱落酸、乙烯和生长延缓剂等。 植物生长调节剂具有以下作用特点: ①作用面广,应用领域多。植物生长调节剂可适用于几乎包含了种植业中的所有高等和低等植物,如大田作物、蔬菜、果树、花卉、林木、海带、紫菜、食用菌等,并通过调控植物的光合、呼吸、物质吸收与运转,信号转导、气孔开闭、渗透调节、蒸腾等生理过程的调节而控制植物的生长和发育,改善植物与环境的互作关系,增强作物的抗逆能力,提高作物的产量,改进农产品品质,使作物农艺性状表达按人们所需求的方向发展。②用量小、速度快、效益高、残毒少。 ③可对植物的外部性状与内部生理过程进行双调控。 ④针对性强,专业性强。可解决一些其他手段难以解决的问题,如形成无籽果实、防治大风、控制株型、促进插条生根、果实成熟和着色、抑制腋芽生长、促进棉叶脱落。 ⑤植物生长调节剂的使用效果受多种因素的影响,而难以达到最佳。气候条件、施药时间、用药量、施药方法、施药部位以及作物本身的吸收、运转、整合和代谢等都将影响到其作用效果。 植物生长调节剂的种类很多,但根据其来源、作用方式、应用效果等大体分为以下几类: 1、生长素类 生长素类是农业上应用最早的生长调节剂。最早应用的是吲哚丙酸(indole propionic acid,IPA)和吲哚丁酸(indole butyric acid,IBA),它们和吲哚乙酸(indole-3-acetic acid,IAA)一样都具有吲哚环,只是侧链的长度不同。以后又发现没有吲哚环而具有萘环的化合物,如α-萘乙酸(α-naphthalene acetic acid,NAA)以及具有苯环的化合物,如2,4-二氯苯氧乙酸(2,4-dichlorophenoxyacetic acid,2,4-D)也都有与吲哚乙酸相似的生理活性。另外,萘氧乙酸(naphthoxyacetic acid,NOA)、2,4,5一三氯苯氧乙酸(2,4,5-trichlorophenoxyacetic acid,2,4,5-T)、4-碘苯氧乙酸(4-iodophenoxyacetie acid,商品名增产灵)等及其衍生物(包括盐、酯、酰胺,如萘乙酸钠、2,4-D丁酯、萘乙酰胺等)都有生理效应。目前生产上应用最多的是IBA、NAA、2,4-D,它们不溶于水,易溶解于醇类、酮类、醚类等有机溶剂。生长素类的主要生理作用为促进植物器官生长、防止器官脱落、促进座果、诱导花芽分化。在林果上主要用于插枝生根、防止落花落果、促进结实、控制性别分化、改变枝条角度、促进菠萝开花等。 2、赤霉素类 赤霉素种类很多,已发现有121种,都是以赤霉烷(gibberellane)为骨架的衍生物。商品赤霉素主要是通过大规模培养遗传上不同的赤霉菌的无性世代而获得的,其产品有赤霉酸(GA3)及GA4和GA7的混合物。还有些化合物不具有赤霉素的基本结构,但也具有赤霉素的生理活性,如长孺孢醇、贝壳杉酸等。目前市场供应的多为GA3,又称920,难溶于水,易溶于醇类、丙酮、冰醋酸等有机

常见植物生长调节剂的复配方法

常见植物生长调节剂的复配方法 1、促进坐果剂:作用是提高单性结实率,提高水果单重,促进坐果、加快果实的膨大速度、增加果实的大小。其类型分别有赤霉素+细胞激动素、赤霉素+生长素+6-BA、赤霉素+萘氧乙酸+二苯脲、赤霉素+卡那霉素、赤霉素+芸苔素内酯、赤霉素+萘氧乙酸+微肥元素等。 2、生根剂:主要促进秧苗移栽之后的生根、缓苗,或者苗木的扦插等。其类型分别有生长素+土菌消、生长素+邻苯二酚、吲哚乙酸+萘乙酸、生长素+糖精、脱落酸+生长素、黄腐酸+吲哚丁酸等。 3、抑制性坐果剂、谷物增产剂:作用是控制旺长,提高坐果率。其类型分别有矮壮素+氯化胆碱、矮壮素+乙稀利、乙稀利+脱落酸、矮壮素+乙稀利+硫酸铜、矮壮素+嘧啶醇、矮壮素+赤霉素、脱落酸+赤霉素等。 4、打破休眠促长剂:作用是打破休眠促进发芽。其类型有赤霉素+硫脲、硝酸钾+硫脲、苄氨基嘌呤+萘乙酸+烟酸、赤霉素+KCl、赤霉素+Fospinol 等。 5、干燥脱叶剂:主要用于芝麻、棉花等,在机械采收前干燥、脱叶,其作用不仅是干燥脱叶的效果,还要有增加产量的效果。其类型有乙稀利+百草苦、噻唑隆+甲胺磷、噻唑隆+碳酸钾、乙稀利+过硫酸胺、噻唑隆+敌草隆、乙稀利+草多索+放线菌酮等。 6、催熟着色改善品质剂:有加快果实成熟、使色泽鲜艳、增加果实的甜度等作用。其类型有乙稀利+促烯佳、乙稀利+环糊精复合物、乙稀利+2,4,5-涕丙酸、敌草隆+柠檬酸、苄氨基嘌呤+春雷霉素等。

7、蔬果、摘果剂:在苹果、柑橘快成熟前应用,促使柑橘果梗基部的离层形成,从而导致果实与枝条的分离。其类型有:萘乙酰胺+乙稀利、二硝基邻甲酚+萘乙酰胺+乙稀利、萘乙酰胺+西维因、二硝基邻甲酚+萘乙酰胺+西维因、萘乙酸+西维因等。 8、促进花芽发育、开花及性比率:使果实作物由营养生长转化为生殖生长,促进开花。其类型有萘乙酸+苄氨基嘌呤、苄氨基嘌呤+赤霉素、赤霉素+硫带硫酸银、乙稀利+重铬酸钾等。 9、抑芽剂:在烟草上抑制腋芽的萌发,在贮藏期抑制马铃薯的发芽等作用。其类型有青鲜素+抑芽敏、氯苯胺灵+苯胺灵、蔗糖脂肪酸酯+青鲜素等。 10促长增产剂:提高植株对N、P、K的吸收,增加产量的作用。其类型有吲哚乙酸+萘乙酸、吲哚乙酸+萘乙酸+2,4-D+赤霉素、助壮素+细胞激动素+类生长素、双氧水+木醋酸等。 11、抗逆剂(抗旱、抗低温、抗病等):增加营养元素的吸收、促进幼苗的生长、增加干物质总量、提高抗寒性、抗旱性、抗病、抗虫能力。其类型有抗激动素+脱落酸、细胞激动素+生长素+赤霉素、乙稀利+赤霉素、水杨酸+基因活性剂等。

植物生长激素5类

【生长素】 名称(缩写)结构略: ●吲哚-3-乙酸(IAA) ●吲哚-3-丁酸(IBA) ●4-氯-3-吲哚乙酸(4-Cl-IAA) ●苯乙酸(PAA) 存在形式: 1.自由生长素:具有活性 2.束缚生长素:没有活性 注:自由生长素和舒束缚生长素可以相互转换. 分布: 1.总体:生长旺盛器官多,衰老器官少. 2.细胞:约有1/3在叶绿体内,余下在细胞质基质. 运输: 1.通过韧皮部运输:运输方向决定于有机物浓度差. 2.仅限于胚芽鞘、幼茎、幼根细胞间的单方向极性运输:只能从植物体形态学上端向下端运输. 合成: 部位: ●主要部位:叶原基、嫩叶和发育中的种子. ●少数部位:成熟叶片和根尖. 途径:依赖和不依赖色氨酸的合成途径,下面是依赖色氨酸的途径. 1.吲哚乙酰胺途径 2.吲哚乙腈途径 3.吲哚丙酮酸途径: 4.色胺途径 生理作用和应用: 1.促进作用: 促进细胞分裂,维管束分化,茎伸长,叶片扩大,顶端优势,种子发芽,侧根和不定根形成,根瘤形成,片上性生长,形成层活性,光合产物分配,雌花增加,单性结实,子房壁生长,乙烯产生,叶片脱落,伤口愈合,种子和果实生长,坐果等. 2.抑制作用 抑制花朵脱落,侧枝生长,块根形成,叶片衰老等. 【赤霉素】 缩写:GA 分类结构略: C20赤霉素:呈酸性. C19赤霉素:种类多,活性高. 存在形式: 1.自由赤霉素:易被有机溶剂提取. 2.结合赤霉素:没有活性. 分布与运输: 1.生长旺盛器官多,衰老器官少. 2.果实、种子含量比营养器官多两个数量级.

3.器官或组织有两种以上赤霉素 4.没有极性运输 合成: 部位: 发育着的果实伸长着的茎端和根部 步骤: 在质体中->内质网中->细胞基质 生理作用和应用: 1.促进作用: 促进种子萌发和茎伸长,两性花的雄花形成,单性结实,某些植物开花,花粉发育,细胞分裂,叶片扩大,抽薹,侧枝生长,胚轴弯钩变直,果实生长,以及某些植物坐果. 2.抑制作用 抑制成熟,侧芽休眠,衰老,块茎形成. 【细胞分裂素】 缩写:CTK 存在形式: 1.游离的细胞分裂素: 2.tRNA中细胞分裂素: ●自由细胞分裂素:具有生理活性 ●束缚细胞分裂素 分布:主要分布在细胞分裂的部位. 运输:主要从根部合成处通过木质部运到递上部,叶片合成部位也能通过韧皮部向下运输. 合成: 部位:在细胞质体合成但细胞分裂素糖苷位于液泡,细胞内运输还有待阐明. 途径: 1.由tRNA水解产生 2.从头合成:主要途径 生理作用和应用: 1.促进作用: 促进细胞分裂,细胞膨大,地上部分分化,侧芽生长,叶片扩大,叶绿体发育,养分移动,气孔张开,偏上性生长,伤口愈合,种子发芽,形成层活动,根瘤形成,果实生长,某些植物坐果. 2.抑制作用 抑制不定根和侧根形成,延缓叶片衰老.

常用植物生长调节剂

常用植物生长调节剂 一、植物生长促进剂 分子式:C10H9O2N 分子量:175.19 性质:纯品无色.见光氧化成玫瑰红,活性降低。在酸性介质中不稳定,PH低于2时很快失活,不溶于水, 易溶于热水,乙醇,乙醚和丙酮等有机溶剂。它的钠盐和钾盐易溶于水,较稳定。 用途:植物组织培养 2、吲哚丁酸,IBA 分子式:C12H13NO3 分子量:203.2 性质:白色或微黄色。不溶于水,溶于乙醇、丙酮等有机溶剂。 用途:诱导插枝生根。作用特别强,诱导的不定根多而细长。 3、萘乙酸,NAA相似的有萘丁酸、萘丙酸 分子式:C12H10O2 分子量:186.2 性质:无色无味结晶,性质稳定,遇湿气易潮解,见光易变色。不溶于水,易溶于乙醇,丙酮等有机溶剂。钠盐溶于水。 用途:促进植物代谢,如开花、生根、早熟和增产等,用途广泛。 4、萘氧乙酸,NOA 分子式:C12H10O3 分子量:202 性质:纯品白色结晶。难溶于冷水,微溶于热水,易溶于乙醇、乙醚、醋酸等。用途:与NAA相似。 5 、2,4-二氯苯氧乙酸,2,4-D,2,4-滴 分子式:C8H6O3C12 分子量:221 性质:白色或浅棕色结晶,不吸湿,常温下性质稳定。难溶于水,溶于乙醇,乙醚,丙酮等。它的胺盐和钠盐溶于水。 用途:植物组织培养,防止落花落果,诱导无籽,果实保鲜,高浓度可杀死多种阔叶杂草。 6、防落素,PCPA 4-CPA,促生灵,番茄灵,对氯苯氧乙酸 分子式:C6H7O3C1 分子量:186.6 性质:纯品为白色结晶,性质稳定。微溶于水,易溶于醇、酯等有机溶剂。 用途:促进植物生长;防止落花落果,诱导无籽果实;提早成熟;增加产量;改善品质等。常用于番茄保果。 7、增产灵,4-碘苯氧乙酸。相似的有4-溴苯氧乙酸,又称增产素 分子式:C8H7O3I 分子量:278 性质:针状或磷片状结晶,性质稳定。微溶于水或乙醇,遇碱生成盐。 用途:促进植物生长;防止落花落果,提早成熟和增加产量等。 & 甲萘威,西维因,N-甲基-1-萘基氨基甲酸酯 分子式:C12H11O2N 分子量:201.2 性质:纯品为白色结晶,工业品灰色或粉红色。微溶于水,易溶于乙醇、甲醇、丙酮等有机溶剂。遇碱(P H大于10 )迅速分解失效。 用途:干扰生长素运输,使生长较弱的幼果得不到充足养分而脱落,用于苹果的疏果剂。同时它也是一种高效低毒沙虫剂。 9 、2,4,5-T,2, 4,5-三氯苯氧乙酸 分子式:C8H5O3C13 分子量:255.5

植物生长调节剂

植物生长调节剂——乙烯利 综述:20世纪40年代以来,植物生长调节剂广泛应用与调控作物生长发育,其主要功能有:调节植物内部的化学组成或果实的颜色;启动或终止种子芽的休眠;促进发根或根的生长;控制植物或器官的大小;提前或阻止开花及诱导或控制叶片或果实的脱落;改变作物发育的起始时间;增加植物的抗病虫能力和抗逆能力。本文仅对植物生长调节剂的历史对植物新陈代谢的调节和对开花及果实发育的调节等做一些简要介绍。 乙烯利(ethephon),其化学名称为2-氯乙基膦酸,为纯白色针状结晶,密度1.58g/cm3,熔点74-75℃,易溶于水、乙醇、甲醇、丙酮、乙酸乙酯等极性溶剂,微溶于苯、甲苯等非极性溶剂;工业品为淡棕色水溶液,市售一般是40%的乙烯利水剂。 植物生长调节剂的发展历史 植物生长调节剂应用的历史可以追溯到基督时代,那时人们把橄榄油滴在无花果树上可以促进无花果的发育,后来人们知道高温时橄榄油分解,释放出的乙烯影响了无花果的发育。40年代,生长素被发现具有乙烯利类似的作用。80年代初,单一植物生长调节剂的最大市场是美国的棉花脱落

剂,其次可能是乙烯,用于马来西亚及东南亚橡胶割胶,以及热带地区甘蔗的催熟。90年代,控制作物顶端生长优势,促进侧芽滋生的多效唑被广泛应用于中国的稻作物以及果树园艺等方面。 植物生长调节剂的应用研究现状 乙烯利水稻催熟技术是我国创新技术,乙烯利是乙烯气体释放剂,可用于提高橡胶树的流胶产量,已成为橡胶生产常规技术措施,它能延长流胶时间,减少割胶次数,有助于延长橡胶树的寿命,对于大部分橡胶树的干胶产量可以增加100%。 植物生长调节剂可影响果实的品质。乙烯利可以增加徐国苹果品种着红色,并可以加速青苹果成熟提早上市。乙烯利和B9也用于桃子的催熟,在樱桃葡萄和梨子也有应用。乙烯利还用于香蕉胡椒海枣洋李的催熟。 乙烯利的合成 1.1 环氧乙烷与三氯化磷的合成路线 1946年Kabachnik MI和Rossiiskaya PA首次报告了乙烯利的合成,以三氯化磷和环氧乙烷为起始原料,在低温下发生酯化反应得到亚磷酸三(2-氯乙基)酯,然后加热发生自身重排反应得到2-氯乙基膦酸二(2-氯乙基)酯,最后在加热条件下与HCL发生酸解反应得到乙烯利。该方法是国内外学者研究的生产乙烯利的主要方法,经国内外化学工作者的

关于植物生长调节剂的种类和使用安全

关于植物生长调节剂的种类和使用安全 随着科技水平的不断提高,越来越多的科技成果用于农业生产发展。而这些科技成果无疑给我们农业的生产发展带来了巨大的推动力。不过,科技往往是把双纫剑,合理安全使用,会让我们的生产发展省时省力高效益,不合理不科学的使用,必定给我们的工作带来极大的反面作用,不仅会使我们的生产受益甚微,更重要的是,它也会危害到我们的健康。所以,懂得植物生长调节剂,懂得使用植物生长调节剂是尤为重要的。 植物生长调节剂(Plant growth regulators)是一类与植物激素具有相似生理和生物学效应的物质,分为两大类:一类是存在于植物体内天然合成的,叫植物激素,另一类则是通过人工合成的从外部施入植物体内,叫植物生长调节剂。 已发现具有调控植物生长和发育功能物质有生长素、赤霉素、乙烯、细胞分裂素、脱落酸、油菜素内酯、水杨酸、茉莉酸和多胺,矮壮素,防落素,植物生长抑止剂和促进剂等,而作为植物生长调节剂被应用在农业生产中主要是前6大类。 下面我们就先对这主要应用的六种植物生长调节剂的功能了解一下。 赤霉素,赤霉素是在研究水稻恶苗病的过程中发现的。水稻恶苗病是由赤霉菌寄生而引起的,最常见的症状是稻苗徒长,病苗比健苗可以高出1/3。经过研究得知, 促进稻苗徒长的物质是赤霉菌分泌的赤霉素。赤霉素突出的生理作用是促进茎的伸长,引起植株快速生长。水稻恶苗病病株的茎秆徒长,就是赤霉素对茎秆伸长起了促进作用的结果。赤霉素对于促进矮生性植物茎秆的伸长有特别明显的效果。例如,一些矮生性植物(矮生玉米、矮生豌豆等),它们的株高比一般的株高要矮得多,如果用赤霉素处理这些植物,它们的株高可以与一般的株 高相同。用赤霉素处理芹菜,可以使食用的叶柄增加长度。赤霉素还有解除休眠和促进萌发的作用。例如,刚收获的马铃薯块茎,种到土里不能萌发,原因是刚收获的马铃薯块茎要有一定的休眠期,在度过休眠期以后,才能够萌发。如果用赤霉素处理马铃薯块茎,则能解除它的休眠,提早用来播种。赤霉素对于种子,也有解除休眠、促进萌发的作用。

植物的激素调节测试题

植物的激素调节测试题 一、单项选择题 1.比较动物激素和植物激素的特点,错误的是 A.都是由内分泌腺分泌的 B.对新陈代谢和生长发育具有调节作用 C.体内含量极少D.都是活细胞产生的 2.关于植物激素的叙述,正确的是 A.植物激素是由植物体内的内分泌腺合成、分泌的微量有机物 B.植物的向光性可以说明生长素能促进植物的生长 C.乙烯能促进果实的成熟,所以在幼嫩的果实中含量较多 D.细胞分裂素能促进细胞的分裂和细胞的伸长,所以在茎尖、根尖含量较多 3.在市场上可见到不均匀(凹凸不平)的西瓜,若切开可见其凹侧的种子发育不良或末发育,其原因可解释为 A.种子的发育需要提供大量的营养物质 B.发育着的种子里合成大量生长素能促进果实的发育 C.未受粉的雌蕊,其子房也可发育成果实 D.光照不均匀使果实内的生长素分布不均匀 4.如右图所示,用燕麦胚芽鞘进行实验,一段时间后,会引起弯曲现象的是 A.④⑤ B.①②③ C.①③④ D.①④ 5.在方形暗箱的右侧开一小窗,暗箱外的右侧有一固定光源,在暗箱内放一盆幼苗,花盆能随着下面的旋转器水平匀速旋转,但暗箱不转,一周后,幼苗的生长状况应为 6.将植物横放,测量根和茎生长素浓度与其生长状况的关系如甲图所示,则曲线上P点最可能对应于乙图中的位置是 A.a B.b C.c D.d 7.吲哚乙酸最早是在人的尿液中发现和提取的,下列对此问题的叙述,你认为最合理的是A.在人体内有合成生长素的酶系统,所以人粪尿的肥效很高 B.人在食用了大量的植物果实和新鲜嫩叶后,生长素便进入人体内,但人体内没有破坏生长素的酶,生长素也不影响人体的正常生理功能,所以生长素在人体内“免费旅游”了一圈

植物生长调节剂

关于促进坐果、膨果的几个配方 促进果实坐果、膨大、增加产量,历来是调节剂的主要应用之一。自我国开始在植物调节剂的研究以来,这类应用一直占有着相当大的比例。从番茄、茄子的防止落花,苹果的防止采前落果,促进葡萄果粒膨大而后到应用抑制剂促进结实率,我们先后应用了吲哚乙酸、2,4 -D、萘乙酸、赤霉素、细胞分裂素、比久等抑制剂来促进坐果、膨果,而达到增产、改善品质的目的。但单独使用某一药剂时,往往提高坐果的同时,产生空洞果、裂果、果梗变硬等副作用,达不到提高品质的要求,就需要两种或两种以上的植物生长调节剂混用,但复配产品要经过科学的试验,其复配有效成份及含量均要经过严格的筛选,否则欲速则不达,甚至产生副作用,下面就一些此类常用的复配制剂介绍一下。 (1)复硝酚钠+α-萘乙酸钠 其制剂一般为水剂或可溶粉剂,由高纯度α-萘乙酸钠与复硝酚钠复配而成,市场上常见的为2.85%水剂(1.8:1.05),这两种成份可以相互增效,拓宽药效,降低使用浓度,既具有复硝酚钠赋活剂的效果,又具有α-萘乙酸钠生根、膨果的效果,是一种广谱性植物生长调节剂,由于其制剂的速效性,保花保果性能优良,已成为一个较为广泛的植物生长调节剂品种。 (2)赤霉素(GA4+7)+ 6-BA 其制剂一般为乳油、可溶液剂或涂抹剂。市场产品有3.6%、3.8%乳油,3.6%液剂,2.7%膏剂。它可经由植物的茎、叶、花吸收,再传到到分生组织活跃的部位,促进坐果,促进苹果五棱突起,并有增重效果。此混剂已在元帅系的红星、新红星、短枝红星、红富士和青香蕉苹果上应用,一般是盛花期对花喷一次,隔15-20天再对幼果喷一次。此外,还可在猕猴桃、葡萄、香蕉等果树上应用。 (3)氯化胆碱+萘乙酸(钠) 其制剂一般为可溶粉剂或水剂。市场产品有25%水剂,主要应用于马铃薯、甘薯、萝卜、洋葱、人参等块根块茎类作物。此配方为促控剂类型,通过抑制C3植物的光呼吸,提高光合作用效率、促进有机质的运输,并将光合产物尽可能输送到块根块茎中去,增加块根块茎的产量。 (4)赤霉素(GA3)+ CPPU 其制剂一般为乳油或可溶液剂。为0.1%氯吡脲可溶液剂的升级产品,加赤霉素的作用是防止穗轴硬化及幼果大小不齐等副作用。一般赤霉素的使用浓度在10ppm,氯吡脲根据处理作物的不同,使用浓度有所调整,使用范围在5-20ppm。如在巨峰葡萄上应用此混剂,最好选用赤霉素10ppm+CPPU5ppm的浓度,不仅能提高坐果率,还促进了幼果的膨大,单果重明显增加。 (5)赤霉素(GA3)+ (类)生长素 其制剂一般为可溶液剂或可溶粉剂。类生长素如α-萘乙酸、2,4-D、对氯苯氧乙酸、β-萘

各种植物生长调节剂的使用技巧及注意事项

各种植物生长调节剂的使用技巧及注意事项 1.单独制成水剂、粉剂复硝酚钠是一种集营养、调节、防病为一体的高效植物生长调节剂,可以单独制成水剂、粉剂(1.8%复硝酚钠水剂、1.4%复硝酚钠可溶性粉剂) 2.复硝酚钠与肥料复配复硝酚钠与肥料复配以后,植物对营养元素吸收好,见效快,同时能解除拮抗作用。搁肥问题、厌无机肥症、调节营养平衡,使您的肥效倍增。(参考用量2-5‰) 3.复硝酚钠与冲施肥复配可使作物根系发达,叶片肥厚浓绿油亮、茎粗杆壮、果实膨大、速度快、色泽鲜艳提早上市等(复配量1-2‰)。 4.复硝酚钠与杀菌剂复配复硝酚钠可增强植物免疫能力、减少病原菌侵染、增强植物的抗病能力,同时与杀菌剂复配后增加杀菌功能、使杀菌剂两天内起到明显的效果,药效持续20天左右,提高药效30-60%,减少药用量10%以上(参考用量为2-5‰)。 5.复硝酚钠与杀虫剂复配复硝酚钠可与大多数杀虫剂复配使用,不仅能拓宽药谱,增加药效,防止农药在使用过程中产生药害,经过复硝酚钠的调节促使受害植物很快恢复生长。(参考用量为2-5‰) 6.复硝酚钠与种衣剂复配在低温下仍起调节作用,能缩短种子休眠期,促进细胞分裂,诱导生根,发芽、抵制病原菌的侵扰,使幼苗健壮。(复配量为1‰) 7. 在碱性(ph7)叶肥,液肥或施肥中,可直接搅拌加入,在偏酸性液肥中(ph5-7)加入时,应先将复硝酚钠溶于10-20倍的温水中加入,在酸性较大的液肥中(ph3-5)加入时,一是用碱调ph5-6后加入,或加入液肥0.5%的柠檬酸缓冲剂后加入,可以防止复硝酚钠絮凝沉淀。固体肥料则不考虑酸碱性均可加入,但必须用10-20公斤的栽体混均后再加入,或加入造粒用水中溶解后加入,根据实际情况灵活掌握。复硝酚钠是一种较稳定的物质,高温不分解,烘干不失效,并可长期存放 二、DA-6(胺鲜脂) 1、 DA-6原粉单独施用,可直接做成液剂和粉剂,浓度可根据需要而配制 2、与肥料复配施用做肥料添加剂, DA-6可以直接与多种元素复配使用,具有很好兼容性。不需要有机溶剂和助剂等添加剂,非常稳定,可长期贮存。且能提高植物的同化能力,加速植物对肥料的吸收利用、增加肥效达30%以上,减少肥料用量10%左右。 3、与杀菌剂复配使用,DA-6是中性物质、可与多种杀菌剂复配,都具有明显的增效作用、且实验证明DA-6对真菌、细菌、病毒等所引起的多种植物病害,具有抑制和防治作用。 4、与杀虫剂复配使用,DA-6是中性物质,可与多种杀虫剂复配使用。可增加植物长势,增强植物抗虫性,且DA-6本身对软体虫具有驱避作用。 5、与除草剂复配使用,在不降低除草剂效果的情况下能有效防止农作物中毒,使除草剂能够安全使用。对于已中毒的农作物,可用DA-6进行解毒,使农作物快速恢复生机,减少经济损失. 6、DA-6单独使用时,效果以10-15PPm更好;与肥料、杀菌剂、杀虫剂和除草剂复配使用,以10ppm)效果更好 7.. 不能与碱性稀土元素、化肥(如碳铵)及碱性农药复配,以免影响DA-6的药效。 三、噻苯隆 当棉桃开裂70%,每亩用50%可湿性粉剂100g,对水全株喷雾,10天开始落叶,吐絮增加,15天达到高峰。1. 施药时期不能过早,否则会影响产量。 2. 施药后两日内降雨会

五种植物激素的比较

的,而是多种激素相互作用的结果。这些激素之间,有的是相互促进的;有的是相互拮抗的。举例分析如下: (1)相互促进方面的有 ①促进果实成熟:乙烯、脱落酸。 ②促进种子发芽:细胞分裂素、赤霉素。 ③促进植物生长:细胞分裂素、生长素。 ④诱导愈伤组织分化成根或芽:生长素、细胞分裂素。 ⑤延缓叶片衰老:生长素、细胞分裂素。 ⑥促进果实坐果和生长:生长素、细胞分裂素、赤霉素。 (2)相互拮抗方面的有 ①顶端优势:生长素促进顶芽生长,细胞分裂素和赤霉素都促进侧芽生长。 ②防止器官脱落:生长素抑制花朵脱落,脱落酸促进叶、花、果的脱落。 ③种子发芽:赤霉素、细胞分裂素促进,脱落酸抑制。 ④叶子衰老:生长素、细胞分裂素抑制,脱落酸促进。 例1、从某植物长势一致的黄化苗上切取等长幼茎段(无叶和侧芽),将茎段自顶端向下对称 纵切至约34 处后,浸没在不同浓度的生长素溶液中。一段时间后,茎段的半边茎会向切面侧弯曲生长形成如图甲所示的弯曲角度(α),且α与生长浓度的关系如图乙所示。请回答问题。 (1)从图乙可知,在两个不同浓度的生长素溶液中,茎段半边茎生长产生的弯曲角度可以相同,请根据生长素作用的特性,解释产生这种结果的原因:_________________________。 (2)将切割后的茎段浸没在一未知浓度的生长素溶液中,测得其半边茎的弯曲角度α1,从图乙中可查到与α1对应的两个生长素浓度,即低浓度(A)和高浓度(B)。为进一步确定待测溶液中生长素的真实浓度,有人将待测溶液稀释至原浓度的80%,另取切割后的茎段浸没在其中,一段时间后测量半边茎的弯曲角度将得到α2。请预测α2与α1相比较的可能结果,并

植物生长调节剂大全

植物生长调节剂的种类大全: 按用途分有以下几种: 用途适用的植物生长调节剂名称 延长贮藏器官休眠青鲜素,萘乙酸钠盐,萘乙酸甲酯。 打破休眠促进萌发赤霉素、激动素、硫脲,氯乙醇,过氧化氢。 促进茎叶生长赤霉素、6—苄基氨基嘌呤,油菜素内酯,三十烷醇。 促进生根吲哚丁酸,萘乙酸,2,4—D,比久,多效唑,乙烯利,6—苄基氨基嘌呤。 抑制茎叶芽的生长多效唑,优康唑,矮壮素,比久,皮克斯,三碘苯甲酸,青鲜素,粉绣宁。 促进花芽形成乙烯利,比久,6—苄基氨基嘌呤,萘乙酸,2,4—D,矮壮素。抑制花芽形成赤霉素,调节膦。 疏花疏果萘乙酸,甲萘威、乙烯利、赤霉素、吲熟酯,6—苄基氨基嘌呤。 保花保果 2,4—D,萘乙酸,防落素,赤霉素,矮壮素,比久,6—苄基氨基嘌呤。 延长花期多效唑,矮壮素,乙烯利,比久。 诱导产生雌花乙烯利,萘乙酸,吲哚乙酸,矮壮素。 诱导产生雄花赤霉素 切花保鲜氨氧乙基乙烯基甘氨酸,氨氧乙酸,硝酸银,硫代硫酸银。 形成无籽果实赤霉素,2,4—D,防落素,萘乙酸,6—苄基氨基嘌呤。 促进果实成熟乙烯利,比久。 延缓果实成熟 2,4—D,赤霉素,比久,激动素,萘乙酸,6—苄基氨基嘌呤。延缓衰老 6—苄基氨基嘌呤,赤霉素,2,4—D,激动素。 提高氨基酸含量多效唑,防落素,吲熟酯。 提高蛋白质含量防落素,西玛津,莠去津,萘乙酸。 提高含糖量增甘膦,调节膦,皮克斯。 促进果实着色比久,吲熟酯,多效唑。 增加脂肪含量萘乙酸,青鲜素,整形素。 提高抗逆性脱落酸,多效唑,比久,矮壮素。 根据对植物生长的效应,农业上常用的生长调节剂可分为三类: (1)植物生长促进剂如生长素类、赤霉素类、细胞分裂素类、油菜素内酯等生长调节剂。如IBA、NAA可用于插枝生根;NAA、GA、6-BA、2,4-D可防止器官脱落;2,4-D、NAA、GA、乙烯利可促进菠萝开花;乙烯利、IAA可促进雌花发育;GA可促进雄花发育、促进营养生长;乙烯利可催熟果实,促进茶树花蕾掉落,促进橡胶树分泌乳胶等。 (2)植物生长抑制剂如用三碘苯甲酸可增加大豆分枝;用整形素能使植株矮化而常用来塑造木本盆景。 (3)植物生长延缓剂如PP333、矮壮素、烯效唑、缩节安等可用来调控株型。

植物生长调节剂的种类及使用注意事项

1植物生长剂的种类 类似生长素药剂。为天然生长素吲哚乙酸,纯品为白色粉状,不溶于水,而溶于乙醇和丙酮。常用有的吲哚丁酸,主要用于促进插枝生根;萘乙酸,α-型的活力强,用于防止果实脱落或疏花疏果,也可促进插枝生根;二氯苯氧乙酸,用于防止果实脱落,诱导番茄形成无籽果实,促进橡胶树排泌胶乳,高浓度(1000毫克/立方米以上)可用作除莠剂,杀除双子叶杂草和灌木。 合成细胞分裂素。这类物质不溶于水,易溶于盐酸或乙醇,可用于组织培养诱导芽的形成。常用的有6-苄基腺嘌呤,又称绿丹;6-糠基腺嘌呤,又称激动素。 “乙烯利”,化学名称2-氯乙基膦酸。在常温和pH值在3以下时较稳定,pH值在4以上即逐渐分解,放出乙烯。随着溶液温度和pH值增高,乙烯释放速度加快。乙烯利常用于促进水果成熟、落叶和疏果。还可刺激橡胶树排泌胶乳,提高橡胶产量,对松脂和漆液等也有类似的增产效果。 “矮壮素”,化学名称为2-氯乙基三甲基氯化铵,又称氯化氯胆碱。纯品为白色结晶,有鱼腥味,易溶于水,较稳定,不能与碱性农药混用。其的主要作用是使株型矮壮,防止倒伏。用于小麦,使其茎短而粗壮,有效分蘖增多,叶色深绿。用在棉株上,可减少蕾铃脱落。还能加强根系生长,提高植物的抗逆性。 三碘苯甲酸。微溶于水,可溶于热乙醇、丙酮。具有促进侧芽萌发,增加分枝,诱导花芽形成,提早成熟的作用。施用于密植大豆,其增产效果显著。 “青鲜素”,化学名称为顺丁烯二酸酰肼。白色结晶,难溶于水,易溶于冰醋酸。主要作用为抑制细胞分裂,用于果树,可抑制营养枝徒长,延长休眠期,推迟开花。还能防止马铃薯、洋葱等在贮藏期发芽。 “比久”,化学名称为二甲胺琥珀酸酰胺。纯品白色,能溶于水。用于果树,能抑制枝条徒长,促进花芽分化,增加座果,提高果实品质和产量,还可延长其贮藏寿命。调节膦化学名称为乙基氨甲酰基磷酸盐,又名蔓草膦。可抑制果树新梢生长,促进座果,花卉保鲜,树木矮化以及防除灌木杂草。 “整形素”,又称形态素,化学名称为9-羟基芴-9羧酸。能抑制顶端分生组织细胞分裂和伸长,促进腋芽生长。常用于盆景的造型,使植株成为丛生形态。 三十烷醇。可从蜂蜡、糠蜡和蔗蜡中提取,故又称蜂蜡醇。使用量极低,能增加叶绿素含量,提高植物的抗热、抗旱性。施用于油菜、花生、小麦、柑桔等有明显的增产效果,在大豆、水稻上的使用结果不稳定。 “增产灵”,化学名称为4-碘苯氧乙酸。纯品白色针状结晶,溶于乙醇、氯仿,性质稳定。可用于减少棉铃脱落,增加大豆结荚率。 多效唑。为新型生长延缓剂。施用于水稻,可控制徒长,防止倒伏;抑制大豆株高生长,促进分枝;使花卉株型矮化挺拔。 2使用注意事项 不能以药代肥,也就是说其不能代替肥水及其他农业措施。即使是促进型的调节剂,也必须以充足的肥水条件才能发挥其作用。 同种生长剂,由于使用浓度的不同,可以使植物发生与预期目标相反的生理变化。如生长素在低浓度时促进根的生长,在较高浓度时则转向抑制;脱落酸是抑制发芽剂,但也可以促进某些植物的开花。 因使用的植物种类、生长发育时机、使用部位不同而有不一样的效应,所以一定要按调节剂产品说明书上的功能选准产品,并按使用时机、使用部位、配液浓度、施用方法(喷雾、浸泡、涂点等)进行正确施用。使用植物生长调节剂要根据其种类、气候条件、药效持续时间和栽培需要,选择最佳使用时机,以免造成不必要的投入。 要清楚调节剂允许或不允许与哪些肥料、农药混合使用,不要随意混用。几种植物生长调节剂混用或与其他农药、化肥混用,必须在充分了解混用农药之间的增强或抵抗作用的基础上决定是否可行,不要随意混用。 精确配制调节剂的浓度、本次用药总量,做到用量不剩不欠,浓度不轻不重。农作物对植物生长剂的浓度要求比较严格,浓度过大,会造成叶片增肥变脆,出现畸形叶片干枯脱落,甚至全株死亡;浓度过小,则达不到应有的效果。 不要购买与使用无批号、无咨询电话、无有效期限、无使用说明书的植物生长调节剂产品。 植物生长调节剂的种类及使用注意事项马清贵李春艳(黑龙江省庆安县丰收乡农业技术综合服务中心152400)誅饲料与种植 輪輴訝 养殖技术顾问2010.2

相关主题
文本预览
相关文档 最新文档