当前位置:文档之家› 电网谐振过电压的限制方法

电网谐振过电压的限制方法

电网谐振过电压的限制方法

https://www.doczj.com/doc/9015485475.html,

电网谐振过电压的限制方法

摩擦离合器一制动器在锻压机械功能部件中,以其开发、生产和使用的成熟性而论,当首推机械压力机用摩擦离合器一制动器。摩擦离台器一制动器是机械压力机主传动的重要部件,其性能优劣直接影响整机的使用性、安全性、可靠性以及设备的开动率和维修量。按摩擦离合器一制动器的结构形式分,有组合式摩擦离合器一制动器和分离式摩擦离合器一制动器;按摩擦副的工作状态分,有干式摩擦离合器一制动器和湿式摩擦离合器一制动器;按摩擦离合器一制动器的操纵系统分,有气动摩擦离合器一制动器和液压摩擦离合器一制动器。组合式摩擦离合器一制动器结构紧凑,离合器的结合与脱开动作协调,既可安装在中间轴上,也可安装在曲轴上,广泛应用于1OO一1600千牛的开式压力机和高速压力机上。分离式摩擦离合器一制动器可有效地减少从动部分的转动惯量,以减少运动过程中发热,降低摩擦副的温升,提高摩擦片的使用寿命,通常用于闭式压力机和较大规格的开式压力机。分离式摩擦离合器一制动器由于结构上的原因,一般由主机厂家自制,目前组织专业化生产尚有一定的难度。当前,国内作为功能部件由专业厂生产的基本有两种,一种是组合式气动干式摩擦离合器一制动器(倘称干式摩擦离合器),另一种是组合式气动湿式摩擦离合器一制动器(简称湿式摩擦离合器)。这两种离合器,按结构形式分,同属组合式;按摩擦副工作状态分,分属干式和湿式;按操纵系统分,又同属气动离合器。国内自行开发或利用国外技术开发的干式摩擦离合器和湿式摩擦离合器,经历了漫长的市场开发阶段后已逐渐进入成熟期,不仅可批量生产供应主机厂使用,而且质量稳定,

浅谈电力系统电压稳定性

太原科技2009年第4期TAIYUAN S CI-TECH 浅谈电力系统电压稳定性 刘宝,李宝国 文章编号:1006-4877(2009)04-0035-02 最近30年来,世界各国的电力系统普遍进入大电网、高电压和大机组时代,巨量的电能需要通过长距离的高压输电线送到负荷中心,电力系统面临的压力越来越大,很多电力系统不得不运行在其稳定极限附近,极易发生失稳事故。这些事故损失是巨大的,引起人们对电压稳定问题的严重关注。可以说电压稳定问题目前已成为世界各国电力工业领域研究的热点。 1电力系统电压稳定的定义及分类 1.1电压稳定定义 电力系统电压稳定性是指给定一个初始运行条件,扰动后电力系统中所有母线维持稳定电压的能力。在发生电压失稳时,可能引起电网中某些母线上的电压下降或升高,从而导致系统中负荷丧失、传输线路跳闸、级联停电及发电机失去同步等。1.2电压稳定分类 目前,文献中可以见到与电压稳定的主要有静态电压稳定、暂态电压稳定、动态电压稳定、中长期电压稳定等,对它们的含义和范畴,至今还没有一个统一的定义。2004年,IEEE/CIGRE稳定定义联合工作组给出了电力系统电压稳定的分类:电力系统电压稳定分为小扰动电压稳定和大扰动电压稳定。 小扰动(或小信号)电压稳定是指电力系统受诸如负荷增加等小扰动后,系统所有母线维持稳定电压的能力。大扰动电压稳定是指电力系统遭受大干扰如系统故障,失去负荷,失去发电机或线路之后,系统所有母线保持稳定电压的能力。 2电力系统电压失稳的机理 对电力系统电压失稳机理的研究是十分重要的,合理解释和明确区分电压失稳现象,可以正确应对预想的事故。静态研究认为电压失稳原因是负荷超过了网络的最大传输极限,从而造成潮流方程无解。随着对电压稳定研究的进一步深入,越来越多的人们开始用非线性动力学系统的理论知识来解释电压失稳的机理。对于电压失稳机理,T.Van Custem提出:电压失稳产生于负荷动态地恢复其自身功率消耗的能力超出了传输网络和发电机系统所能达到的最大极限。把电压稳定问题仅当作静态问题的观念是不周全的;负荷是电压失稳的根源,因此,电压失稳这一现象也可称为负荷失稳,但负荷并不是电压失稳中唯一的角色;发电机不应视为理想的电压源,其模型(包括控制器)的准确性对准确的电压稳定分析十分重要。 3电压稳定性的分析方法 电力系统作为一个复杂的非线性动力系统,考虑其动态因素,数学上可用一组DAE(Differential Algebraic Equations)微分代数方程组来表示。微分方程组主要体现动态元件,代数方程组主要体现网络结构等约束条件。目前,电力系统电压稳定性的分析方法主要有:静态分析方法、动态分析方法、非线性动力学方法。 3.1静态电压稳定分析方法 潮流方程和扩展的潮流方程是静态分析方法的基本立足点。静态分析方法一般认为潮流方程的临界解就是电压稳定的极限静态方法,将一个复杂的微分代数方程组简化为简单的非线性代数方程实数,大体上可以归纳为:连续潮流法、特征值分析法、最大功率法等。 3.1.1连续潮流法 连续潮流法(CPFLOW)又称延拓法,连续潮流法使用包括有预估步和校正步的迭代方案找出随负荷参数变化的潮流解路径。连续潮流法跟踪负荷和发电机功率变化情况下电力系统的稳态行为,通 (辽宁工业大学,辽宁锦州121001) 摘要:介绍了电力系统电压稳定的定义和分类,提出了电压失稳机理和电压稳定的主要研究方法,反映出该领域的研究概貌和最新动向。 关键词:电力系统;电压稳定;静态;动态 中图分类号:TM712文献标志码:A 收稿日期:2009-01-05;修回日期:2009-02-05 作者简介:刘宝(1982-),男,山东滨州人。2006年9月就 读于辽宁工业大学,攻读硕士学位。 研究与探讨

世界各国工业电压标准

国家电压频率标准 民用工业美标德标意标国标 阿根廷220 德标 阿拉伯联合酋长国220 美标德标 阿鲁巴岛127 美标 阿曼240 德标 埃及220 德标 埃塞俄比亚230 瑞士插头爱尔兰230 德标 爱沙尼亚230 德标 安哥拉220 德标 安圭拉岛110 美标日本插头安提瓜岛230 奥地利230 德标 澳大利亚230 国标 巴巴多斯岛115 美标 巴布亚新几内亚240 国标 巴哈马群岛120 美标 巴基斯坦230 美标 巴拉圭220 德标 巴利阿里群岛220 德标 巴林群岛230 美标 巴拿马110 美标 巴西220 美标 百慕大群岛120 美标 保加利亚230 德标 贝宁湾220 德标 比利时230 德标 冰岛220 德标 波多黎各120 美标 波兰220 德标 波斯尼亚220 德标 玻利维亚220 德标 伯利兹城220 美标 博茨瓦纳230 美标 不丹230 美标 布基纳法索220 德标 布隆迪220 德标 赤道几内亚220 德标 丹麦220 德标 德国230 德标 东帝汶220 德标 多哥220 德标

多米尼加230 美标 多米尼加共和国110 日本插头俄罗斯220 德标 厄瓜多尔120 美标 厄立特里亚230 德标 法国230 德标 法罗群岛220 德标 菲律宾220 美标 斐济240 国标 芬兰230 德标 冈比亚230 美标 刚果230 德标 哥伦比亚110 美标 哥斯达黎加120 美标 格林纳达230 美标 格陵兰220 德标 古巴110/220 德标 瓜德罗普岛230 德标 关岛120 美标 圭亚那240 美标 哈萨克斯坦220 德标 海地110 美标 韩国220 德标 荷兰230 德标 洪都拉斯110 美标 怀特岛240 德标 基里巴斯240 国标 吉布提220 德标 几内亚220 德标 几内亚比绍共和国220 德标 加拿大120 美标 加纳230 美标 加蓬220 德标 加沙230 柬埔寨230 德标 捷克斯洛伐克230 德标 津巴布韦220 美标 喀麦隆220 德标 卡塔尔240 美标 开曼群岛120 美标 科摩罗220 德标 科威特240 德标 克罗地亚230 德标 肯尼亚240 美标 拉脱维亚220 德标

电力系统电压调整及控制

13.1基本概念及理论 电压控制:通过控制电力系统中的各种因素,使电力系统电压满足用户、设备和系统运行的要求。 13.1.1电压合格率指标 我国电力系统电压合格指标: 35kV及以上电压供电的负荷:+5% ~ -5% 10kV及以下电压供电的负荷:+7% ~ -7% 低压照明负荷: +5% ~ -10% 农村电网(正常) +7.5% ~ -10% (事故) +10% ~ -15% 按照中调调规: 发电厂和变电站的500kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%; 发电厂的220kV母线和500kV变电站的中压侧母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%;异常运行方式时为系统额定电压的-5% ~ +10%。 220kV变电站的220kV母线、发电厂和220kV变电站的110kV ~ 35kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的-3% ~ +7%;异常运行方式时为系统额定电压的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线正常运行方式下的电压允许偏差为系统额定电压的0% ~ +7%。 13.1.2负荷的电压静特性

负荷的电压静态特性是指在频率恒定时,电压与负荷的关系,即U=f(P,Q)的关系。 13.1.2.1 有功负荷的电压静特性 有功负荷的电压静特性决定于负荷性质及各类负荷所占的比重。电力系统有功负荷的电压静态特性可用下式表示 13.1. 2.2无功负荷的电压静特性 异步电动机负荷在电力系统无功负荷中占很大的比重,故电力系统的无功负荷与电压的静态特性主要由异步电动机决定。异步电动机的无功消耗为 ― 异步电动机激磁功率,与异步电动机的电压平方成正比。 ―异步电动机漏抗的无功损耗,与负荷电流平方成正比。 在电压变化引起无功负荷变化的情况下,无功负荷变化与电压变化之比称为 无功负荷的电压调节效应系数()。它等于,其变化范围比的变化范围大,且与有无无功补偿设备有关。 阐述电力系统电压和无功平衡之间的相互关系。 13.1.3.1电压与无功功率平衡关系 电压与无功功率平衡关系:有网络结构与参数确定的情况下,电压损耗与输送的有功功率以及无功功率均有关。由于送电目的地,输送的有功功率不能改变,线路电压损耗取决于输送的无功功率的大小。如果输送无功功率过多,则线路电压损耗可能超过最大允许值,从而引起用户端电压偏低。

浅谈热电厂谐振过电压及抑制措施

浅谈热电厂谐振过电压及抑制措施 在电力系统中性点经消弧线圈接地系统中包含有很多电感元件和电容元件。在开关操作或发生故障时,这些电感和电容元件可能形成不同自振频率的振荡回路,在外加电源作用下产生谐振现象,引起谐振过电压。谐振往往在电网某一局部造成过电压,从而危及电气设备的绝缘,甚至产生过电流而烧毁设备。本文针对热电厂发生的故障进行了全面的分析论述,并提出解决问题的措施 标签:真空断路器消弧线圈谐振过电压抑制措施 1 问题出现 2008年10月20日15时40分,运行人员启动#3炉磨煤机产生操作过电压,造成已运行的#3炉排粉电机线圈开路,#4炉引风机电缆一相击穿接地,引起运行中高压电压互感器烧毁及一次高压熔丝烧断。#3炉、#4炉、#1机、#3机相继停止运行,终止对外供汽,反送电时间长达六小时之久,造成重大经济损失。 2 事故分析 2.1 我厂磨煤机、排粉电机小车开关是真空断路器。真空断路器由于灭弧能力强、电气寿命長、现场维护方便、技术含量高等优点,在电力系统35kV及以下电压等级中被广泛应用。但是,真空断路器在开断运行过程中出现过电压问题时有发生,已成为不可忽视的重要环节。产生过电压分析如下: 2.1.1 真空断路器由于具有高速灭弧能力,在切断电路时,往往在电流过零前被强行开断,在断弧瞬间储藏在负载内的电感与电容之间的电磁能量转换将在负载上产生过电压,这比一般断路器要突出,尤其在最先断开相触头间,有可能因过电压引起电弧重燃,而产生过电压。 2.1.2 如果由于某种原因引起真空开关真空度降低,将严重影响真空断路器开断过电流的能力,以至承受不住恢复电压发生电弧重燃,回路中出现高频电流,高频电流过零时,出现电弧熄灭、重燃循环过程。由于负载侧存在L-C振荡回路(电机线圈、电缆储能元件),则产生很高过电压。 2.2 消弧线圈运行方式存在问题 我厂共有两组消弧线圈,#1发电机中性点、#2、3发电机中性点各接一组消弧线圈。出现上述事故前是#1、#3发电机,#3、#4炉在运行中,而#1发电机中性点消弧线圈没有投入运行,只有#3发电机中性点投入运行。前述故障发生后,发生过电压,#3发电机循环泵运行中突然停运,备用循环泵联动不成功,汽轮机真空急剧下降,#3发电机被迫停机,也就是说电厂消弧线圈脱离系统,形成谐振,机、炉辅机相继跳闸,全厂停运。

电源不稳定的因素及解决办法

电源不稳定的因素及解决办法 篇一:电源不稳定的因素及解决办法 电源不稳定的因素及解决办法 常亮 渤海船舶职业学院 摘要:主要探讨了目前我国在供电系统中电源不稳定的因数以及危害,并根据相关理论和实践经验,提出了一些自己的见解和有效解决办法。关键词:电力历史电源不稳定谐波 一、概述 随着我国经济建设的蓬勃发展,社会对电力资源的需求日益增长,用户对电力系统的要求也越来越高。供电的可靠性和稳定性已经成为保障经济增长和满足用户需求的重要问题。我国作为装机容量和年发电量均居世界第二位的电力大国,由于国土辽阔、动力资源与用电中心相距遥远、城乡家用电器设备的大量普及,对用户端电力电压的稳定性提出了更高的要求。保障供电的稳定性也是改善内外部投资环境、满足人民日益增长的生活水平以及提升综合国力的重要体现。 我国最早的电厂由英商旗昌洋行于1882年开办的,最初为粤恒电灯公司,后被官商合股收购。我国市电起初主要在殖民地使用,大部分为日本的殖民地,其中东北的电网最大,约占全国的50%。在不同地区,110V和220V市电都有使用的经历。至解放

前,我国还是多种电压和频率并存,主要是与发电设备的生产国制式有关。新中国成立后,统一了全国的电网电压标准为220V 50Hz。一方面是由于我国沿袭前苏联的制式;另一方面,因为我国国土幅员辽阔,供电半径要比美洲国家大,出于降低能耗,减少农村、山区用电成本的目的,我国采用的是比美洲发达国家更高的市电电压制度。 220V电压与110V电压相比的优点:1.传输耗能小,减少了能量损耗; 2.传输相同电量,在损耗相同的情况下,使用的导线横截面积要小一倍,节约了大量的金属资源; 3.相对减少了变压器的工作负荷,使变电压这一关键而又脆弱的节点有了更多的安全保障; 4.对偷盗电力设备的行为客观上产生了遏制。 二、影响电源稳定的因素 影响电源稳定的因素主要是两点:不稳定电压和谐波。本文着重从这两方面分析探讨。 (一)电压不稳定的危害 在现代工业用电中,一种电气设备出现故障就会导致流水线、甚至整个工厂作业的中断,造成难以想象的损失。对于普通用户,家用电器长时间在非额定电压或频率下工作,会严重影响电气设备的使用寿命。例如:长期在低于额定电压下工作的计算机,容易出现重启、程序紊乱、烧毁硬盘等情况。因此在比较重

世界各国电压及插头标准

目前世界各国室內用电所使用的电压大体有两种,分別为100V~130V,与220~240V二个类型。100V、110~130V被归类低压,如美国、日本等以及船上的电压,注重的是安全;220~240V则称为高压,其中包括了中国的220伏及英国的230伏和很多欧洲国家,注重的是效率。采用220~230V 电压的国家里,也有使用110~130V电压的情形,如瑞典、俄罗斯。 美国、加拿大、韩国、日本、台湾等地属110V电压区域。 100V:日本、韩国2国 110~130V:中国台湾、美国、加拿大、墨西哥、巴拿马、古巴、黎巴嫩等30国 220~230V:中国、香港(200V)、英国、德国、法国、意大利、澳大利亚、印度、新加坡、泰国、荷兰、西班牙、希腊、奧地利、菲律宾、挪威约120国 中国普通居民电压标准是单相、交流50HZ,220V; 对居民用户,国家规定电压偏差允许值为+7%,-10%;电压波动允许值为2.5 %; 电压偏差和电压波动从电力术语上是二个概念;电压偏差是长期的电压偏离额定值的情况,电压波动是电压快速变化偏离额定值的情况;电压偏差的重点是“偏差”,电压波动的重点是“波动”。 电压波动值(Vt)是电压调幅波中相邻两个极值电压均方根值之差,以额定电压的百分数表示;Vt-的变化速度应不低于每秒0.2%。

世界各国电压等级及频率 阿根廷:电压:220V (单相) ,380V (三相),频率:50Hz 巴西:电压:110/220V(单相) ,380/460V(三相),频率:60Hz 加拿大:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 墨西哥:电压:127/220V (单相) ,220V (三相);频率:60Hz 美国:电压:120/240V (单相) ,277/480V (三相);频率:60Hz (民用) 澳大利亚/ 新西兰:电压:240/415V (单相) ,415V (三相);频率:50Hz 香港:电压:120/220V (单相) ,220V (三相);频率:50Hz 印度:电压:230V;频率:50Hz 印尼:电压:230V (单相) ,380V (三相) ;频率:50Hz 日本:电压:100/200V (单相) ,200V (三相);频率:50Hz 韩国:电压:220 (单相) ,380 (三相);频率:60Hz

详解电网无功补偿与电压调节

详解电网无功补偿与电压调节 无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。 一、无功补偿概述和原则 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。 电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。 分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V 及以下的供电网,宜于实现无功功率的分区和就地平衡。 电压合格标准:

500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。 发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。 发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线:正常运行方式下的电压允许偏差为系统额定电压的0~+7%。 无功补偿配置原则:各电压等级变电站无功补偿装置的分组容量选择,应根据计算确定,最大单组无功补偿装置投切引起所在母线电压变化不宜超过电压额定值的2.5%,并满足主变最大负荷时,功率因数不低于0.95。 以上只是大概的比例估计,具体工程的变电站的无功配置是需要通过计算的,计算分不同运行方式(针对容性和感性),无功计算一般是有无功交换的整个区域一

10kV电力系统谐振过电压的原因及抑制措施_孟繁宏

10 kV电力系统谐振过电压的原因及抑制措施 孟繁宏,李学山,张占胜 摘 要:通过对10 kV中性点不接地运行方式下谐振过电压的分析,说明产生谐振过电压的条件、种类及特点,并提出以下抑制谐振过电压的措施:采用自动调谐接地补偿装置或可控硅多功能消谐装置,在电压互感器的中性点接消弧线圈,或接消谐器等。 关键词:铁路;电力;过电压;抑制措施 Abstract:By analyzing the resonant over-voltage in 10 kV power supply system with its neutral point being unearthed, illustrates the conditions causing the resonance over-voltage and their types and characteristics, and puts forward the following measures to suppressing resonant over-voltage: by adopting automatic tuned earthing compensation device or silicon-controlled resonance suppressor, connecting the arc-extinguishing coil with neutral point of the voltage transformer or connecting the resonance suppressor. Key words: Railway; power supply system; over-voltage; suppression measure 中图分类号:U223.6文献标识码:B文章编号:1007-936X(2005)03-0022-04 0 概述 在10 kV配电所的每段母线上都接有1台电压互感器,其一次线圈中性点直接接地。由于电网对地电容与电压互感器的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,是导致电压互感器高压熔丝熔断和电压互感器烧损、避雷器爆炸的主要原因,也是诱发某些重大事故的原因之一。近5年以来,在大同西供电段管内共发生谐振过电压烧坏电压互感器高压保险12次,烧毁10 kV电压互感器1台,烧断电压互感器瓷瓶内部引出线1次。 1 谐振过电压产生的条件 1.1 内部条件 铁路10 kV电力系统是中性点不接地系统,为了监视系统的三相对地电压,该配电所每段母线上均接有1台三相五柱电磁式电压互感器,其电气接线原理图略。 母线电压互感器的高压侧在接成Y型时其中性点是接地的,由于铁路10 kV电力系统中电缆较多,各相对地电容较高,电网对地电容与电压互感 作者简介:孟繁宏.朔黄铁路发展有限公司原平分公司,工程师,山西原平037005,电话:029-93638(路电); 李学山,张占胜.大秦铁路股份有限公司大同西供电段。器的电感相匹配构成谐振条件。当发生谐振时,电压互感器感抗显著下降,励磁电流急剧增大,可达到额定值的数十倍,造成电压互感器烧毁或保险熔断。 1.2 外界激发条件 激发产生谐振过电压的外部条件有以下几种:(1)线路发生单相接地或瞬间接地。(2)不带馈线负荷的情况下向带有三相五柱电磁式电压互感器的母线送电。(3)进行空载线路的投切操作。(4)电力线路有雷电感应。(5)电网负荷轻,电压高,发生传递过电压。 2 过电压种类及特点 2.1 过电压种类 铁路10 kV电力系统过电压主要分为谐振过电压、雷电过电压和操作过电压,其中谐振过电压在正常运行操作中出现频繁,危害性较大;一旦产生过电压,往往造成电气设备损坏和大面积停电事故。运行经验表明,铁路10 kV电力系统中过电压大多数都是由铁磁谐振引起的。在实际运行中,故障形式和操作方式多种多样,谐振性质也各不相同。因此,为了制订防振和消振的对策与措施,应该了解各种不同类型谐振的性质与特点。 2.1.1 基波谐振 通常在配电所全所停电作业完成后向带有电 22

浅谈电源不稳定的成因及解决方法

浅谈电源不稳定的成因及解决方法 【摘要】本文主要探讨了目前我国在供电系统中电源不稳定的成因以及危害,并根据相关理论和实践经验,提出了一些自己的见解和有效解决办法。 【关键词】电力资源;电源不稳定;因素;方法 随着我国经济建设的蓬勃发展,社会对电力资源的需求日益增长,用户对电力系统的要求也越来越高。供电的可靠性和稳定性已经成为保障经济增长和满足用户需求的重要问题。影响电源稳定的因素主要是两点:不稳定电压和谐波。下面着重从这两方面分析探讨。 1.电压不稳定的危害及解决办法 1.1电压不稳定的危害 在现代工业用电中,一种电气设备出现故障就会导致流水线、甚至整个工厂作业的中断,造成难以想象的损失。对于普通用户,家用电器长时间在非额定电压或频率下工作,会严重影响电气设备的使用寿命。例如:长期在低于额定电压下工作的计算机,容易出现重启、程序紊乱、烧毁硬盘等情况。因此在比较重要的信息采集、数据检测分析工作点,都要装设在线式UPS以保证无间断供电。 1.2引起电压不稳定的原因及解决办法 按供电系统节点来看,电压波动可分为高压侧电压波动和低压侧电压波动。高压侧电压波动又可分为进线电源处电压不稳定和高压母线上电压不稳定。 1.2.1进线电源处电压不稳定原因分析 原因之一是上一级电源质量不高。解决方法是更换电源或在上一级负荷处重新架设一条供电线路。原因之二是传输过程中(进线电缆)存在问题。解决方法是检查是否存在电缆破损、电缆质量、电缆选型不正确的情况,有针对性地加以改善。 1.2.2高压母线上电压不稳定原因分析 原因之一是变压器三相空载导致高压侧母线电压不稳定。解决方法是重新计算变压器的负载率,更换更大一级容量的变压器。原因之二是在变压器负载时,大功率设备冲击电网造成高压侧母线电压不稳定。解决方法如下一是对大功率设备采用变频启动或软启动方式,来减少对电网的冲击。二是大功率设备尽量采用高压电机,以优化电能质量。三是对个别大功率设备,采用单独无功补偿装置稳定电压。

各国通用的电力系统是三相五线制供电

各国及地区通用的电力系统供电方式为三相五线制供电,三根火线和一根零线加一根地线即L1(U)(黄)、L2(V)(绿)、L3(W)(红)、N(蓝)、PE(黄绿)。任何两根火线之间的电压是叫线电压,我国线电压为380V,火线和零线之间的电压叫相电压,我国为220V 。我国工频为50HZ。所谓工业用电为三项五线制供电,民用电为单相电源供电。民用电进户通常是三根线,一根是相线,一根是零线,另一根是地线。习惯上相线也叫火线,采用红色的线,零线用蓝色的线,地线用黄绿相间的线。相线标志为L,零线标为N,地线标志为PE。我们通常见到的插座都应该是左零右火,上边是地线。由于各国电压标准不统一,有的一国有好几种电压标准,因此特列出各国电压表供参考! 各国电压标准及频率表

回答者:pangduoduo - 秀才三级3-12 13:19 其他回答共2 条世界各各国电压概况100V :日本、北韩110~130V:台湾、美国、加拿大、巴拿马、古巴、黎巴嫩、墨西哥220~230V :英国、德国、法国、中国、新加坡、香港(200V)、义大利、西班牙、希腊、奥地利、荷兰、菲律、泰国、挪威、新加坡、印度、纽西兰、澳洲注1:采用220~230V电压的国家里,亦有视地区需要并用110~130V电压等情形,如瑞典、俄罗斯。为什么还有380V呢?原来,我们通用的电力系统是三相电,有A、B、C三根火线和一根零线。任何两根火线之间的电压是380V,火线和零线之间的电压是220V 所谓工业用电为三项五线制供电,民用只有三根线,一是相线,一是零线,另一个是地线,习惯上地线全部用黄绿相间的线,相线标志为L,零线标为N,你见到的所有插座都应该是左零右相,上边是地线。而三相五线制就变成A、B、C这三个相线,如上所说,所有相线之间电压为380V,相零相地之间为220V。回答者:stepper_行者- 举人五级3-11 18:04 100V :日本、北韩110~130V:台湾、美国、加拿大、巴拿马、古巴、黎巴嫩、墨西哥220~230V :英国、德国、法国、中国、新加坡、香港(200V)、义大利、西班牙、希腊、奥地利、荷兰、菲律、泰国、挪威、新加坡、印度、纽西兰、澳洲 世界各国的用电电压和频率,供大家参考!!! 阿根廷:电压:220V (单相) ,380V (三相),频率:50Hz 巴西:电压:110/220V(单相) ,380/460V(三相),频率:60Hz 加拿大:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 墨西哥: 电压:127/220V (单相) ,220V (三相);频率:60Hz 美国:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 澳大利亚/ 新西兰:电压:240/415V (单相) ,415V (三相);频率:50Hz 香港:电压:120/220V (单相) ,220V (三相);频率:50Hz 印度:电压:230V; 频率:50Hz 印尼: 电压:230V (单相) ,380V (三相) ;频率:50Hz 日本: 电压:100/200V (單相) ,200V (三相);频率:50Hz 韩国: 电压:220 (单相) ,380 (三相); 频率:60Hz 马来西亚:电压:220-240V; 频率:50Hz 菲律宾: 电压:220V 频率:60Hz 新加坡:电压:230V (单相) 400V (三相) 频率:50Hz 台湾: 电压:110/220V (单相) 220V (三相)频率:60Hz 泰国: 电压:220V (单相) 380V (三相)频率:50Hz 越南: 电压:120/220V (单相) 220V (三相)频率:50Hz 丹麦: 电压:230V (单相) 380V (三相) 频率:50Hz 芬兰: 电压:230V (单相) 380V (三相) 频率:50Hz 德国: 电压:230V (单相) 380V (三相) 频率:50Hz

铁磁谐振过电压

解释一: 电压互感器铁磁谐振过电压可分两种:一种是中性点不稳定过电压;另一种是中性点位移过电压。前者多在正常运行的中性点不接地的电网中产生, 例如投入空母线时的过电压;后者均在定相的过程中产生, 这主要是由于定相的方法不当引起的。 经过检修的某些线路、电缆等在恢复送电时, 新建的线路、电缆、变压器等在投入运行时, 以及两部分电网首次并联运行时, 必须事先检查相位, 进行定相, 以免造成严重的设备损坏和人身事故。在110千伏以下中性点不接地(包括中性点经消弧线圈接地)的电网中, 定相通常是利用电压互感器进行的。 利用一台电压互感器, 直接在高压电网中定相时产生的过电压, 主要是由基波谐振引起的, 特性比较稳定, 因此称为中性点位移过电压;利用两台外接的或母线上原有的中性点直接接地的电压互感器, 而在其低压侧定相时产生的过电压, 是由基波、高次谐波或分次谐波谐振所引起,同时具有不稳定的特点, 故称为中性点不稳定过电压。后者在国内外的电力系统中发生较多,即过去所谓的中性点位移过电压和现在的电压互感器铁芯饱和过电压。 一、中性点不稳定过电压 中性点不稳定过电压,不仅可以在定相的过程中发生, 而且在在我国3~220千伏运行的电网中, 也曾普遍发生, 是新建的和经过检修后投入运行的电气设备损坏的重要原因之一,同时也是电压互感器烧毁及其高压保险频繁熔断的主要原因。

1.产生的条件 试验研究结果表明, 当发生此种过电压时, 中性点出现显著的位移, 相电压变动并升高, 而线电压保持不变。因此可以判定此种过电压是零序回路出现的一种谐振现象。此种过电压对相间电容与三相对称的负荷没有影响。只要同时符合以下四个条件, 便可能产生此种过电压。 (1)电源变压器为三角形接线或中性点不接地的星形接线, 以及中性点不接地的电网(注:这里指电源侧中性点不接地) (2)单台或多台电压互感器的中性点直接接地, 同时零序电压线圈接近开路状态(注:这里指电压互感器中性点直接接地) (3)母线或电网各相的对地电容与电压互感器各相的对地电感相匹配, 且初始感抗必须大于容抗 (4)因电压或励磁涌流的冲击, 使电压互感器的铁芯三相发生不同程度的饱和。当电源投入、单相接地故障清除〔切除或自动消除)时, 以及瞬间的传递过电压发生时, 均可激发起此种过电压。 以上四个条件, 可以直观地用下图表示出来

关于谐振过电压及预防的技术措施

关于谐振过电压及预防的技术措施 发表时间:2019-04-11T13:54:14.127Z 来源:《河南电力》2018年19期作者:唐振华 [导读] 谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。在电力生产和电力运行的中低压电网中 唐振华 (福建省万维新能源电力有限公司福建福州 350003) 摘要:谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。在电力生产和电力运行的中低压电网中,由于故障的形式和操作方式是多种多样的,谐振性质也各不相同。因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,并制订防振和消振的对策与措施。 关键词:谐振过电压;预防;技术措施 1.谐振的危害性 在电力供电电网上,谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以免形成严重的串联谐振回路;或采取适当的防止谐振的措施。 目前变电站大部分采用中性点不接地方式运行,而最常见的谐振过电压就是发生在中性点不接地系统中。从电网的运行实践证明,中性点不接地系统中由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、PT高压中性点增设电阻或单只PT等,但始终没有从根本上得到解决,PT烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2小时,不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。 2.产生谐振过电压的因素 2.1互感器铁磁谐振过电压的因素 电压互感器伏安特性的影响。铁芯电感的伏安特性愈好,即铁芯饱和得愈慢,也即谐振所需要的阻抗参数XC0/XL愈大;反之,谐振所需XC0/XL愈小。考虑到电力系统中运行着的电压.互感器及系统的具体情况总与模拟情况有差异,因此,对于不同型号、不同出厂日期、不同厂家制造的电压互感器,其谐振区域应根据实际试验加以确定。 电压互感器损耗的影响。运行着的互感器,一般损耗较大,例如,35kV的互感器其阻尼系数r/XL为>15/10000.损耗电阻大,可以吸收一部分能量,对谐振有一定的抑制作用,特别是对1/2频谐振,这种抑制作用很明显。 电压互感器结构的影响。现场运行着的电压互感器,既有三台单相电压互感器组,也有三相五柱电压互感器,它们在谐振激发上是不同的。试验研究表明,单相电压互感器组的起振电压较三相五柱电压互感器的低,也就是说,单相电压互感器组容易激发谐振。这主要是由于两者碰路结构的差异,造成零序阻抗不同所致。 单相互感器组零序磁通的磁路和正序磁通的磁路一样,每相都有自己的闭合回路,因而零序阻抗等于正序阻抗。对三芯玉柱电压工感器,由于零序磁通经过两个边往返回,所以其磁路长,而且铁芯截面小,因而其零序磁通磁阻较单相互感器组要大得多。由上所述,谐振是由于零序磁通造成的,三芯五柱互感器零序磁通遇到的磁阻大,谐振就不容易产生。 应当指出,由于磁路的差异,计算和测量这两类电压互感器零序阻抗时所用的电压是不同的。由于电网发生谐振时,作用在电压互感器上的电压是正序电压与零序谐振电压的选加,对于单相互感器组,正序电压和零序电压合成下的服抗值接近干线电压下的阻抗值,因此,XL为额定线电压下的激磁感抗。对于三芯玉柱互感器,零序电压接近于相电压,正序电压对零序电压阻抗影响不大,所以应取相电压下的相应感抗值。 2.2电网零序电容的影响 实践可知,谐振区域与阻抗比XC0/XL有直接关系,对于1/2分频谐振区,阻抗XC0/XL约为0.01~0.08;基波谐振区,XC0/XL约为0.08~0.8;高频谐振区,XC0/XL约为0.6~3.0.当改变电网零序电容时,XC0/XL 随之改变,回路中可能出现由一种借振状态转变为另一种谐振状态。如果零序电容过大或过小,就可以脱离谐振区域,谐振就不会发生。在现场,一般可以测量出电网的对地电容电流,进而计算出对地电容,由XC0/XL估算该电网是否处于谐振区。若在诸振区,再进一步判定可能是哪一种谐振。除上述情况外,电网零序电容还对谐振过电压、过电流的大小和谐振频率有一定影响。 2.3其他影响因素 激发程度。实际激发试验表明,即使阻抗参数XC0/XL落在诸振区域内,也并不是每次都能激发起稳定的谐振。这是因为谐振的产生不仅与XC0/XL有关,还与电压冲击、涌流大小、合闸相角等激发因素有关。激发程度不同时,互感器饱和程度有异,因此谐振特性就不相同。 回路的阻尼作用。当激发起中性点不稳定过电压后,元论是基波、三次谐波还是1/2分次谐波谐振,总是由电源供给谐振所需的能量。如果输入和输出的能量得以平衡,诸波将维持下去;如果能量平衡关系一旦被破坏,则谐振便会自动消除。根据谐振原理,增大回路电阻可使诸振区域缩小,维持谐振所需的电压提高,从而能阻尼振荡。 电网频率的变动。电网频率的变化,使谐振回路中的阻抗参数发生变化,是导致谐振现象不稳定的重要原因。 电网频率变动可能使谐振现象突然发生;突然消失;也可能使谐振由一种状态转变为另一种状态。 3.采取措施 一是防止电压互感器铁磁谐振措施。选择励磁特性好的电压互感器,使其工作点在伏安特性的线性部分,当有激发因素时,铁芯不饱

电力系统电压稳定问题的初步研究

绪论 电力系统是由电能生产、传输、使用的能量变换、传输系统和信息采集、加工、传输、使用的信息系统组成的。电力系统稳定性问题可以分为角度稳定、电压稳定和频率稳定三个方面。电压稳定性问题与发电系统,传输系统和负荷系统都有关系。电压稳定性是指电力系统在正常运行或经受扰动后维持所有节点,电压为可接受值的能力 引起电压不稳定的主要因素是电力系统没有能力维持无功功率的动态平衡和系统中缺乏合适的电压支持;电压不稳定性受负荷特性影响很大。电压崩溃通常是由以下几种情况引发的:①负荷的快速持续增长;②局部无功不足;③传输线发生故障或保护误动; ④不利的OLTC的动态调节;⑤电压控制设备限制器(如发电机励磁限制)动作。这些情况往往是互相关联的,持续恶化的相互作用将最终导致电压崩溃的发生。 电压安全是指电力系统的一种能力,即不仅在当前运行条件下电压稳定,而且在可能发生的预想事故或负荷增加情况下仍能保持电压稳定。它意味着相对可信的预想事故集合,电力系统当前运行点距离电压失稳点具有足够的安全裕度。 为了防止电压失稳/崩溃事故,最为关心的问题是,当前电力系统运行状态是不是电压 稳定的,系统离电压崩溃点还有多远或稳定裕度有多大。因此必须制定一个确定电压稳定程度的指标,以便运行人员做出正确的判断和相应的对策 电压稳定性研究的方法:非线性动力学方法、概率分析方法、静态分析方法和动态分析方法。 电力系统是非线性动力系统,稳定本身属于动态范畴,电压失稳或电压崩溃本质是一个动态过程。当我们深入研究电压不稳定发生的原因、机理及其变化过程时,特别是要研究因电压过低而导致系统的动态稳定破坏时,静态分析方法难以完整计及系统动态元件的影响,因此无法深入研究电压失稳的机理及其演变过程。必须在计及元件动态作用的前提下,建立恰当的数学模型,采用合适的动态方法进行研究才能真正揭示电压失稳的发展机制。 负荷特性在电压稳定研究中起着重要作用,它直接影响分析的结果,但由于负荷的随机性、分散性及多样性,严格统一负荷特性尚无法确立,这使得负荷特性成为电压稳定研 页脚内容1

各国电网频率表

各国电网频率表 工频 指工业上用的交流电源的频率单位赫兹Hz 电气质量的重要指标之一。指工业上用的交流电频率。 工频一般指市电的频率在我国是50Hz其他国家也有60Hz的 中国电力工业的标准频率定为50赫兹。有些国家或地区如美国等则定为60赫兹。 不同的频率对电网供电的各方面影响是不一样的通常一个国家的电网频率是固定的然后所 有为这个国家和地区供应用电设备的厂家必须按照这个频率制作设备才能正常使用。具体频率定的多少由各个国家自己按照国际习惯定义或者自己定义。就像民用电压也一样国内用的220v国际上日本等地方用的是110v。 我国电力工业部1996年发布施行的《供电营业规则》规定在电力系统正常的情况下供电频 率的允许误差为①电网装机容量在300万及以上的为±0.2HZ②电网装机容量在300万以下的为±0.5HZ。在电力系统非正常状况下供电频率允许误差不应超过±1.0HZ 。 地区或国名工频 中国台湾Taiwan 60Hz 中国大陆China 50Hz 中国香港Hong Kong 50Hz 日本Japan 60Hz 南韩South Korea 60Hz 新加坡Singapore 50Hz 印度India 50Hz 印尼Indonesia 50Hz 泰国Thailand 50Hz 马来西亚Malaysia 50Hz 越南Vietnam 50Hz 俄罗斯Russia 50Hz 英国U.K. 50Hz 法国France 50Hz 德国Germany 50Hz 爱尔兰Ireland 50Hz 意大利Italy 50Hz 瑞士Switzerland 50Hz 荷兰Netherlands 50Hz 丹麦Danmark 50Hz 波兰Poland 50Hz 美国America 60Hz 加拿大Canada 60Hz 巴西Brazil 60Hz 哥伦比亚Colombia 60Hz

铁磁谐振过电压

铁磁谐振过电压 摘要:铁磁谐振过电压是一种常见的内部过电压,多发生在 中性点不直接接地的配电网中,但在中性点直接接地的高压电网中,这种事故也常有发生。分析了电力系统铁磁谐振的产生机理,介绍了一些典型的铁磁谐振过电压,以及几种消除铁磁谐振的措施及原理,最后对铁磁谐振的当前研究现状进行了评价,提出今后进一步的研究方向。 关键词:电力系统;铁磁谐振;过电压;消谐措施 Abstract:Ferroresonance is an internal overvoltage,which always occurs in ne utral isolated distribution network, and sometimes also occurs in high voltages netw ork. The research developments on ferroresonance are analyzed, including their fundamental principles, characteristics and some typical example s. It also introduces several treatments of ferroresonance eliminating and its principl e. Finally the further research trends are proposed. Key words:power system; ferroresonance; overvoltage; treatment of resonance eliminating 在电力系统中包含有很多电感元件和电容元件。在开关操作或发生故障时,这些电感和电容元件可能形成不同自振频率的振荡回路,在外加电源作用下产生谐振现象,引起谐振过电压。谐振往往在电网某一局部造成过电压,从而危及电气设备的绝缘,甚至产生过电流而烧毁设备,还有可能影响过电压保护装置的正常工作条件。在不同电压等级、不同结构的系统中可以产生不同类型的谐振过电压。通常认为系统中的电阻和电容元件为线性参数,电感元件则一般有三类不同的特性参数。对应三种电感参数,在一定的电容参数和其它条件的配

电磁式电压互感器谐振过电压分析及抑制措施

电磁式电压互感器谐振分析及抑制措施研究 (江建明四川省电力工业调整试验所610072) 电力系统接地系统为直接接地系统和不接地系统。直接接地系统易发生并联谐振,不接地系统在单相接地时易发生串联谐振,有并联电容器的断路器易发生串联谐振。长期以来,电力系统谐振过电压严重威胁着电网的安全。特别是对中性点不接地系统,铁磁谐振所占的比例较大。随着电网的日益发展,中性点直接接地系统的铁磁谐振问题越来越严重,出现的概率也越来越大。近年,在四川发生过多次铁磁谐振引起过电压的案例,应引起高度重视。本文将介绍产生铁磁谐振的机理、原因、现象以及应采取的措施。 1.产生铁磁谐振的原因 铁磁谐振存在三种情况:直接接地系统对地电容引发的铁磁谐振;不接地系统的单相接地引起的铁磁谐振;断路器端口并联的电容形成的铁磁谐振。 电力系统中许多元件是属于电感性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的LC震荡回路,在一定的能量作用下特定参数配合的回路就会出现谐振现象。由于铁芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱和,极易使电压互感器发生铁磁谐振。在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感与线路的对地电容C,当C大到一定值且电压互感器不饱和时,感抗X L大于容抗X C;而

当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗X L小于容抗X C,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振: (1)当投入电力系统的电力线路长度发生变化时,线路对地电容与线路电阻发生改变。如空载线路投切操作,对空母线充电,尤其是短母线进行倒母线时,易产生对地电容引起的并联谐振。 (2)当系统运行状态突变,在暂态激发条件下,TV铁芯饱和,其电感量L处于非线性变化。如有线路瞬间接地,雷电感应侵入电网,尤其系统出现单相接地,易产生串联谐振。 (3)直接因突然投入系统的电容变化而引起谐振。如补偿电容器的投入,断路器断口打开时的并联电容易产生并联谐振。 (4)由于线路分合或运行状态突变时,会产生多次或分次谐波,从而使ω发生变化。如拉合刀闸、跌落式熔断器动作等,可能引起并联或串联谐振。 2.产生铁磁谐振的机理 由于电压互感器的中性点位移现象,常常在中性点不接地绝缘系统中引起铁磁谐振过电压。在正常运行条件下,励磁电感三相相等,三相负荷相等,电网的中性点电位为零。当线路中出现瞬时单相故障时,其它两相电压升高,三相电压互感器两相电压升高而饱和,其励磁电感相应减小,电网中性点出现位移电压,当三相总导纳之和为零时,便会发生串联谐振,中性点电压将急剧上升。由于铁芯的磁饱和会引起电流、电压波形的畸变,即产生了谐波,使上述谐振回路还会

相关主题
相关文档 最新文档