当前位置:文档之家› 细胞生物学名词(新)

细胞生物学名词(新)

细胞生物学名词(新)
细胞生物学名词(新)

细胞生物学:是研究细胞基本活动的科学,它从不同层次(显微、亚显微、分子水平)上主要研究细胞的结构与功能,细胞增殖、分化、代谢、运动、衰老、凋亡、细胞信号转导、细胞基因表达与调控、细胞的起源与进化等重大生命活动。

克隆通过体细胞进行的无性繁殖,以及由无性繁殖形成的基因型完全相同的后代个体组成的种群。单细胞经过有丝分裂形成的细胞群。

Cell line细胞系:指原代细胞培养物经首次传代成功后所繁殖的细胞群体。也指可长期连续传代的培养细胞。

原代培养:指从机体组织中取材后接种到培养基中进行的细胞培养,直接取材于机体组织的细胞培养。是在体外培养的任何一种体细胞所必须的经历的阶段和传代培养的基础。

传代培养:培养细胞从培养基中取出,把一部分转移至新的培养器中再进行培养的方式。

细胞融合:Cell fusion 是在自发或人工诱导下,两个或多个不同基因型的细胞或原生质体融合形成一个杂种细胞。基本过程包括细胞融合形成异核体、异核体通过细胞有丝分裂进行核融合、最终形成单核的杂种细胞。细胞融合可作为一种实验方法被广泛适用于单克隆抗体的制备,膜蛋白的研究。

原位杂交:应用标记探针与细胞中待测物质杂交,再用相应的标记物检测系统,在待测物之原有位置将其显示出来的检测技术。

接触抑制:细胞培养中的一种现象。培养开始后细胞悬浮液在培养瓶中生长不久就会贴壁生长,形成致密的单层细胞。当细胞继续生长分裂到表面互相接触时就会停止增殖,并维持相互接触的状态直至衰老的现象。

愈伤组织(callus)原指植物体的局部受到创伤刺激后,在伤口表面新生的组织。它由活的薄壁细胞组成,可起源于植物体任何器官内各种组织的活细胞。

原生质体(protoplast)脱去细胞壁的细胞或者完整的动物细胞叫原生质体,是组成细胞的一个形态结构单位。具体包括细胞膜和膜内细胞质及其他具有生命活性的细胞器。

荧光显微镜荧光显微镜是以紫外线为光源,用以照射被检物体,使之发出荧光,然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染料或荧光抗体染色后,经紫外线照射亦可发荧光,荧光显微镜就是对这类物质进行定性和定量研究的工具之一。

成斑效应当荧光抗体标记细胞的时间,达到一定长度时,均匀分布在细胞表面的标记荧光会重新分布,聚集在细胞表面的某些部位即成斑现象。

脂质体(liposome)磷脂分子可在水中形成稳定的脂双层,亲水头部插入水中,疏水尾部伸向空气,搅动后形成双层脂分子的球型脂质体,直径25--1000nm。可用于转基因,或制备的药物,利用脂质体可以和细胞膜融合的特点,将药物送入细胞内部。

血影:红细胞在低渗溶液中吸水膨胀、破裂,释放出内部的蛋白等物质,变成没有内容物的空壳,由于红细胞具有很大的变形性、柔韧性和可塑性,当内容物渗漏后又重新封闭后形成的细胞叫血影。

磷脂:含有磷酸基团的脂称为磷脂。是细胞膜的主要成分,磷脂分子的极性头部(由磷脂酰胆碱)和疏水尾部组成。由甘油基团与非极性端相连。

胆固醇:存在于真核细胞膜中,由极性头部、非极性类固醇环结构和非极性碳氢尾部组成。主要对调节细胞膜的流动性,加强膜的稳定性。

载体蛋白:能与特定溶质分子结合,通过一系列构象变化介导不溶性物质跨膜运输的蛋白质分子。

通道蛋白:横跨质膜的亲水性膜转运蛋白,能形成亲水通道,允许特定的溶质通过,转运适当大小的离子顺浓度梯度通过,所有通道蛋白均以自由扩散方式运输溶质。常见的有:

离子通道、孔蛋白、水孔蛋白。又分选择门、配体门、电压门、应力激活性跨膜通道。

吞噬作用:(phagocyrosis)指细胞从周围环境摄取固体颗粒的活动。当固体物质吸附于细胞膜上时,膜就突出或陷入,两边的细胞膜一经融合,被膜包围的固体物质就被包在细胞内。通过吞噬体摄取营养物质和消灭感染的细菌、病毒以及损伤的细胞、衰老的红细胞。

协同转运:在载体蛋白介导的物质运输中,一种许多主动运输不是直接由ATP 提供能量,而是由储存于膜上的离子梯度中的能量来驱动的,这一能量来源与进行耦联运转的蛋白相联系来完成物质跨膜运输,即一种物质的运输依赖于第二种物质同时运输。

钠钾泵:由两个α大亚基和两个β小亚基组成,α亚基为跨膜蛋白,在膜内侧有ATP 结合位点,细胞外侧有乌本苷结合位点,α亚基上有3个钠离子和2个钾离子结合位点,通过构象变化运输钠钾离子,每个循环消耗一个ATP分子,将3个钠离子泵出细胞外,2个钾离子泵入细胞内。

细胞内膜系统:由细胞内膜构成的各种细胞器的总和。包括线粒体叶绿体内质网高尔基体溶酶体微体等。

泛素:Ubiquitin是一种存在于所有真核生物(大部分真核细胞)中的小蛋白。泛素76个氨基酸组成,分子量大约8500道尔顿。它的主要功能是标记需要分解掉的蛋白质,使其被26S蛋白酶体降解。广泛存在且序列高度保守。

溶酶体(Lysosome):溶酶体几乎存在于所有的动物细胞中,是由单层膜围绕、内含多种酸性水解酶类、形态不一、执行不同生理功能的囊泡状细胞器,主要功能是进行细胞内的消化作用,在维持细胞正常代谢活动及防御方面起重要作用。专为分解各种外源和内源的大分子物质,被称作细胞内消化器。

过氧化物酶体(peroxisome):一种由膜包裹起来的胞质细胞器,含有各种利用或产生过氧化氢酶,如尿酸氧化酶和或过氧化氢酶。

内质网(endoplasmic reticulum):一种相互连通的膜性管道系统,交织成网状分布在细胞质中,电镜下观察是由膜构成的小管小泡或扁囊构成,分为粗面内质网和光面内质网。

蛋白质分选:依靠蛋白质自身信号序列,从蛋白质起始合成部位,转运到功能发挥部位并装配成结构与功能复合体的过程。保证蛋白质的正确定位和生物学活性。

分子伴侣:Molecular chaperone 细胞中的某些蛋白分子可以识别正在合成的多肽或部分折叠的多肽并与多肽链某些部位结合,帮助转运、折叠或装配,本身不参与最终产物的形成。

信号假说:分泌蛋白N端序列作为信号肽,指导分泌蛋白在内质网膜上合成,然后再信号肽引导下边合成边通过易位子蛋白复合体,进入内质网腔,在蛋白质合成结束前切除信号肽。是关于蛋白质定向运输的假说。

膜泡运输:细胞对大分子以及颗粒性物质跨膜运输的方式,包括胞吞胞吐作用。需要ATP供能,涉及细胞膜形变、膜泡形成、膜泡融合等过程。

信号肽(Signal peptide):位于蛋白质N端,一般由16--26和氨基酸残基组成,其中包括输水核心区、信号肽的C端和N端等三部分,没有严格的专一性。引导新合成的蛋白质向分泌通路转移的短肽链。

信号序列:Signal squence由mRNA上特定序列编码合成,粗面内质网引导者,并决定新生肽插入膜内或者进入膜腔。通常有16-26个氨基酸残基,对所引导的蛋白质没有特异性要求。

信号识别颗粒(SPR):真核生物细胞质中的一种小分子RNA和六种蛋白的复合体,能识别核糖体上新生成的肽末端信号序列并与之结合,使肽链合成停止,同时他又可以与内质网膜上的停泊蛋白识别和结合,从而将mRNA上的核糖体带到膜上。SPR上有三个结合位点:信号肽识别结合位点、SPR受体蛋白结合位点、翻译暂停结构域。

细胞通讯(cell communication):细胞发出信号通过介质传递到另一个细胞并与靶细胞

相应受体作用,然后通过细胞信号转导产生一系列生理生化变化,最终表现出整体生物学效应的过程。

细胞间识别:cell recognition 细胞间通过信号分子作用引发细胞反应的现象。

受体:是一类存在于胞膜或胞内的,能与细胞外专一信号分子结合进而激活细胞内一系列生物化学反应,使细胞对外界刺激产生相应的效应的特殊蛋白质。与受体结合的生物活性物质统称为配体(ligand)。受体与配体结合即发生分子构象变化,从而引起细胞反应,如介导细胞间信号转导、细胞间黏合、胞吞等过程。

配体:能与细胞膜受体结合的化学信号分子,包括激素、细胞因子、神经递质、药物等。他们与膜受体特异结合后引发细胞内相应的生物学效应。

信号转导:指外界信号与细胞表面受体作用,通过影响胞内信使水平的变化,进而引起细胞应答反应的一系列过程,从而影响细胞生物学功能的过程。水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。

G蛋白:GTP结合蛋白具有GTP水解酶活性的一类信号转导蛋白,由α、β、?三个不同亚基组成。激素诱导GTP与G蛋白结合的GDP进行交换激活下游的腺苷酸环化酶活性,将细胞外第一信使激素和细胞内的腺苷酸环化酶催化生成的的第二信使cAMP联系起来。

第二信使:指细胞内产生的非蛋白类小分子,通过浓度变化应答细胞表面受体的结合,调节细胞内酶和非酶蛋白的活性,从而在细胞信号转导途径中行使携带和级联放大功能。

SH2结构域:含有约100个氨基酸残基,具有SH2结构域的蛋白家族有相似的三维结构,但是每一个成员可特异结合围绕磷酸酪氨酸残基的氨基酸序列。该蛋白家族包括酶、癌蛋白、锚定蛋白、接头蛋白、调节蛋白、转录因子等。

细胞骨架:Cytokeleton 在细胞质基质中赋予细胞以一定的形态构造因素,由微丝、微管、中间纤维组成。主要蛋白成分分为肌动蛋白、肌球蛋白、原肌球蛋白、微管蛋白等。

细胞外被:指细胞质膜外表面覆盖的一层粘多糖物质,实际上,细胞外被中的糖与质膜中的蛋白分子或脂类分子是共价结合的,形成糖蛋白和糖脂,所以,细胞外被应是细胞质膜的正常结构组分,它不仅对膜蛋白起保护作用,而且在细胞识别中起重要作用。

细胞外基质:是由动物细胞合成并分泌到胞外、分布在细胞表面或细胞之间的大分子,主要是一些多糖和蛋白,或蛋白聚糖。这些物质构成复杂的网架结构,支持并连接组织结构、调节组织的发生和细胞的生理活动。

膜骨架:细胞质膜的一种特别结构,是由膜蛋白和纤维蛋白组成的网架,它参与维持细胞质膜的形状并协助质膜完成多种生理功能,这种结构称为膜骨架。膜骨架位于细胞质膜下约0.2μm厚的溶胶层。成熟的动物血红细胞没有细胞核、细胞器和内膜系统,是研究膜骨架的理想材料。

踏车行为:Treadmilling ,微管两端具有GTP帽,微管将继续装配,反之,具GDP帽则解聚.通常微管持有β微管蛋白的正极(+)端组装较快,而持有α微管蛋白的负极(-)端组装较慢。在一定条件下,微管一端异二聚体微管蛋白聚合装配使微管延长,而另一端则去装配而使微管缩短,解聚下来的微管蛋白又可以加聚到正极的这种现象称为踏车行为微管组织中心:microtubule organizing center,MTOC活细胞内,能够起始微管的成核作用,帮助α、β微管蛋白聚合为微管,并使之延伸的细胞结构称为微管组织中心。除中心体以外,细胞内起始微管组织中心作用的类似结构还有位于纤毛和鞭毛基部的基体等结构。

微管结合蛋白:与微管结合的辅助蛋白,是微管结构和功能的必要成分,作用是控制微管的延长并调控微管的聚合与解聚。包括微管相关蛋白和微管装饰蛋白

微管相关蛋白:MAP一种微管结合蛋白,是微管的结构和功能成分,具有稳定微管结

构和促进微管聚合的作用。

细胞外基质:分布于细胞外空间,由细胞分泌的蛋白和多糖所构成的网络结构。为细胞活动和生存提供适宜的场所,并通过信号转导系统影响细胞的形状、代谢、功能、迁移、增值和分化。

核被摸:包在细胞核外部的双层膜结构,由内外两层核膜组成,外膜与内膜相连,表面附着有大量核糖体。

外核膜:面向细胞质基质的核被膜,表面附有核糖体,有些部位与内质网相连,在形态和功能上与内质网相似。

内核膜:面向核基质的核被膜。

核孔复合体:是由核孔以及相关连接的环状结构提示,核被膜上沟通核质和细胞质的复杂隧道结构,由多种核孔蛋白构成。隧道的内、外口和中央有由核糖核蛋白组成的颗粒,对进出核的物质有控制作用。

核纤层(nuclear lamina):位于细胞核内层膜下的纤维蛋白片层或者纤维网络,由3中核纤层蛋白组成。核纤层与中间纤维、核骨架相互连接,形成贯穿细胞核与细胞质的骨架结构体系。

核基质/核骨架:真核细胞内除了核被膜、染色质、核纤层、核仁以外的核内网状结构主要成分是非蛋白性的纤维蛋白少量DNA、RNA。功能是参与染色体DNA的包装和构建、DNA辅助,基因表达以及核内一系列生命活动。

核小体:Nucleosome是染色体的基本结构单位,由DNA和组蛋白(histone)构成。由几种组蛋白:每一种组蛋白各二个分子,形成一个组蛋白八聚体,约200 bp的DNA分子盘绕在组蛋白八聚体构成的核心结构外面,形成了一个核小体。

核蛋白:Nuclear protein 是指在细胞质内合成,然后运输到核内起作用的一类蛋白质。如各种组蛋白、DNA合成酶类、RNA转录和加工的酶类、各种起调控作用的蛋白因子等。核蛋白一般都含有特殊的氨基酸信号序列,起蛋白质定向、定位作用。

亲核蛋白:一般都含有特殊的氨基酸序列,这些内含的特殊短肽保证了整个蛋白质能够通过核孔复合体被转运到细胞核内。这段具有“定向”、“定位”作用的序列被称为核定位序列或核定位信号(NLS)。

核型(Karyotype):指染色体组在有丝分裂中期的表型,包括染色体数目、大小、形态特征的总和。一个体细胞中的全部染色体,按其大小、形态特征(着丝粒的位置)顺序排列所构成的图像就称为核型。

核仁:细胞核内产生核糖体的机器,是rRNA转录部位,转录过程有rDNA到rRNA,rRNA再与在来自胞质的蛋白结合,进而加工改造成核糖体前体,然后输出到胞质。

核仁组织区:NOR存在于细胞内的特定染色图区段,常位于染色体端部次缢痕处,含有主要rRNA,是产生核仁的部位。

端粒Telomeres :是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,它与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性、独立性和控制细胞分裂周期。通常富含鸟嘌呤核苷酸的短的串状重复序列组成。

端粒酶Telomerase:一种核糖核蛋白复合体,具有逆转录酶性质,以物种专一性的内在RNA为模板,合成端粒重复性序列加到染色体3’端。端粒酶在保持端粒稳定、基因组完整、细胞长期的活性和潜在的继续增殖能力等方面有重要作用。

异染色质:间期核中染色质折叠压缩,处于凝缩状态,碱性染料着色较深的无转录活性的染色质。又分为结构异染色质和兼性异染色质。

灯刷染色体:是卵母细胞进行减数第一次分裂时停留在双线期的染色体,它是一个二价体,包含4 条染色单体,此时同源染色体尚未完全解除联会,因此可见到几处交叉。

这一状态在卵母细胞中可维持数月或数年之久。

反式作用因子:一种蛋白或激素复合体,既能与自身DNA调控序列结合起调控作用,也能与不同DNA调控序列结合,调控不同基因的表达。

顺式作用元件:DNA上的一种序列,本身不编码蛋白质,仅为之提供一个作用位点,参与基因表达调控,常与特异蛋白质编码区连在一起,需要同反式作用因子与其共同作用。

核定位序列(NLS):Nuclear iocalization signal (NLS)在亲核蛋白内的一段短的氨基酸序列片段,富含碱性氨基酸残基,可存在于亲和蛋白的不同部位,并指导亲核蛋白能够通过核孔复合体被转运到细胞核内。具有定向、定位作用。

分子伴侣Molecular chaperone 细胞中的某些蛋白分子可以识别正在合成的多肽或部分折叠的多肽并与多肽链某些部位结合,帮助转运、折叠或装配,本身不参与最终产物的形成。

多聚核糖体:是指合成蛋白质时,多个甚至几十个核糖体串联附着在一条mRNA分子上,形成的似念珠状结构。在合成多蛋白质时,核糖体并不是单独工作的,常以多聚核糖体的形式存在。一般来说,mRNA的长度越长,上面可附着的核糖体数量也就越多。

遗传密码:gene code 指mRNA分子上从5'端到3'端方向,由起始密码子AUG开始,每三个核苷酸组成的三联体。它决定肽链上每一个氨基酸和各氨基酸的合成顺序,以及蛋白质合成的起始、延伸和终止。

密码子:mRNA分子中从起始密码子开始每三个相邻碱基组成的整体,决定了合成多肽链上的一种氨基酸。

起始复合物:DNA复制起点的引发体,是蛋白质合成过程中形成的核糖体-mRNA-tRNA 组成的三元复合物。

cDNA:与RNA链互补的单链DNA,以其RNA为模板,在适当引物的存在下,由RNA 与DNA进行一定条件下合成的,就是cDNA。

细胞周期:Cell cycle 是指细胞从一次分裂完成开始到下一次分裂结束所经历的全过程,分为G1 S G2 M 四个阶段。

细胞周期限制点:G1期细胞对一些环境因素有一点敏感,可以限制细胞通过周期。

Hayflick界限:是关于细胞增殖能力和寿命是有限的观点。细胞,至少是培养的二倍体细胞,不是不死的,而是有一定寿命,他们增值能力不是无限的,而是有一定的界限,就是Hayflick界限。

联会复合体:是同源染色体之间在减数分裂前期联会形成的临时性结构。是一种减数分裂特异性超分子蛋白质结构,与减数分裂中同源染色体凝缩、配对、重组和分离密切相关。

周期蛋白:(cyclin) 参与细胞周期调控的蛋白,并且其浓度在细胞周期中是浮动的,呈周期性变化。随着细胞周期阶段的不同,有时浓度高达几千倍,有时又降为零。周期蛋白作为一种调节亚基,与周期蛋白依赖性的蛋白激酶结合并将之激活。

癌基因:Oncogene 位于人体、动物体以及致癌病毒体内能引起细胞恶性转化的核苷酸片段、可以分为细胞癌基因和病毒癌基因。细胞癌基因被激活后可引起细胞癌变,病毒癌基因随病毒进入细胞是宿主细胞发生癌变。

原癌基因:细胞内与细胞增殖相关的基因,是维持机体正常生命活动所需,在进化上高度保守。当原癌基因结构或者调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖从而形成肿瘤。主要编码产物有生长因子、生长因子受体、蛋白激酶、周期蛋白、凋亡调控因子、转录因子。

抑癌基因:正常细胞增殖过程中的负调控因子,编码的蛋白往往在细胞周期检验点上起阻止周期的进行,如果抑癌基因突变,丧失负调控作用,导致细胞周期时控而过度增殖,可引发癌症。

MPF:成熟促进因子能够使染色体凝集,促进细胞由G2向M期转化,在结构上是

一种由周期蛋白和CDK组成,其中周期蛋白对蛋白激酶起激活作用,CDK是其催化亚基能够使磷酸基团从A TP转移到底物丝氨酸或者苏氨酸残基上。

看家基因:是维持细胞基本生存所不可缺少的基因,所有细胞中均要表达,不参与细胞分化方向的确定,但是对细胞分化-般只起协助作用其产物是对维持细胞基本生命活动所必需的蛋白质。如微管蛋白基因、核糖体蛋白基因等。

奢侈基因:Luxury gene 是与各种分化细胞的特殊性状有直接关系的基因,即组织特异性表达的基因,是指不同类型细胞中选择性特异性表达的基因,其产物赋予各种类型细胞特异的形态结构特征与功能。丧失这些基因对细胞的生存没有太大影响,但是会影响细胞的分化。在分化细胞中表达,常受时间和空间的限制。如编码血红蛋白的基因。

基因组:Genome,一个细胞或者生物体所携带的一套完整的单倍体序列,包括全套基因和间隔序列。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。

基因家族:gene family来源于同一个祖先,由一个基因通过基因重复而产生两个或者更多的拷贝而构成的一组基因,它们在结构和功能上具有明显的相似性,编码相似的蛋白质产物,同一家族基因可以紧密排列在一起,形成一个基因簇,但多数时候,它们是分散在同一染色体的不同位置,或者存在于不同的染色体上的,各自具有不同的表达调控模式。

干细胞:stem cell 集体中保留的未分化细胞,集体需要时可以按照发育途径分裂分化产生特定的细胞。具有自我复制、自我更新能力,可以产生高度分化的多种功能细胞。

SNP:单核苷酸序列多态性主要是指基因组水平上由单个核苷酸变异引起的DNA序列多态性。所表现的多态性只涉及到单个碱基的变异,这种变异可以是由单个碱基的转换、颠换引起,也可以是缺失或者插入所致。

细胞分化:Cell differentiation 在个体发育过程中,由一种相同细胞类型经过细胞分裂后逐渐在形态、结构、功能上形成稳定性差异,产生不同细胞类群的过程。

细胞决定:Cell determination 细胞在发生可识别的形态变化之前, 就已受到约束而向特定方向分化, 这时细胞内部已发生变化, 确定了未来的发育命运。细胞在这种决定状态下, 沿特定类型分化的能力已经稳定下来, 一般不会中途改变。

胚胎干细胞:ES细胞当受精卵分裂发育成囊胚时,内层细胞团的细胞就是胚胎干细胞,具有全能性,可以自我更新并具有分化成体内所有组织的能力。

细胞凋亡:apoptosis主动的由基因决定的自动结束生命的过程,涉及一系列基因的激活、表达以及调控等的作用。受到遗传机制决定的程序性调控所以又叫程序性死亡程序性死亡:PCD类似于细胞凋亡,但是程序性死亡是一个功能性概念,描述多细胞生物中某些细胞死亡是个体发育中一个预订的并受到严格控制的正常组成部分。细胞程序性死亡的结果是细胞凋亡,但是细胞凋亡并非都是程序化的。

紧密连接:tight junction是上皮细胞间的特殊连接,组织可溶性物质扩散,形成渗透屏障,维持上皮细胞极性。相邻细胞的质膜紧靠在一起,中间没有空隙,而且两个质膜的外侧电子密度高的部分互相融合,形成一单层。将细胞固定在一起阻止小分子、离子沿细胞间隙从一侧渗透到另一侧。

锚定连接:细胞之间由骨架纤维介导的连接方式,根据骨架类型和锚定部位的不同分为中间丝介导的桥粒、半桥粒和微丝介导的黏着带、黏着斑。

通讯连接:细胞通过某种特殊的连接装置,介导化学信号或者电信号从一个细胞到达另一个细胞的通信方式,包括间隙连接、化学突触、胞间连丝。

3.请叙述低密度脂蛋白(LDL) 的受体介导的胞吞作用。

受体介导的胞吞作用是大多数动物细胞通过网格蛋白有被小泡从胞外液摄取特定大分子的有效途径。被转运的大分子物质(配体) 先与细胞表面的受体结合,形成受体-大分子复

合物并扳动内化作用。选在该处质膜部位在网格蛋白参与下形成有被小窝,然后是深陷的小窝脱离质膜形成有被小泡。有被小泡经脱被作用并与胞内体融合。通过胞内体的酸解(PH5-6) 作用,从而引起LDL 与受体分离。胞内体以出芽的方式形成运载受体的小囊泡,返回细胞质膜,受体重复使用。然后含有LDL 的胞内体与溶酶体融合,LDL 被水解,释放出胆固醇和脂肪酸供细胞利用。

试述核孔复合体在主动运输中的选择性主要表现在哪三个方面?

1、对运输颗粒大小的限制。主动运输的功能直径比被动运输大,约10-20nm,甚至可达26nm。像核糖体亚单位那样大的RNP 颗粒也可以通过核孔复合体从核内运输到细胞质中,表明核孔复合体的有效直径的大小是可被调节的。

2、通过核孔复合体的主动运输是一个信号识别与载体介导的过程,需要消耗ATP 能量,并表现出饱和动力学特征。

3、通过核孔复合体的主动运输具有双向性,即核输入与核输出,它既把复制、转录、染色体构建和核糖体亚单位装配等所需要的各种因子如DNA 聚合酶、RNA聚合酶、组蛋白、核糖体蛋白等运输到核内;同时又能将翻译所需的RNA、装配好的核糖体亚单位从核内运送到细胞质。有些蛋白质或RNA 分子甚至两次或多次穿越核孔复合体,如核糖体蛋白、snRNA 等。

试论述蛋白磷酸化在信号传递中的作用。

⑴蛋白磷酸化是指由蛋白激酶催化的把A TP或GTP的磷酸基团转移到底物蛋白质氨基酸残基上的过程,其逆转过程是由蛋白磷酸酶催化的,称为蛋白质去磷酸化。

⑵蛋白磷酸化通常有两种方式:一种是在蛋白激酶催化下直接连接上磷酸基团,另一种是被诱导与GTP结合,这两种方式都使得信号蛋白结合上一个或多个磷酸基团,被磷酸化的蛋白有了活性后,通常反过来引起磷酸通路中的下游蛋白磷酸化,当信号消失后,信号蛋白就会去磷酸化。

⑶磷酸化通路通常是由两种主要的蛋白激酶介导的:一种是丝氨酸/苏氨酸蛋白激酶,另一种是酪氨酸蛋白激酶。

⑷蛋白激酶和蛋白磷酸酶通过将一些酶类或蛋白磷酸化与去磷酸化,控制着它们的活性,使细胞对外界信号作出相应的反应。通过蛋白磷酸化,调节蛋白的活性,通过蛋白磷酸化,逐级放大信号,引起细胞反应。

一、简要说明由G蛋白偶联的受体介导的信号的特点。

答案要点:G蛋白偶联的受体是细胞质膜上最多,也是最重要的倍转导系统,具有两个重要特点:⑴信号转导系统由三部分构成:①G蛋白偶联的受体,是细胞表面由单条多肽链经7次跨膜形成的受体;②G蛋白能与GTP结合被活化,可进一步激活其效应底物;③效应物:通常是腺苷酸环化酶,被激活后可提高细胞内环腺苷酸(cAMP)的浓度,可激活cAMP 依赖的蛋白激酶,引发一系列生物学效应。⑵产生第二信使。配体—受体复合物结合后,通过与G蛋白的偶联,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内,影响细胞的行为。根据产生的第二信使的不同,又可分为cAMP信号通路和磷酯酰肌醇信号通路。

cAMP信号通路的主要效应是激活靶酶和开启基因表达,这是通过蛋白激酶完成的。该信号途径涉及的反应链可表示为:激素→G蛋白偶联受体→G蛋白→腺苷酸环化化酶→cAMP →cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。

磷酯酰肌醇信号通路的最大特点是胞外信号被膜受体接受后,同时产生两个胞内信使,分别启动两个信号传递途径即IP3—Ca2+和DG—PKC途径,实现细胞对外界信号的应答,因此,把这一信号系统又称为“双信使系统”。

二、比较N-连接糖基化和O-连接糖基化的区别;

答:N-连接与O-连接的寡糖比较;

特征;

合成部位;

合成方式;

与之结合的氨基酸残基;

最终长度;

第一个糖残基N-连接糙面内质网来自同一个寡糖前体;

三、什么是MPF?如何证明某一细胞提取液中有MPF?

1①又称促成熟因子或M 期促进因子,是指存在于成熟卵细胞的细胞质中,可以诱导卵细胞成熟的一种活性物质。(2 分)②已经证明,MPF 是一种蛋白激酶,包括两个亚基即Cdc2 蛋白和周期蛋白,当二者结合后表现出蛋白激酶活性,可以使多种蛋白质底物磷酸化。(2 分)③将该细胞提取液注射到新的未成熟的卵母细胞中,检测该卵母细胞是否能够被诱导成熟,若能,则证明该细胞提取液中存在MPF。(4 分)

四、叙述细胞通讯中cAMP 途径的主要过程

1)外部信号(肽类激素分子,即配基)与质膜上的受体Rs 结合,改变Rs的构象,使

(2)Gs 被活化,使与Gs 结合的GDP 被GTP 取代形成Gs+GTP 之暴露出与Gs 结合的位点;

复合物(GTP 与GDP 可进行可逆性转换),使Gs 暴露出与腺苷酸环化酶(AC,称放大器)的结合位点;(3)AC 被活化,将ATP(三磷酸腺苷)转化成cAMP(第二信使分子),与此同时Gs 上的GTP 被水解成GDP,复合物失活与AC 脱离,Gs 重新恢复到无活性的构象,准备接受第二次外部信号Ac 也失活回复;(4)cAMP 在细胞质内与PKA 结合,使PKA 活化;(5)活化的PKA 的催化组分使胞质内的无活性的蛋白质磷酸化,变成有活性的蛋白质,活性蛋白引起细胞内的一系列反应。

五、.试述由G 蛋白偶联的受体介导的信号传递过程?(10 分)

答:指配体—受体复合体与靶蛋白的作用要通过与GTP 结合的调节蛋白即G 蛋白的偶联,在细胞内产生第二信使,才能将外界信号跨膜传递到细胞内影响细胞的行为的过程(1 分)。如cAMP 信号通路(4 分)和磷脂酰肌醇信号通路的具体过程(5 分)。

六、膜结构不对称性的意义是什么?

答:膜脂、膜蛋白及膜糖分布的不对称性导致了膜功能的不对称性和方向性。保证了生命活动的高度有序性。膜脂在膜中的分布是不对称的,虽然这种不对称性的生物学作用还了解得很少,但已经取得了不少进展。如糖脂是位于脂双层的外侧,其作用可能作为细胞外配体(ligand)的受体。磷脂酰丝氨基主要集中在脂双层的内叶,在生理pH 下带负电荷,这种带电性使得它能够同带正电的物质结合,如同血型糖蛋白A 跨膜α螺旋邻近的赖氨酸、

精氨酸结合。磷脂酰胆碱出现在衰老的淋巴细胞外表面,作为让吞噬细胞吞噬的信号。磷脂酰胆碱也出现在血小板的外表面,此时作为血凝固的信号。磷脂酰肌醇主要集中在内叶,它们在将细胞质膜的刺激向细胞质传递中起关键作用。膜不仅内外两侧的功能不同,分布的区域对功能也有影响。造成这种功能上的差异,主要是膜蛋白、膜脂和膜糖分布不对称引起的。细胞间的识别、运动、物质运输、信号传递等都具有方向性。这些方向性的维持就是靠分布不对称的膜蛋白、膜脂和膜糖来提供。

3.举例说明细胞的形态与功能相适应。

答:细胞的形态结构与功能的相关性与一致性是很多细胞的共同特点。如红细胞呈扁圆形的结构,有利于O 2 和CO 2 的交换; 高等动物的卵细胞和精细胞不仅在形态、而且在大小方面都是截然不同的,这种不同与它们各自的功能相适应。卵细胞之所以既大又圆,是因为卵细胞受精之后,要为受精卵提供早期发育所需的信息和相应的物质,这样,卵细胞除了带有一套完整的基因组外,还有很多预先合成的mRNA 和蛋白质,所以体积就大; 而圆形的表面是便于与精细胞结合。精细胞的形态是既细又长,这也是与它的功能相适应的。精细胞对后代的责任仅是提供一套基因组,所以它显得很轻装; 至于精细胞的细尾巴则是为了运动寻靶,尖尖的头部,是为了更容易将它携带的遗传物质注入卵细胞。

8. 蛋白质的糖基化对蛋白质的理化性质有哪些影响?

答:①溶解度。糖基化往往使蛋白质在水中的溶解度增大。但是,若糖链增长到一定程度,由于相对分子质量增大和形成高级结构,亦会出现憎水性增加的现象。②电荷。氨基糖解离后,应带正电荷。但是,天然存在的氨基糖的氨基都被N-乙酰基取代,实际上相当于中性糖。许多糖链上有唾液酸,或糖醛酸,解离后带负电荷。所以,糖基化可能使蛋白质增加许多负电荷。

如何理解细胞膜作为界膜对细胞生命活动所起的作用?

答:界膜的涵义包括两个方面:细胞界膜和内膜结构的界膜,作为界膜的膜结构对于细胞生命的进化具有重要意义,这种界膜不仅使生命进化到细胞的生命形式,也保证了细胞生命的正常进行,它使遗传物质和其他参与生命活动的生物大分子相对集中在一个安全的微环境中,有利于细胞的物质和能量代谢。细胞内空间的区室化,不仅扩大了表面积,还使细胞的生命活动更加高效和有序。

18. 理解"被动运输是减少细胞与周围环境的差别,而主动运输则是努力创造差别,维持生

答:主要是从创造差异对细胞生命活动的意义方面来理解这一说法。主动运输涉及物质输入和输出细胞和细胞器,并且能够逆浓度梯度或电化学梯度。这种运输对于维持细胞和细胞器的正常功能来说起三个重要作用:①保证了细胞或细胞器从周围环境中或表面摄取必需的营养物质,即使这些营养物质在周围环境中或表面的浓度很低;②能够将细胞内的各种物质,如分泌物、代谢废物以及一些离子排到细胞外,即使这些物质在细胞外的浓度比细胞内的浓度高得多; ③能够维持一些无机离子在细胞内恒定和最适的浓度,特别是K+、Ca2+和H+的浓度。概括地说,主动运输主要是维持细胞内环境的稳定,以及在各种不同生理条件下细胞内环境的快速调整,这对细胞的生命活动来说是非常重要的。

简述Na+/K+泵的结构和作用机制。

答:Na+/K+泵是动物细胞中由ATP 驱动的将Na+ 输出到细胞外同时将K+输入细胞内的运输泵,又称Na+泵或Na+/K+交换泵。实际上是一种Na+ /K+ ATPase。Na+ /K+ ATPase 是由两个大亚基(α亚基)和两个小亚基(β亚基)组成。α亚基是跨膜蛋白,在膜的内侧有ATP 结合位点,细胞外侧有乌本苷(ouabain)结合位点;在α亚基上有Na+和K+结合位点。运输分为六个过程: ①在静息状态,Na+/K+泵的构型使得Na+ 结合位点暴露在膜内侧。当细胞内Na+浓度升高时,3 个Na+ 与该位点结合;②由于Na+的结合,激活了ATP 酶的活性,使ATP 分解,释放ADP,α亚基被磷酸化; ③由于α亚基被磷酸化,引起酶发生构型变化,于是与Na+ 结合的部位转向膜外侧,并向胞外释放3 个Na+ ;④膜外的两个K+同α亚基结合; ⑤K+ 与磷酸化的Na+/K+ A TPase 结合后,促使酶去磷酸化;⑥去磷酸化后的酶恢复原构型,于是将结合的K+ 释放到细胞内。每水解一个ATP,运出3 个Na+ ,输入2 个K+ 。Na+ /K+泵工作的结果,使细胞内的Na+浓度比细胞外低10~30 倍,而细胞内的K+浓度比细胞外高10~30 倍。由于细胞外的Na+浓度高,且Na+是带正电的,所以Na+ /K+ 泵使细胞外带上正电荷。

意义: Na+/K+ 泵具有三个重要作用,一是维持了细胞Na+离子的平衡,抵消了Na+离子的渗透作用;二是在建立细胞质膜两侧Na+离子浓度梯度的同时,为葡萄糖协同运输泵提供了驱动力;三是Na+泵建立的细胞外电位,为神经和肌肉电脉冲传导提供了基础。

细胞分化中核质关系?

细胞质对细胞核具有影响,实验表明细胞质能影响细胞核基因的表达,对基因表达具有调节能力,细胞质的某些成分可激活一些基因,而抑制另一些基因。细胞核对细胞质具有决定性作用。

微管、微丝和中间纤维的相同点:(1)在化学组成上均由蛋白质构成。(2)在结构上都是纤维状,共同组成细胞骨架。(3)在功能都可支持细胞的形状;都参与细胞内物质运输和信息的传递;都能在细胞运动和细胞分裂上发挥重要作用。

微管、微丝和中间纤维的不同点:(1)在化学组成上均由蛋白质构成,但三者的蛋白质的种类不同,而且中等纤维在不同种类细胞中的基本成分也不同。(2)在结构上,微管和中间纤维是中空的纤维状,微丝是实心的纤维状。微管的结构是均一的,而中等纤维结构是为中央为杆状部,两侧为头部或尾部。(3)功能不同:微管可构成中心粒、鞭毛或纤毛等重要的细胞器和附属结构,在细胞运动时或细胞分裂时发挥作用:微丝在细胞的肌性收缩或非肌性收缩中发挥作用,使细胞更好的执行生理功能;中等纤维具有固定细胞核作用,行使子细胞中的细胞器分配与定位的功能,还可能与DNA的复制与转录有关。

总之,微管、微丝和中间纤维是真核细胞内重要的非膜相结构,共同担负维持细胞形态,细胞器位置的固定及物质和信息传递重要功能。

从转录水平说明基因别表达的调控机制?

首先染色质螺旋化程度与DNA 转录活性有关。疏松的常染色质可进行转录,异固缩

的染色质阻碍RNA 聚合酶沿DNA 前进,从而抑制转录。不同类型的分化细胞由于常染色质区段不同,所以转录的mRNA 不同,合成的结构蛋白、酶也不同。组蛋白和非组蛋白对DNA 的转录调节也有不同,染色质是DNA 和组蛋白组成的,组蛋白对基因表达有抑制作用,非组蛋白与组蛋白结合可使DNA 裸露,裸露的DNA 可进行转录。由于非组蛋白能识别DNA 特异位点,不同类型细胞有不同的非组蛋白,导致不同的基因转录,是调控基因转录的重要因素之一。RNA 聚合酶的种类和数量对转录也有重要影响,其主要功能是对转录启动和转录过程进行催化。另外,还有一些转录因子--广泛分布的通用转录因子和对细胞分化起作用的特异性转录因子(大部分是DNA 结合蛋白),如肝细胞至少有4 种转录因子使特异性基因表达,最终形成肝细胞。这些转录因子参与了基因的选择性表达,使细胞逐渐成熟。

细胞生物学名词解释

名词解释题 细胞:是生命体活动的基本单位。 原位杂交:确定特殊的核苷酸序列在上染色体或细胞中的位置的方法称为原位杂交 脂质体:根据磷脂分子可在水相中形成稳定的脂双层的趋势而制备的人工膜。单层脂分子铺展在水面上时,其极性端插入水相而非极性尾部面向空气界面,搅动后形成乳浊液,即形成极性端向外而非极性尾部在部的脂分子团或形成双层脂分子的球形脂质体。 主动运输:有载体介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向高浓度的一侧进行跨膜转运的方式。此种转运的方式需要消耗能量。 转移序列:存在与新生肽连中使肽连终止转移的一段信号序列,可导致蛋白质锚定在膜的脂双层中。因终止转移信号作用而形成单次跨膜的蛋白质,那么该蛋白质在结构上只有一个终止转移信号序列,没有部转移信号,但在N端有一个信号序列作为起始转移信号。 P34cdc2/cdc28:是有芽殖或裂殖酵母cdc2/cdc28基因表达一种分子量为34X103细胞周期依赖的蛋白激酶。 细胞全能性:细胞经分裂和分化后仍具有产生完整有机体的潜能或特性 膜系统(endomembrane system): 指在结构、功能及发生上密切相关的,由膜围绕的细胞器或细胞结构,主要包括质网、高尔基体、溶酶体、过氧化物酶体、核膜、胞体和分泌泡等。 Caspase家族: Caspase活性位点是半胱氨酸(Cysteine),裂解靶蛋白位点是天冬氨酸残基后的肽键,因此称为Cysteine aspartic acic specific protease,即Caspase 细胞分化:在个体发育中,有一种相同的细胞类型经细胞分裂后逐渐在形态、结构、和功能上形成稳定性差异,产生不同的细胞类群的过程称细胞分化。或:由于基因选择性的表达各自特有的专一蛋白质而导致细胞形态、结构与功能的差异。 分泌型胞吐途径:真核细胞都从高尔基体反面管网区分泌的囊泡向质膜流动并与之融合的稳定过程。 细胞骨架:是由蛋白纤维交织而成的立体网架结构,它充满整个细胞质的空间,与外侧的细胞膜和侧的核膜存在一定的结构联系,以保持细胞特有的形状,并与细胞运动有关。(也可以这样回答:从广义上讲,细胞骨架包括细胞质骨架、细胞核骨架、细胞膜骨架和细胞外基质。从狭义上讲,细胞骨架即为细胞质骨架,包括微管、纤丝两大类纤维成分)。 膜的流动性:是生物膜的基本特征之一,包括膜脂的流动性和膜蛋白的流动性,膜脂的流动性主要是指脂分子的侧向运动。 钙粘素:属亲同性CAM,其作用依赖于Ca2+。钙粘素分子结构同源性很高,其胞外部分形成5个结构域,其中4个同源,均含Ca2+结合部位。决定钙粘素结合特异性的部位在靠N末端的一个结构域中,只要变更其中2个氨基酸残基即可使结合特异性由E-钙粘素转变为P-钙粘素。钙粘素分子的胞质部分是最高度保守的区域,参与信号转导。 接合素蛋白:它既能结合网格蛋白,又能识别跨膜受体胞质面的尾部肽信号,从而介导跨膜受体及其结合配体的选择性运输。

组织行为学00152-名词解释

?测验的信度 答:所谓测验的信度即可靠性,它是测量反映被测特征的真实程度的指标,有人称之为测验的准确性,也有人把信度作为测验结果的稳定性和一致性指标。 ?晕轮效应 答:这是一种以点概面的思想方法。它以事物的某一个特性为依据,而忽视事物的其他特性就对整个事物全面评价,结果产生了错觉。 ?正式领导 答:正式领导是指,领导者通过组织所赋予的职权来引导和影响所属员工实现组织目标的活动过程。 ?非正式领导 答:非正式领导是指,领导者不是靠组织所赋予的职权,而是靠其自身的特长而产生的实际影响力进行的领导活动。 ?管理模式 答:所谓管理模式,是指从管理思想、管理理论、管理原则、组织结构(包括职能结构、部门结构、责权结构)、运行机制及运行方式,到管理技法、管理工具的整个管理体系的总称。 ?工作态度 答:工作态度是对工作所持有的评价与行为倾向 ?激励机制 答:激励机制是为达到激励员工而采取的一系列方针政策、规章制度、行为准则、道德规范、文化理念以及相应的组织机构、激励措施的总和 ?组织的亚文化 答:亚文化是指大组织内部由于部门和地理位置的差异而导致同一个组织中的不同部门所拥有的个性“价值观”。 ?案例研究法 答:案例分析法案例研究法是指对组织内的个体、群体或组织的一个或几个以至更多变量之间的关系作出描述和说明。 ?社会交换理论 答:社会交换理论首先是由霍曼斯提出来的。霍曼斯认为人们之间的关系、人们的社会行为是一种商品交换,这不仅是物质商品的交换,而且诸如赞许或者声望、符号之类的非物质商品的交换。 ?组织 答:是在共同目标指导下协同工作的人群社会实体单位;它建立一定的机构,成为独立的法人;它又是通过分工合作而协调配合人们行为的组织活动过程。 ?组织成员的认同感 答:组织成员的认同感是指组织成员愿意为组织目标而奋斗的精神状态,是组织成员群体意识与群体态度的总和。 ?组织文化 答:组织文化通常是指在狭义的组织管理领域内产生的一种特殊的文化倾向,实质上是一个组织在长期发展过程中,把组织成员结合在一起的行为方式、价值观念和道德规范的总和。 ?组织决策体制 答:组织决策体制是指决策机构和决策人员所组成的一定的组织体系及其制定决策的基本程序和制度。它涉及决策机构的设置、内部分工、人员职责、人际关系及技术装备配置等。 ?组织行为学

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI 表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的 近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子 结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则 的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏 水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当 两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解 度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并 恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所 带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作

细胞生物学名词解释和简答题整理版

第四章 P16提要第一段;细胞生物学概念,研究的主要内容 研究细胞基本生命活动规律的科学称为细胞生物学。它是以细胞为研究对象,从细胞的显微水平、亚显微水平、分子水平等三个层次,主要研究细胞和细胞器的结构和功能、细胞增殖、分化、衰老和凋亡,细胞信号转导、细胞基因表达和调控,细胞起源和进化等。二、细胞生物学的主要研究内容 1 细胞核、染色体以及基因表达的研究2生物膜和细胞器的研究3生物膜和细胞器的研究4 细胞增殖及其调控5 细胞分化及其调控6 细胞的衰老和凋亡7细胞的起源和进化8 细胞工程 P46提要真核结构:1生物膜体系以及生物膜为基础构建的各种独立的细胞器2.遗传信息表达的结构体系3细胞骨架体系 P80提要,普通光学显微镜结构和性能参数 1、光学显微镜的组成主要分为光学放大系统,为两组玻璃透镜:目镜和物镜;照明系统:光源、折光镜、聚光镜;机械和支架系统,主要保证光学系统的准确配置和灵活调控。光学显微镜的分辨率是最重要的性能参数,它由光源的波长、物镜的镜口角和介质折射率三个因素决定。 2、荧光显微镜是以紫外光为光源,电子显微镜则是以电子束为光源。 3、倒置显微镜和普通光学显微镜的不同在于物镜和照明系统的位置颠倒。 一、名词解释 外在膜蛋白:外在膜蛋白为水溶性蛋白质,靠离子键或其他较弱的键和膜表面的膜蛋白分子或膜脂分子结合,因此只要改变溶液的离子强度甚至提高温度就可以从膜上分离下来,但膜结构并不被破坏。 内在膜蛋白:内在膜蛋白是通过和之共价相连的脂分子插入膜的脂双分子中,从而锚定在细胞质膜上。和脂肪酸结合的内在膜蛋白多分布在质膜内侧,和糖脂相结合的内在膜蛋白多分布在质膜外侧。 生物膜:镶嵌有蛋白质和糖类(统称糖蛋白)的磷脂双分子层,起着划分和分隔细胞和细胞器作用生物膜,也是和许多能量转化和细胞内通讯有关的重要部位,同时,生物膜上还有大量的酶结合位点。细胞、细胞器和其环境接界的所有膜结构的总称。 二、简答题 1、生物膜的结构和功能,影响生物膜流动性的因素 生物膜的基本结构和作用 (1)具有极性头部和非极性尾部的磷脂分子在水相中具有自发形成封闭的膜系统的性质,以疏水性非极性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,尚未发现在生物膜结构中起组织作用的蛋白。 (2)蛋白分子以不同的方式镶嵌在脂双分子中或结合在其表面,蛋白的类型,蛋白分布的不对称性及其和脂分子的协同作用赋予生物膜具有各自的特性和功能。 (3)生物膜可以堪称是蛋白质在双层脂分子中的二维溶液。然而膜蛋白和膜脂之间,膜蛋白和膜蛋白之间及其和膜两侧其他生物大分子的复杂的相互作用,在不同程度上限制了膜蛋白和膜脂的流动性。 生物学功能:跨膜物质运输——主动运输,被动运输,协同作用,胞吞等。

细胞生物学名词解释

细胞生物学名词解释 1受体,配体:受体(receptor):存在于细胞膜上细胞内、能接受外界的信号,并将这一信号转化为细胞内的一系列生物化学反应,从而对细胞的结构或功能产生影响的蛋白质分子。 配体(ligand):受体所接受的外界信号,包括神经递质、激素、生长因子、光子、某些化学物质及其他细胞外信号。受体是细胞膜上的特殊蛋白分子,可以识别和选择性地与某些物质发生特异性结合反应,产生相应的生物效应.与之结合的相应的信息分子叫配体。 2. 细胞通讯,信号传导,信号转导,细胞识别: 细胞通讯:指一个细胞发出的信息通过介质传递到别一个细胞产生相应的反应。 信号传导:相当于是将上面细胞的刺激冲动传向下一个细胞,起着一种传递承接的作用,生化性质上没有什么改变。信号转导:指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。 细胞识别:是指细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。是细胞通讯的一个重要环节。

3. 分子伴侣:一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的结构完成正确的组装,而且在组装完毕后与之分离,不构成这些蛋白质结构执行功能时的组份。 4. 核孔复合体:在内外膜的融合处形成环状开口,直径为50~100nm,核孔构造复杂,含100种以上蛋白质,并与核纤层紧密结合。是选择性双向通道。功能是选择性的大分子出入(主动运输),酶、组蛋白、mRNA、tRNA等存在电位差,对离子的出入有一定的调节控制作用。 5. 常染色质,异染色质 : 在细胞核的大部分区域,染色质结构的折叠压缩程度比较小,即密度较低,进行细胞染色时着色较浅,这部分染色质称常染色质.着丝点部位的染色质丝,在细胞间期就折叠压缩的非常紧密,和细胞分裂时的染色体情况差不多,即密度较高,细胞染色时着色较深,这部分染色质称异染色质. 6. 核仁组织区:即rRNA序列区,它与细胞间期核仁形成有关,构成核仁的某一个或几个特定染色体片断。这一片段的DNA转录为rRNA, rRNA所在处。 7. 多聚核糖体:在蛋白质合成过程中,同一条mRNA分子能够同多个核糖体结合,同时合成若干条蛋白质多肽链,结合在同一条mRNA上的核糖体就称为多聚核糖体。 8. 紧密连接,粘着带,桥粒,间隙连接:

组织行为学名词解释上课讲义

组织行为学名词解释

1.保健因素:是指工作环境或条件相关的因素,由于这类因素带有预防性,只起保持人的积 极性、维持工作现状的作用,为此这类因素称为“保健因素” 2.被领导者:被领导者在领导活动中是相对领导者而言的,他是指领导者所辖的个人和团 体。 3.部门化:是指对所分工的工作的合理组合,也就是将工作和人员组编成可管理的单位。 4.超Y理论:薛恩提出的复杂人假设。他认为:1,人类的需要是分成许多类的并且会随着人 的民展阶段和整个生活处境的变化而变化。2,人在同一个时间内,会有多种的需要和动机,这些需要和动机相互作用,相互结合,形成了一种错综复杂的动机模式。3,人由于在组织中生活,可以产生新的需要和动机。在人的某一特定阶段和时期,其动机是内部的需要和外部环境相互作用而形成的。4,一个人在不同的组织或同一个组织的不同部门,岗位工作时会形成不同的动机。一个人在正式组织中郁郁寡欢,而在非正式组织中有可能非常活跃。5,一个人是否感到满足或是否表现出献身精神,决定于自己本身的动机构造及他跟组织之间的相互关系。工作能力,工作性质与同事相处的状况皆可影响他的积极性。6,由于人的需要是各不相同的,能力也是有差别的因此对不同的管理方式各个人的反应是不一样的,没有一套适合任何时代,任何人的普遍的管理方法。 5.冲突:因为这样或那样的原因,就常常会产生意见分歧、争论、冲突和对抗,使彼此间的 关系出现紧张状态,在组织行为学上把它们统称为“冲突”。 6.创造能力:是指根据一定的设想,创造出具有新奇的独特价值的精神与物质产品的能力。 7.挫折:是指人们从事有目的的活动,在环境中遇到障碍和干扰,使其需要和动机不能获得 满足时的状态。 8.德尔菲法:是由美国兰德公司和道格拉斯公司提出的,这是一种集中各方面专家的意见预 测未来事件的方法,也可用来进行决策方案的选择。 9.调查法:是运用各种调查的方法了解被调查者对某一事物(包括人)的想法,感情和满意 度。可用的调查法有谈话法,电话调查法,总装调查法 10.定型效应:是指人们对某类社会对象形成了固定的印象,并对以后有关该类对象的知 觉发生强烈的影响。 11.动机:是指引起并维持人的行为达到一定目标的内部动因。 12.非正式群体:是指未经官方规定,而是人们在共同的劳动、生活中自发而形成的一定 群体。该群体无明文规定的定员编制、成员权利、义务。 13.哥顿法:由哥顿提出的,其做法是邀请5—7人参加会议进行讨论,但讨论的问题先 不让讨论者知道,而是采用类比的方法,如拟人类比、象征人类比、幻想类比等。 14.个案研究法:是对某一个体,某一群体或某一组织在较长时间里连续进行调查,从而 研究其行为发展变化的全过程,这种研究方法也称为安全研究法。 15.双因素理论:一类是能促使人们产生工作满意感的激励因素,一类是促使产生不满的 保健因素。 ERG理论:人们共存在三种核心的需要,即生存需要、相互关系需要、成长发展需要。 公平理论:当员工作出了成绩并取得了报酬后,它不仅关系自己的所得的报酬的绝对量,而且关心自己的所得的报酬的相对量。 强化理论:人或动物为了达到某种目的,在环境的作用下会采取一定的行为,人们用强化的办法来影响行为的后果,从而修正其行为。 归因理论:观察者为了预测和评价人们的行为并对环境和行为加以控制而对他人或自己的行为过程所进行的因果解释和推论。 内容:对人们心里活动的归因、行为的归因、未来行为的预测。 特点:在于强调一个人的知觉与其行为之间的关系。 挫折理论:研究阻碍人们发挥的各种因素、产生挫折的原因、个人表现和应对措施。

动物生物学名词解释讲解

原生动物门 1.食物泡(Food vacuole ):食物进入原生动物体内后被细胞质形成食物泡随原生质流动,并经消化酶消化,消化后的营养物质从食物泡进入内质,不能吸收的食物残渣由体表或胞肛排出体外。 2.胞肛(Cytopyge):又称肛点,是不能消化的食物残渣从体表固定位置排出体外的胞器。 3.胞口:原生动物门纤毛虫纲的多数动物用以取食的细胞器的一个结构,位于胞咽之前。 4.胞咽:原生动物门纤毛虫纲的多数动物用以取食的细胞器的一个结构,位于胞口之后。 5.表膜(pellicle):又称皮膜,是原生动物身体表面一层很薄的原生质膜,使身体保持了一定形状。表膜的弹性又可使身体适应改变形状。 6.大核:纤毛虫类都具大核和小核两种类型的细胞核,大核负责纤毛虫的正常代谢、细胞分化控制等。大核可以通过DNA 的复制成为多倍体核。 7.小核:是纤毛虫类两种类型的细胞核的一种。一般较小,呈球形,数目不定,小核负责基因的交换重组并由它产生大核,小核均为二倍体,因此又称为生殖核。 8.伸缩泡(contracrtile vacuole ):是原生动物体内水分调节细胞器,兼有排泄功能。不同种类的原生动物伸缩泡的结构不尽相同,纤毛虫的伸缩泡最复杂,每个伸缩泡有6-10 个收集管,收集管周围有很多网状小管,收集内质中的多余水分及部分代谢产物,最终由伸缩泡与外界相通的小孔排出体外。9.收集管(collecting canals):纤毛虫体内与伸缩泡相通的,周期性地将内质网收集的水分集中注入伸缩泡的结构。 10.外质(ectoplasm):原生动物的细胞质靠近表膜的一层,光镜下外质透明清晰,较致密。在变形虫中可以看到外质与内质相互转化。外质可以分化出一些特殊的结构,如腰鞭毛虫的刺丝囊(nematocyst),丝孢子虫的极囊(polar capsule),纤毛虫的刺丝泡(trichocyst)等。 11.内质(endoplasm):原生动物的细胞质不靠近表膜的部分,光镜下不透明,含有油滴、淀粉、副淀粉等颗粒,内质中含有各种细胞器:色素体(chromatophore )、食物泡(food vacuola)、眼点(stigma)、伸缩泡(contractile vacuole)、线粒体(mitochondrion)、高尔基体(Golgi apparatus)等。 12.溶胶质(plasmasol)、凝胶质(plasmagel):原生动物门肉足虫纲动物的内质可分为固态的凝胶质和液态的溶胶质。在运动时虫体后端的凝胶质因蛋白质的收缩产生压力,使溶胶质向前流动同时伸出伪足。溶胶质流到前方后压力减小,溶胶质又由前向后回流,再成为凝胶质。这样凝胶质与溶胶质的不断交换形成变形运动。 13.植物性营养(holophytic nutrition):原生动物门植鞭毛类体内含有色素体,可以利用光能将二氧化碳和水合成糖类,制成自身生长的营养物质,这种营养方式称为植物性营养。 14.动物性营养(holozoic nutrition) :原生动物通过伪足吞噬或通过胞口、胞咽将细菌、有机质颗粒等食物取食进细胞质内形成食物泡,经消化酶的作用吸收消化后的营养,不能消化的食物残渣则由胞肛排出体外,这种营养方式称为动物性营养。 15.腐生性营养(saprophytic nutrition):一些寄生和自由生活的原生动物可以通过体表的渗透作用从生活的环境介质中摄取溶于水的有机物以获取自身生长的营养物质。这种营养方式称为腐生性营养。16.眼点:一些鞭毛虫类身体前端会有类胡萝卜素的脂类集合成为一个红色的眼点,与鞭毛基部的副鞭毛体一起构成某些鞭毛虫的感光细胞器。 腔肠动物门 1.缘膜:水螅纲水母的伞缘向内突起,成为一环状膜,称为缘膜。 2.隔膜:珊瑚纲的腔肠动物体壁内胚层向消化循环腔垂直长入的突起,有的可以连接到口道,将消化循环腔分为初级隔膜、次级隔膜和三级隔膜。 3.神经细胞(nerve cell):位于皮肌细胞基部,接近中胶层,它的细胞突起彼此相连成网状,构成神经网,起传导刺激向四周扩散的作用; 4.刺细胞(cnidoblast):腔肠动物特有的,分布于体表皮肌细胞之间,以触手上为多。刺细胞内有刺丝囊(nematocyst),囊内有毒液和一盘旋的丝状管(刺丝):遇到刺激,囊内刺丝翻出,注射毒液或把外物

细胞生物学名词解释整理终版题库

名词解释 1. genome 基因组p235 某一个生物的细胞中储存于单倍染色体组中的总遗传信息,组成该生物的基因组 2. ribozyme 核酶p266 核酶是具有催化功能的RNA分子,是生物催化剂,可降解特异的mRNA序列。核酶又称核酸类酶、酶RNA、核酶类酶RNA。大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应参与RNA自身剪切、加工过程。与一般的反义RNA相比,核酶具有较稳定的空间结构,不易受到RNA酶的攻击。更重要的是,核酶在切断mRNA后,又可从杂交链上解脱下来,重新结合和切割其它的mRNA分子。 3. signal molecule 信号分子p158 信号分子是细胞的信息载体,包括化学信号如各种激素,局部介质和神经递质以及各种物理信号比如声、光、电和温度变化。各种化学信号根据其化学性质通常可分为3类:1、气体性信号分子,包括NO、CO,可以自由扩散,进入细胞直接激活效应酶产生第二信使cGMP,参与体内众多生理过程。2、疏水性信号分子,这类亲脂性分子小、疏水性强,可穿过细胞质膜进入细胞,与细胞内和核受体结合形成激素-受体复合物,调节基因表达。3、亲水性信号分子,包括神经递质、局部介质和大多数蛋白类激素,他们不能透过靶细胞质膜,只能通过与靶细胞表面受体结合,经信号转换机制,在细胞内产生第二信使或激活蛋白激酶或蛋白磷酸酶的火星,引起细胞的应答反应。 4. house-keeping gene管家基因p319 管家基因是指所有细胞中均表达的一类基因,其产物是维持细胞基本生命活动所需要的,如糖酵解酶系基因等。这类基因一般在细胞周期S期的早期复制。分化细胞基因组所表达的基因大致可分为2中基本类型一类是管家基因,另外一类是组织特异性基因。 5. cis-acting elements顺式作用元件 存在于基因旁侧序列中能影响基因表达的序列。顺式作用元件包括启动子、增强子、调控序列和可诱导元件等,它们的作用是参与基因表达的调控。顺式作用元件本身不编码任何蛋白质,仅仅提供一个作用位点,要与反式作用因子相互作用而起作用。是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通过与转录因子结合而调控基因转录的精确起始和转录效率。 6. epigenetics 表观遗传学p251(重新查!!!1) 表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记,母体效应,基因沉默,核仁显性,休眠转座子激活和RNA编辑等。是在基因组水平上对表观遗传学改变的研究。表观遗传现象包括DNA甲基化、RNA干扰、组织蛋白修饰等 7. Hayflick limitation Hayflick界线 Leonard Hayflick利用来自胚胎和成体的成纤维细胞进行体外培养,发现:胚胎的成纤维细胞分裂传代50次后开始衰退和死亡,相反,来自成年组织的成纤维细胞只能培养15~30代就开始死亡。Hayflick等还发现,动物体细胞在体外可传代的次数,与物种的寿命有关;细胞的分裂能力与个体的年龄有关,由于上述规律是Hayflick研究和发现的,故称为Hayflick 界线。关于细胞增殖能力和寿命是有限的观点。细胞,至少是培养的二倍体细胞,不是不死的,而是有一定的寿命;它们的增殖能力不是无限的,而是有一定的界限,这就是Hayflick 界线。 8. proto-oncogene原癌基因p312 原癌基因是细胞内与细胞增殖相关的基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增

组织行为学名词解释全

名词解释: 1. 组织:是在共同目标指导下协同工作的人群社会实体单位;它建立一定的机构,成为独立的法人;它又是通过分工合作而协调配合人们行为的组织活动过程。▲ 2. 行为:狭义的行为是指人受其生理、心理支配或客观环境的刺激而表现出能被观察到的一切外显的活动。广义的行为除上述可以直接观察到的外显行为外,还包括内隐的心理活动;广义行为的概念实际是把心理和行为统称为人的行为。▲ 3. 组织行为学:是研究在组织中以及组织与环境相互作用中,人们从事工作的心理活动和行为反应规律性的科学。 4.测验的信度:即可靠信,它是测量反映被测特征的真实程度的指标,有人称之为测验的真确性,也有人把信度作为测验结果的稳定性和一致性指标。 5.准实验法:研究人员在不能完全控制的情景下所进行的实验。 6. 感觉:是客观事物直接作于人的感觉器官,人脑中所产生的对这些事物个别属性的反映。它也是客观事物在人的认知过程中最简单的最初的反映形式,是构成知觉和思维等复杂的高级的反映形式的基础。 7. 知觉:是在感觉的基础上,把所感觉到的客观事物的各种个别属性联系起来,在人脑中产生的对该事物各种属性的组合整体反映。 8. 社会知觉:是指主体对社会环境中有关人的知觉,包括对个人、群体和组织特性的知觉。 9. 自我知觉:是指主体对自己的心理与行为状态的知觉,通过自我知觉发现和了解自己,从而使自己的行为能更好地适应外界环境的要求。▲ 10.知觉归类:指知觉对象的组合原则,也就是按照这些原则才更容易把知觉对象组合成为一个整体反映的知觉。 11.晕轮效应:是一种一点概面的思想方法。它以事物的某一个特性为依据,而忽视事物的其他特性就对整个事物全面评价,结果产生了错觉。

生物学名词解释大全

生物学名词解释大全(中英) sample 样本:提供群体信息的亚单位,样本要求大小合适,并随机取样才具有代表性。 sampling error 样本误差:在一个小样本中预期的比例会发生随机改变的现象。 satellite DNA卫星DNA:真核生物基因组中的一种高度重复顺序,富含A-T ,当进行CsCl密度梯度离心时,基因组呈现一条宽的带,而在其上方高度重复顺序显示了单独的一条细带,故称卫星DNA。 scaffold attachmentation region (SARs) :骨架附着区:DNA上的特异位置,附着在染色体的骨架上。 secondary law 第二定律:见自由组合定律(independent assortment)。 secondary nondisjunction 次极不分离:初极不分离产生的雌性后代中X染色体再度不分离。 second-site mutation 第二位点突变:见抑制基因突变(suppressor mutation)。 selection coefficient 选择系数:计算对一种基因型的选择相对强度。 selection differential 选择差数:在自然和人工选择中,被选择亲代的表型平均值和未被选择的群体平均表型之间的差异。 self-assembly 自组装、自动装配:由亚基按特定的模式自动聚集成某种功能结构的过程。 self-fertilization (selfing) 自体受精:同一个体产生的雌性和雄性配子相互结合。 self-splicing 自我剪接:某些前体RNA分子内含子的切除,此过程在有的生物中是蛋白依赖性反应。 semiconservative replication mode 半保留复制模型:在DNA复制两条子DNA链中,每条双链都含有一条亲代的单链。 semidiscontinuous 半不连续(复制):DNA复制时前导链上DNA的合成是连续的,后随链上是不连续的,故称半不连续复制。 sense codon 有义密码子:mRNA上相对一个氨基酸的密码子。 Sequence Tagged Site, (STS)序列位置标签:一段短的DNA序列(200-500个碱基对),这种序列在染色体上只出现一次,其位置和碱基顺序都是已知的。在PCR反应中可以检测处STS来,STS适宜于作为人类基因组的一种地标,据此可以判定DNA的方向和特定序列的相对位置。ETS是cDNA上的STS。 sex chromosome 性染色体:在真核生物中和性别相关的染色体,如X, Y和Z,W。这些

细胞生物学重点知识整理

细胞生物学 第一章:绪论 ●现代细胞生物学研究的三个层次是什么? ●细胞的发现 ●细胞学说 ●分子生物学的出现 ●真核细胞与原核细胞的比较 第三章:细胞基础 ●生物大分子 ●蛋白质一、二、三、四级结构 ●核酸分类 ●DNA/RNA结构、功能比较 ●三类主要RNA的大体结构与功能 ●DNA双螺旋结构模型 第四章:细胞膜 ●膜的化学组成:三种膜脂加二种膜蛋白 ●膜的流动镶嵌模型fluid mosaic model ●脂筏 ●膜的两大特性, ●物质运输的方式及比较:穿膜与跨膜 ●主/被动运输名词及其异同 ●内吞、外吐比较 ●细胞表面,细胞外被概念 第六章:细胞连接与细胞外基质 ●名解解释: ◆细胞连接cell junction, ◆紧密连接tightjunction, ◆锚定连接anchoringjunction, ◆通讯连接communicationjunction, ◆细胞外基质extracellular matrix, ●细胞连接可分为几种类型?在结构和功能上各有什么特点? 第七章:核糖体 ●根据来源和沉降系数,细胞中核糖体分两类,其亚基组成?其rRNA组成及组成蛋白质种类? ●细胞中核糖体有几种存在形式?所合成的蛋白质在功能上有什么不同? ●核糖体上重要活性位点 ●蛋白质合成的过程 ●遗传密码,密码子,反密码子之间有何联系和区别? ●遗传密码具有哪些特征?

(细胞生物学复习资料вTсエ莋室整理) 第一,对内膜系统的概念和相互关系有较清楚的了解和掌握; 第二,重点要了解和掌握内质网,高尔基体,溶酶体和过氧化物酶体等细胞器和结构的性质特点和主要功能,以及有关的一些重要名词术语概念。 标志酶分别是。。 Signal peptide- SRP- ribosome 膜流;溶酶体分类;有被小泡类型;膜泡定向运输机制 名词解释 内膜系统; 内质网; 粗面内质网; 滑面内质网; 信号肽,信号假说内体性溶酶体; 吞噬性溶酶体;自噬性溶酶体; 异噬性溶酶体内质网有几种类型?在形态和功能上各有何特点? ●简述分泌蛋白的合成和分泌过程 ●高尔基复合体的超微结构有何特点? ●高尔基复合体有哪些主要功能? ●简述溶酶体的形成过程(溶酶体与ER、GC的关系)。 ●溶酶体分为几类?各有何特点? ●溶酶体与过氧化物酶体比较(形态结构,化学成分,标志酶,功能) ●内膜系统各细胞器的结构与功能 第八章:线粒体 ●名词解释:(部位+结构+功能)细胞氧化,细胞呼吸, 基粒,电子传递链,氧化磷酸化 ●线粒体的超微结构如何? ●线粒体的功能 ●呼吸链及组成 ●基粒的结构与功能 ●化学渗透学说如何解释氧化磷酸化偶联? ●线粒体半自主性 第九章:细胞骨架 ●细胞骨架cytoskeleton, ?微管组织中心( MTOC ), ?微管microbubule, ?微丝microfilament, ?中间纤维intermediate filament, ?踏车现象(踏车行为)p89“快于改为等于” ●微管、微丝、中间纤维的功能 ●细胞骨架中各纤维系统的异同 ●细胞骨架中各纤维系统的装配 ●比较纤毛与微绒毛的结构组成

细胞生物学名词解释

名词解释 Cell Biology:广泛采用现代生物学的实验技术和手段,应用分析和综合的方法,将细胞的整体活动水平,亚细胞水平和分子水平三方面的研究有机地结合起来,以动态的观点观察细胞和细胞器的结构和功能,以期最终阐明生命的基本规律。 脂筏(lipid raft)是质膜上富含胆固醇和鞘磷脂的微结构域(microdomain)。大小约70nm 左右,是一种动态结构,位于质膜的外小叶。 质膜主要由膜脂和膜蛋白组成,另外还有少量糖,主要以糖脂和糖蛋白的形式存在。 膜骨架membrane associated skeleton 细胞膜下与膜蛋白相连的由纤维蛋白组成的网架结构,它参与维持细胞膜的形状并协助质膜完成多种生理功能。 被动运输(passive transport):通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。动力来自物质的浓度梯度,不需要细胞提供代谢能量。 简单扩散(simple diffusion)疏水的小分子或小的不带电荷的极性分子的热运动可以使分子从膜的一侧通过细胞膜到另一侧,其结果是分子沿着浓度梯度降低的方向转运。因无需细胞提供能量,也没有膜蛋白的协助,故名。 协助扩散(facilitated diffusion) 小分子物质沿其浓度梯度(或电化学梯度)减小方向的跨膜运动,是由膜转运蛋白“协助”完成的。 主动运输active transport 由载体蛋白所介导的物质逆着浓度梯度或电化学梯度由低浓度侧到高浓度侧转运,需要供给能量。ATP直接供能、间接供能、光能。 协同运输(cotransport):由离子泵与载体蛋白协同作用,利用跨膜的离子浓度梯度或电化学梯度,使特定离子的顺梯度运动与被转运分子或离子的逆梯度运输相偶联。直接动力是膜两侧的离子浓度梯度。 胞吞作用:质膜内陷形成囊泡将外界大分子裹进并输入细胞的过程。 胞吐作用:与胞吞作用的顺序相反,将细胞内的分泌泡或其它某些膜泡中的物质通过细胞膜运出细胞的过程。 外膜(outer membrane):单位膜结构,厚约6nm。含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的直径2-3nm的亲水通道,10KD以下的分子包括小型蛋白质可自由通过。内膜(inner membrane):厚约6-8nm。含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。 膜间隙(intermembrane space):内外膜之间的腔隙,延伸到嵴的轴心部。宽约6-8nm。其中含有许多可溶性酶类,底物和辅助因子。标志酶为腺苷酸激酶。 基质(matrix):内膜之内侧,类似胶状物,含有很多Pr.和脂类。三羧酸循环,脂肪酸和丙酮酸氧化的酶类都在其中。另外还有线粒体DNA、核糖体、tRNA、rRNA、DNA聚合酶、AA活化酶等。其标志酶为苹果酸脱氢酶。 外被(outerenvelop):双层膜,每层厚6~8nm,膜间隙为10~20nm。外膜通透性大,细胞质中大多数营养分子可自由进入膜间隙。内膜对物质透过的选择性比外膜强,其上有特殊载体称为转运体,可运载物质过膜。 类囊体(Thylakoid):在叶绿体基质中由单位膜所形成的封闭扁平小囊。 光合磷酸化:由光照所引起的电子传递与磷酸化作用相偶联而生成A TP的过程,称为photophosphorylation 细胞质膜系统(cytoplasmic membrane system):是指细胞内那些在生物发生上与质膜相关的细

《组织行为学》名词解释

1. 组织:是在共同目标指导下协同工作的人群社会实体单位;它建立一定的机构,成为独立的法人;它又是通过分工合作而协调配合人们行为的组织活动过程。 2. 行为:狭义的行为是指人受其生理、心理支配或客观环境的刺激而表现出能被观 察到的一切外显的活动。广义的行为除上述可以直接观察到的外显行为外,还包括内隐的心理活动;广义行为的概念实际是把心理和行为统称为人的行为。 3. 组织行为学:是研究在组织中以及组织与环境相互作用中,人们从事工作的心理活动和行为反应规律性的科学。 4. 感觉:是客观事物直接作于人的感觉器官,人脑中所产生的对这些事物个别属性的反映。它也是客观事物在人的认知过程中最简单的最初的反映形式,是构成知觉和思维等复杂的高级的反映形式的基础。 5. 知觉:是在感觉的基础上,把所感觉到的客观事物的各种个别属性联系起来,在人脑中产生的对该事物各种属性的组合整体反映。 6. 社会知觉:是指主体对社会环境中有关人的知觉,包括对个人、群体和组织特性的知觉。 7. 自我知觉:是指主体对自己的心理与行为状态的知觉,通过自我知觉发现和了解自己,从而使自己的行为能更好地适应外界环境的要求。 8. 价值观:是人们对客观事物(包括人、物、事)在满足主观需要方面的有用性、重要性、有效性的总评价和总看法,这是人们的一种观点和信念,是世界观的组成部分,是指导人们行为的准则。 9. 态度:是个人对某一对象所持有的评价和行为倾向。 10. 工作态度:是对工作所持有的评价与行为倾向。 11. 工作参与度:是指员工对自己工作的认可程度、投入程度,以及认为工作对自我价值实现的重要程度。 12. 个性:是个人所具有的各种心理特征和意识倾向的较稳定的有机组合。 13. 气质:是指与个人神经过程的特性相联系的行为特征。 14. 能力:是个人顺利完成某种活动所必备的心理特征。 15.性格:是个人对现实的稳定态度和习惯化的行为方式。 16. 控制方位论:是指个人行为能否达到某种结果靠那方面原因控制的看法。 17. 创造性行为:是指人这个主题综合各方面的信息后形成一定目标和控制或调节客体过程中产生出前所未有的并具有社会价值的新成果的一种行为。 18. 事业生涯:是指一个人一生所连续地担负的工作职业和工作职务、职位及岗位的发展道路。 19. 事业生涯的设计:是对个人今后所要从事的职业、要去的工作组织和单位、要担负的工作职务和工作职位的发展道路,作出设想和计划的过程。 20. 事业生涯的开发:是指为达到事业生涯设计所列出的各阶段的事业目标,而进行的知识、能力专业和技术的开发性(培训、教育)活动。 21. 事业生涯的管理:是指组织和职工本人对事业生涯进行设计、规划、实施和监控的过程。 22. 群体:是指为了实现某个特定的目标,两个或两个以上相互作用、相互依赖的个体的组合。 23. 正式群体:是指由组织结构确定的、职务分配很明确的群体。 24. 非正式群体:是那些既没有正式结构、也不是由组织确定的联盟,它们是人们为了满足社会交往的需要在工作环境中自然形成的。 25. 角色:是指人们对某个社会性单位中占有一个职位的人所期望的一系列行为模式。 26. 角色同一性:是指对一种角色的态度与实际角色行为的一致性。 27. 角色知觉:是指一个人对于自己在某种环境中应该有什么样的行为反应的认识。 28. 角色期待:是指别人认为你在一个特定的情境中应该做出什么样的行为反应。 29. 群体凝聚力:是指群体成员之间相互吸引并愿意留在群体中的程度。是维持群体行为有效性的一种合力。

细胞生物学翟中和重点名词解释

细胞生物学复习提纲 名词解释 1.微管:在真核细胞质中,由微管蛋白构成的,可形成纺锤体、中心体及细胞特化结构鞭毛和纤毛的结构。 2.微丝:在真核细胞的细胞质中,由肌动蛋白和肌球蛋白构成的,可在细胞形态的支持及细胞肌性收缩啡肌性运动等方面起重要作用的结构。 3.光合磷酸化:由光照引起的电子传递与磷酸化作用相偶联而生成ATP的过程。 4.氧化磷酸化:电子从NADH或FADH2经呼吸链传递给氧形成水时,同时伴有ADP磷酸化形成ATP,这一过程称为氧化磷酸化。 5.ATP合成酶: ATP 合成酶广泛存在于线粒体、叶绿体、异养菌和光合细菌中,是生物体能量转换的核心酶。该酶分别位于线粒体内膜、类囊体膜或质膜上,参与氧化磷酸化和光合磷酸化,在跨膜质子动力势的推动下催化合成ATP。 6.载体蛋白:是一类膜内在蛋白,几乎所有类型的生物膜上存在的多次跨膜的蛋白质分子。通过与特定溶质分子的结合,引起一系列构想改变以介导溶质分子的跨膜转运。 7.通道蛋白:由几个蛋白亚基在膜上形成的孔道,能使适宜大小的分子及带电荷的溶质通过简单的自由扩散运动从膜的一侧到另一侧。 8.被动运输:指溶质顺着电化学梯度或浓度梯度,在膜转运蛋白协助下的跨膜转运方式,又叫协助扩散。 9.主动运输:物质逆浓度梯度或电化学梯度,由低浓度向高浓度-侧进行跨膜转运的方式,需要细胞提供能量,需要载体蛋白的参与。 10.胞吞作用:细胞通过质膜内陷形成囊泡,将胞外的生物大分子、颗粒性物质或液体等摄取到细胞内,以维持细胞正常的代谢活动。 11.胞吐作用:细胞内合成的生物分子和代谢物以分泌泡的形式与质膜融合而将内含物分泌到细胞表面或细胞外的过程。 12.P-型离子泵:运输时需要磷酸化,具有两个独立的α催化亚基,.具有ATP结合位点,绝大多数还有β调节亚基 13.V-型离子泵:位于小泡的膜上,运输时需ATP供能,但不需要磷酸化,利用ATP水解供能, 14.COPII包被膜泡:介导细胞内顺向运输,负责从内质网到高尔基体的物质运输 15.COPI包被膜泡:介导细胞内膜泡逆向运输,负责从顺面高尔基体网状区到内质网膜泡转运。 16.脂锚定膜蛋白:位于脂双层表面,通过与之共价相连的脂分子插入膜的脂双分子中,从而锚定在细胞质膜上。与脂肪酸锚定的膜蛋白多分布在质膜内侧,与糖脂结合的多分布在质膜外侧 17.初级溶酶体:游离在细胞中的尚未执行其消化功能的溶酶体,仅含有水解酶类,但无作用底物,外面只有一层单位酶,其中的酶处于非活性状态 18.次级溶酶体:初级溶酶体与细胞内自噬体或异噬体融合形成的进行消化作用的膜包被复合物 19.中间丝:存在于真核细胞质中的,由蛋白质构成的,其直径介于微管和微丝之间,在支持细胞形态、参与物质运输等方面起重要作用的纤维状结构。

组织行为学(名词解释和简答题)

一、名词解释 1、组织行为学:是综合运用与人有关的各种知识,采用系统分析的方法,研究一定组织中人的行为规律,从而提高各级主管人员对人的行为的预测和引导能力,以便更有效地实现组织目标的一门科学。 3、个性:是指一个人整个特有的、经常性的、稳定性的心理特征的总和。 4、社会知觉和自我知觉:社会知觉是对社会对象的知觉,包括一个人对另一个人,个人对群体,群体对个人、群体对群体的知觉,以及个人间,群体间关系的知觉,简而言之,社会知觉就是对人和社会群体的知觉。自我知觉是社会知觉中一种特殊的形式,在个体行为活动中,具有特别重要的地位,个体的自我知觉,既包括对自己心理与行为状态的知觉,则无,又包括对自己的目标与发展途径的认识。 5、价值观:是指一个人对周围的客观事物(包括人、物事)的意义,重要性的总评价和总看法。 6、态度:是指个体对瓮城事所持有的一种持久而又一致的心理和行为倾向。 1、激励:指的是鼓舞、指引和维持个体努力指向目标行为的驱动力,它对行为起着激发、加强和推动的作用。 2、挫折:由于某些主观成分的原因遇到验证以克服的困难,使目标无法实现、需要不能得到满足,这种目标无法实现,需要得不到满足的紧张状态就叫“挫折” 3、强化:人或动物为了达到某种目的,在环境的作用下会采取一定的行为。当这种行为的后果对他有利时,这种行为就会在以后重复出现,行为的频率就会增加;当这种行为的后果对他不利时,这种行为就减弱或消失。这种状况在心理学中被称为“强化” 4、群体:组织中的群体是两人或两人以上的集合体,他们遵守共同的行为规范、在情感上互相依赖、在思想上互相影响,而且有着共同的奋斗目标。 5、群体规范:是由群体成员们建立的行为准则,或是指群体对其成员适当行为的共同期望。它可以是成文的,也可以是不成文的。规范起着约束成员行为的作用。 6、群体内聚力:群体对成员的吸引力称为群体内聚内,它包括群体成员与整个群体的吸引力,以及群体成员之间的吸引力。 7、人际关系:也叫人群关系,是人们在进行物质交往和精神交往过程中发生、发展和建立起来的人与人之间的关系,是人们依靠某种媒介,通过个体交往形成的信息和情感、能量和物质交流的有机渠道。 8、冲突:是指两个或两个以上的社会单元在目标上互不相容或互相排斥,从而产生心理上的或行为上的矛盾。 1、领导:领导是一种影响力,是影响个体、群体或组织来实现所期望目标的各种活动的过程。这个领导过程是由领导者、被领导者和所处环境这三个因素所组成的复合函数。 2、领导决策:指领导者在领导活动中,为了解决重大的现实问题,通过采用科学的决策方法和技术,从若干个有价值的方案中选择其中一个最佳方案,以此实现领导目标的活动过程。 3、权力:个体影响其他个体(群体)行为的能力。 4、政治行为:指组织中的个体或群体为了自身的利益,采取正当或不正当的手段来获取资源,争夺权力的活动。 5、领导效能:领导者在实施领导过程中的行为能力、工作状态和工作结果,即实现领

相关主题
文本预览
相关文档 最新文档