当前位置:文档之家› 微波遥感 期末 知识点 复习 资料

微波遥感 期末 知识点 复习 资料

微波遥感 期末  知识点 复习 资料
微波遥感 期末  知识点 复习 资料

1.微波遥感分类

? 主动微波遥感,被动微波遥感

? 微波辐射计,微波散射计,微波高度计,成像雷达

? 真实孔径雷达,合成孔径雷达,机载和星载

? 干涉SAR,极化SAR

2.微波遥感的意义

全天候,全天时,植被穿透性,地表穿透性,独特的遥感机理,干涉测量能力,多极化,多波段,高分辨率,与其它遥感手段互补

电磁波谱

微波波谱

微波波段:0.1-100cm

短 K->X->C->S->L->P 长

为什么星载雷达系统不采用K/P波段?

答:K波段波长短,虽然有较好精确性,但是此波长可以被水蒸气强烈吸收,使这一波段的雷达不能在雨中和有雾的天气使用。

P波段波长较长,由于微波穿过大气层时会产生法拉第旋转,低频长波旋转程度大,极大限制了空基P波段微波遥感系统的可行性。且由于波长较长其分辨率低。

目标的散射特性与哪些因素有关?

电磁波辐射在非均匀媒质或各向异性媒质中传播时多方位、多角度地改变原来传播方向的现象,即目标对入射电磁波能量的重定向。

瑞利散射:(a < 0.1λ) 散射光波长等于入射光波长,散射粒子

远小于入射光波长。

米氏散射:(0.1λ < a<10λ) 当大气中粒子的直径与辐射的波长相当

时发生的散射。

光学(非选择性)散射(10λ < a)散射粒子的粒径比辐射波长大得多时发

生的散射,散射系数与波长无关。

目标的散射特性首先取决于目标尺寸和雷达波长间的关系(粗糙度),入射角、介电特性(介电常数增加,反射增加)和极化特性。

如何提高真实孔径雷达分辨率?

距离分辨率(地距分辨率)Rg = (tc/2) secβ

斜距分辨率 Rr=tc/2 (沿波束方向)

脉冲宽度越小,俯角越小,距离分辨率越高,俯角太小地形影响严重,当俯角一定时,减小脉冲宽度可提高距离分辨率,所以合成孔径雷达在距离向采用脉冲压缩技术chirp(距离压缩)

方位向分辨率 Ra = (λ/d) R(又 R=H/sinβ=H/cosθ )

提高方位分辨率=>加大天线孔径,波长较短电磁波,缩短观测距离 合成孔径技术

合成孔径雷达分辨率与哪些参数相关?

距离向分辨率 Rg=(tc/2)/cosβ

方位向分辨率 Ls=βsR=D/2

什么是多视?

多视:用平均法减低相干观测系统上特有的乘性随机噪声光斑;把合成孔径长度分为N个区间,每区间内方位压缩后相加平均,N为视数降低了空间分辨率,换取辐射分辨率的提高

SAR图像有哪些特点?

1.穿透性:

大气对电磁波的衰减与电磁波有关,波长越长,衰减越小

2.斑点噪声:

雷达图像上每个像素的信号是电磁波与各微散射体相互之间加强或减弱作用的集成,在影像中以斑点的形式表现出来。

成像前:多视处理成像后:滤波处理

3. SAR侧视成像的几何特征:

(1) 斜距显示的距离压缩

斜距成像的雷达影像在距离向呈图像压缩的几何失真现象

靠近星下点的目标成像压缩现象严重

(2) 侧视SAR阴影

起伏地形的雷达影像在后坡出现暗区的图像缺失现象

(3) 侧视SAR透视收缩

起伏地形的雷达影像山坡长度按比例计算后,比实际长度短

(4) 侧视SAR叠掩(顶底位移)

山顶部分的回波比山脚部分的回波更早被雷达接收记录,从而使山顶影

像“叠置”在山底之前的图像失真现象

(5) SAR图像左右、上下倒置

列出常用的星载SAR系统及其主要参数

SEASAT美国、ERS-1欧洲、JERS-1日本、ERS-2、RADARSAT-1加拿大、SRTM美国、ASAR(美国Envisat卫星)、POLSAR(日本ALOS卫星)、TerraSAR-X德国、RADARSAT-2、TanDEM-X德国

InSAR基本原理与处理流程

基本原理:

基本步骤流程:

影像配准过程:

1.相干系数法

2.最大干涉频谱法

3.平均波动函数法

从粗到细匹配策略:

特征点提取? 选择兴趣算子挑选候选点

基于灰度的粗匹配? 确定下一级匹配的初始值

整体概率松弛匹配? 改善抗噪声能力,提高可靠性

最小二乘匹配? 逐点精化,达到子像素级的精度

卷积频谱的截止频率2η对应于信号的奈奎斯特(Nyquist)频率,即采样频率1/T不能够小于截止频率的2倍

过采样:在进行影像相乘的操作之前,增加原始的复数影像之采样率。简单地说,先对原始影像进行2倍的重采样。

干涉图生成的前置滤波和后置滤波:

?前置滤波:在生成干涉图之前对原始的复数干涉影像进行滤波

?后置滤波:在形成干涉图后,对干涉图进行滤波

去除平地效应:假设一个平均的高度,根据轨道参数估算平地效应。计算干涉图的频谱,取出最大频率值,并去除掉该频率分量的影响。

滤波的目的:

?提高信噪比,改善干涉条纹的视觉效果

?保持好相位差原有的分布规律基础上,消除噪声影响

自适应平滑滤波原理流程:

相位解缠的基本原理和典型方法

从干涉图中得到的相位差实际上只是主值,其取值范围在(?π ,π]之间,要得到真实的相位差必须在这个值的基础上加上或减去2π的整数倍,这样的过程称为相位解缠

相位解缠的两个主要步骤

1,估计相邻像素之间真实相位的差值

2,按照某种策略对相位差值进行积分

Nyquist标准:

干涉图中,相邻象素的解缠相位值必须在一个周期之内

对于缠绕相位的差分结果再缠绕后求和,可得干涉图所包含的真实相位(缠绕运算--取一次以2π为模的主值)

m ?1

?( m ) = ?(1) + Σw{Δ{w{?(t)}}}

n =1

相位的不一致性:

解缠后的相位数据矩阵中任意两个点之间的相位差与这两点之间的路径有关。

什么是残数:在2*2模板上的线积分结果称为残数的总值。

相位解缠方法:枝切法、质量图法、最小二乘法、网络流法。

什么是永久散射体:

散射特性较稳定、对雷达波反射较强的硬目标就称为永久散射体

极化:极化描述了电场矢量末端轨迹的方向和形状

完全极化波:单色波且无噪声分量,完全极化的单色波的w, δ都是常数。雷达的发射波一般可视为完全极化波。

部分极化波:包含随机量、时变量或噪声分量。雷达接收的回波一般可视为部分极化波。

水平极化:电场矢量与入射面垂直

垂直极化:电场矢量与入射面平行

Jones矢量只适用于完全极化波

Stokes矢量对完全极化波和部分极化波均有效

Poincare球:球面,完全极化波

球内,部分极化波

球心,非极化波

散射坐标系:

根据接受天线所处坐标系的+k轴方向与散射波传播方向的关系(相同或相反),有前向散射坐标系和后向散射坐标系。其坐标原点分别为发射天线和接受天线。

前向散射坐标系、后向散射坐标系、单站散射坐标系(属后向散射系)

散射矩阵、Muller矩阵、协方差矩阵、相干矩阵及其关系。

极化散射矩阵-给出入射与散射波Jones矢量关系(完全极化波)Muller矩阵-入射与散射波Stokes矢量(不完全极化波)

Pauli矢量化—>共轭相乘,多视平均—>极化相干矩阵散射矩阵

典排序矢量化->共轭相乘,多视平均->极化协方差矩阵

(极化协方差矩阵对角线上元素反映通道的功率)

常用的极化目标分解分几类,每类的方法有那些?

相干分解:Pauli、Cameron(互易性、对称性)、Krogager

非相干分解:Freeman(三分量:体散射、偶次散射、单次散射)、Yamaguchi(+螺旋体散射,适用于城市)、Huynen、Cloude

奇次散射模型:

静止的水面、宽大的马路、大型建筑的平顶、机场跑道

漫散射Bragg模型:

草地、沙漠、裸露的农田、波浪起伏的水面

偶次散射模型:

城区建筑物、树干与地表、角反射器

体散射模型:

森林(林地)

Cloude分解及其分类原理

熵H:

即目标的散射机理在统计上杂乱无序的程度(水体小、植被大)

散射角α:

表示散射类型,[0°,90°]与目标朝向无关,代表散射目标内部自由度各向异性度A:

对于低熵和中等熵,熵不能提供有关两个较小特征值之间关系的信息

常用及最新的极化SAR信息提取方法有那些?

星载sar将以多通道、多基、多平台、多极化、多模式优化装置、多

传感器数据融合等技术为手段,以快速获取地球与空间的多维动态信息为目的,将人类带入一个高分辨率、宽测绘带、多层次、多维、多角度、多模式协同工作的对地观测时代。

利用InSAR生成DEM 具有全天候、全天时,一定的穿透能力以

及精度高、速度快等特点.是未来遥感领域发展的新方向但是由于InSAR数据处理的复杂性、数据处理的专业性,实现InSAR数据高精

度配准、有效抑制噪声、高精度相位展开以及生成高精度的DEM 等方面还是存在较大的困难。故此利用InSAR生成DEM数据处理流程中

的上述存在的问题有待进一步深入研究

3.1复图像对的高精度自动配准。众所周知,SAR影像由于斑点、噪

声的影像,无论是对其人 [配准还是自动配准都比光学影像之间的配准要困难得多。所以高精度的自动配准方法是下一步研究的重点之一3.2斑点噪声滤除及误差因素分析。InSAR技术对原始数据要求非常高,往往因为数据难以满足干涉条件造成相干结果不能满足实际需求,这就要求对原始数据进行滤波,同时对潜在的误差因素进行分析,尽量减少误差对DEM的影响。

3.3相位解缠算法的改进提高。由于相位解缠的复杂性以及数据本身

质量的差异,使得相位解缠的难度变大虽然目前众多学者对相位解

缠方法进行研究,但是,还没有一种公认的、有效的解缠算法能够适

用各种情况的高精度相位解缠。因此,相位解缠仍然是InSAR数据处理技术的难点和热点。

3.41nSAR生成DEM处理工具的实用化。利用InSAR生成DEM技术的应用已经在世界上许多国家得以实现,也有一些软件的部分功能可以实现InSAR数据处理流程。但是我国在这方面才刚刚起步.研究工作主要集中在理论研究方面,实用化进展缓慢。所以要想有效的使用InSAR 数据,就需要研究一套可行的实用化的工具.使利用InSAR生成DEM 走向实用化。

遥感期末复习题

遥感定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。 遥感的特点:大面积的同步观测;时效性;数据的综合性和可比性;经济性;局限性 遥感数据的类型:按平台分(地面遥感、航空遥感、航天遥感数据) 按电磁波段分(可见光遥感、红外遥感、微波遥感、紫外遥感数据等) 按传感器的工作方式分(主动遥感、被动遥感数据) 遥感数据的应用领域 林业:清查森林资源、监测森林火灾和病虫害。 农业:作物估产、作物长势及病虫害预报。 水文与海洋:水资源调查、水资源动态研究、冰雪监控、海洋渔业。 国土资源:国土资源调查、规划和政府决策。 气象:天气预报、气候预报、全球气候演变研究。 遥感的发展简况 照相机、气球、飞机构成初期遥感技术系统。 1962年在美国密歇根大学召开的第一次国际环境遥感讨论会上,美国海军研究局的Eretyn Pruitt(伊·普鲁伊特)首次提出“Remote Sensing”一词,会后被普遍采用至今。 二次大战中的航空侦察促进了航空摄影技术的发展。 传感器一般由信息收集、探测系统、信息处理和信息输出4部分组成。 电磁波的特性 电磁波是横波在真空中以光速传播电磁波具有波粒二象性(包括波动性和粒子性) 辐射测量 区分辐射能量(W)、辐射通量、辐射通量密度(E)、辐照度(I)、辐射出射度(M)、辐射亮度(L)绝对黑体 如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。它的吸收率α(λ,T)≡1,反射率ρ (λ,T) ≡0,与物体的温度和电磁波长无关。黑色的烟煤、恒星、太阳被认为是最接近黑体辐射的辐射源。黑体辐射的三个特性 1、辐射通量密度随波长连续变化,每条曲线只有一个最大值。 2、温度越高,辐射通量密度越大,不同温度的曲线不同。 3、随着温度的升高,辐射最大值所对应的波长向短波方向移动。 维恩位移定律:随着温度的升高,辐射最大值对应的峰值波长向短波方向移动。 基尔霍夫定律: (2)实际物体的辐射 基尔霍夫定律表现了实际物体的辐射出射度Mi与同温度、同波长绝对黑体辐射出射度的关系,αi 是此条件下的吸收系数(0<α<1).有时也称为比辐射率或发射率ε,表示实际物体辐射与黑体辐射之比,M= εM0 按照发射率与波长的关系,把地物分为:黑体或绝对黑体:发射率为1,常数。 灰体(grey body):发射率小于1,常数选择性辐射体:反射率小于1,且随波长而变化。

遥感复习资料

1.遥感:应用探测仪器,不与探测目标接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.遥感的系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分。 3.遥感的分类:按遥感平台分-地面遥感、航空遥感、航天遥感、航宇遥感;按传感器的探测波段分-紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感;按工作方式分-主动遥感和被动遥感;按遥感的应用领域分-大体研究领域可分为外层空间遥感、大气层遥感、陆地遥感、海洋遥感等,具体应用领域资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、水文遥感、城市遥感等。 4.遥感的特点:①大面积的同步观测;②时效性;③数据的综合性和可比性;④经济型;⑤局限性。 5.电磁波谱:按电磁波在真空中传播的波长和频率,递增或递减排列,则构成了电磁波谱。 该波谱以频率从高到低排列,可以划分成γ射线、Χ射线、紫外线、可见光、红外线、无线电波。6.遥感中较多使用可见光、红外和微波波段。 7.?电磁波性质:①是 横波;②在真空以光 速传播;③满足f·λ =c E=h·f E 为能量,单位:j;h 为普朗克常数;f为频 率;λ为波长;c为 光速;④电磁波具有 波粒二象征。 8.?发射率或比辐射 率:记作ε,表示实 际物体辐射与黑体辐 射之比,M=εM0. 9.太阳常数:是指不 受大气影响,在距太 阳一个天文单位内, 垂直于太阳光辐射方 向上,单位面积时间 黑体所接收的太阳辐 射能量。太阳辐射 的光谱室连续的光 谱,且辐射特性与绝 对黑体辐射特性基本 一致,能量各个波段 的比例不同。 10.地表接收的太阳 辐射度曲线与大气层 外的曲线不同,差异 主要是地球大气引起 的。 11.大气层次自下而 上:对流层、平流层 (飞机)、(中间层、 热层、散逸层)电离 层、(氮层、质子层) 外大气层。 12.散射现象的实质 是电磁波在传输中遇 到大气微粒而产生的 一种衍射现象。 13.?大气散射有三种 情况:①瑞利散射, 特点是散射强度与波 长的四次方(λ4)成 反比,I∝λ-4,即波长 越长,散射越弱;② 米氏散射③无选择性 散射,特点是散射强 度与波长无关,任何 波长的散射强度相 同。 14.大气窗口:通常把 电磁波通过大气层时 较少被反射、吸收或 散射的,透过率较高 的波段称为大气窗 口。 15.?植被的反射波谱 曲线分为三段:可见 光波段(0.4~0.76μ m)有一个小的反射 峰,位置在0.55μm (绿)处,两侧0.45 μm(蓝)和0.67μm (红)则有两个吸收 带。在近红外波段 (0.7~0.8μm)有一 反射的“陡坡”,至 1.1μm附近有一峰 值,形成植被的独有 特征。在中红外波段 (1.3~2.5μm)受到 绿色植物含水量的影 响,吸收率大增,反 射率大大下降,特别 以1.45μm、1.95μm 和 2.7μm为中心是 水的吸收带,形成低 谷。 16.轨道倾角=90°极 轨卫星,接近90°近 极轨卫星。 17.遥感平台是搭载 传感器的工具。根据 运载工具的类型,可 分为航天平台、航空 平台和地面平台。 18.?气象卫星特点: ①轨道,分为两种, 低轨和高轨,低轨就 是近极地太阳同步轨 道,简称极地轨道; 高轨是指地球同步轨 道,轨道高度 36000km左右,绕地 球一周需24小时。② 短周期重复观测;③ 成像面积大,有利于 获得宏观同步信息, 减少数据处理容量; ④资料来源连续、实 时性强、成本低。 19.气象卫星资料的 应用领域:天气分析 和气象预报、气候研 究和气候变迁的研 究、资源环境其他领 域。 20.海洋遥感的特点: (1)需要高空和空间 的遥感平台,以进行 大面积同步覆盖的观 测;(2)以微波为主; (3)电磁波与激光、 声波的结合是扩大海 洋遥感探测手段的一 条新路;(4)海面实 测资料的校正。 21.?摄影机有分幅式 和全景式摄影机、多 光谱、数码摄像机。 22.光机扫描的几何 特征取决于它的瞬时 视场角和总视场角。 (1)瞬时视场角(2 θ)扫描镜在一瞬时 时间可以视为静止状 态,此时,接受到的 目标地物的电磁波辐 射,限制在一个很小 的角度之内,这个角 度称为瞬时视场角, 即扫描仪的空间分辨 率 (2)总视场角(2Φ) 扫描带的地面宽度称 总视场。从遥感平台 到地面扫面带外侧所 构成的夹角,成总视 场角,也为总扫描角。 23.成像光谱仪:即能 成像又能获取目标光 谱曲线的“谱像合一” 的技术,称为成像光 谱技术,按该原理制 成的扫描仪称为成像 光谱仪。 24.?微波遥感是指通 过微波传感器获取从 目标地物发射或反射 的微波辐射,经过判 读处理来识别地物的 技术。 特点:1>能全天候、 全天时工作;2>对冰、 雪、森林、土壤等具 有一定穿透能力;3> 对海洋遥感具有特殊 意义;4>对海洋遥感 具有特殊意义;5>分 辨率较低,但特征明 显。 ②微波遥感份有源 (主动)和无源(被 动)两大类。(1)主 动微波遥感是指通过 向目标地物发射微波 并接收其后向散射信 号来实现对地观测遥 感方式,主要是雷达、 侧视雷达、合成孔径 侧视雷达。(2)?被 动微波遥感,通过传 感器,接收来自目标 地物发射的微波,而 达到探测目的的遥感 方式。微波辐射计和 微波散射计。 25.?遥感图像是遥感 探测目标的信息载 体。将遥感图像归纳 为三方面特征,即几 何特征、物理特征和 时间特征。这三方面 特征的表现参数即为 空间分辨率、光谱分 辨率、辐射分辨率和 时间分辨率。 (1)图像的空间分 辨率指像素所代表的 地面范围的大小,即 扫描仪的瞬时视场, 或地面物体能分辨的 最小单元(像元)。 (2)波谱分辨率是 指传感器在接收目标 辐射的波谱时能分辨 的最小波长间隔。间 隔愈小,分辨率愈高。 它的选择必须考虑目 标的光谱特征值。 (3)辐射分辨率是 指传感器接收波谱信

遥感导论考试题A和B及其答案

“遥感概论”课程考试试题1 一、名词解释(每题6分,共30分) 1.大气窗口 2.光谱分辨率 3.遥感图像解译专家系统 4.监督与非监督分类 5.遥感图像镶嵌 二、多项选择(每题5分,共30分) 1.到达地面的太阳辐射能量与地面目标作用后可分为三部分,包括:() (1) 反射;(2)吸收;(3)透射;(4)发射 2.计算植被指数(如NDVl)主要使用以下哪两个波段:() (1) 紫外波段;(2) 蓝色波段;(3) 红色波段;(4)近红外波段 3.扫描成像的传感器包括:() (1) 光-机扫描仪;(2)推帚式扫描仪;(3)框幅式摄影机 4.侧视雷达图像上由地形引起的几何畸变包括:() (1)透视收缩;(2)斜距投影变形;(3)叠掩;(4)阴影 5 .遥感图像几何校正包括两个方面:() (1) 像元坐标转换;(2)地面控制点选取;(3)像元灰度值重新计算(重采样);(4)多项式拟合三.简答题(共90分) 1、下图为一个3x3的图像窗口,试问经过中位数滤波(Median Filter)后,该窗口中心像元的值,并写出计算过程。(10分) 2、简述可见光、热红外和微波遥感成像机理。(20分) 3、设计一个遥感图像处理系统的结构框图,说明硬件和软件各自的功能,并举一应用实例.(30分) 4.遥感图像目视解译方法主要有哪些?列出其中5种方法并结合实例说明它们如何在遥感图像解译中的应用。(30分) 遥感概论”课程考试试题1--答案 一、名词解释(每题6分,共30分) 1.大气窗口由于大气层的反射、散射和吸收作用,使得太阳辐射的各波段受到衰减的作用轻重不同,因而各波段的透射率也各不相同。我们就把受到大气衰减作用较轻、透射率较高的波段叫做大气窗口。 2.光谱分辨率指遥感器在接收目标辐射的电磁波信息时所能分辨的最小波长间隔。光谱分辨率与传感器总的探测波段的宽度、波段数和各波段的波长范围和间隔有关。间隔愈小,分辨率愈高。 3.遥感图像解译专家系统遥感图像解译专家系统是模式识别和人工智能技术相结合的产物。它用模式识别方法获取地物多种特征,为专家系统解译遥感图像提供依据,同时应用人工智能技术,运用遥感图像解译专家的经验和方法,模拟遥感图像目视解译的具体思维过程,进行遥感图像解译。 4.监督与非监督分类监督分类指根据已知样本区类别信息对非样本区数据进行分类的方法。其基本思想是:根据已知样本类别和类别的先验知识,确定判别函数和相应的判别准则,然后将未知类别的样本和观测值代入判别函数,再根据判别准则判定该样本的所属类别。

遥感导论复习题及答案

1.什么是遥感国内外对遥感的多种定义有什么异同点 定义:从不同高度的平台(Platform)上,使用各种传感器(Sensor),接收来自地球表层的各种电磁波信息,并对这些信息进行加工处理,从而对不同的地物及其特性进行远距离探测和识别的综合技术。 平台:地面平台、航空平台、航天平台;传感器:各种光学、电子仪器 电磁波:可见光、红外、微波 根据你对遥感技术的理解,谈谈遥感技术系统的组成。 3.什么是散射大气散射有哪几种其特点是什么 辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开称为散射;大气散射有三种:分别为瑞利散射:特点是散射强度与波长的四次方成反比,既波长越长,散射越弱; 米氏散射:散射强度与波长的二次方成反比。云雾对红外线的散射主要是米氏散射 无选择性散射:特点是散射强度与波长无关。 4.遥感影像变形的主要原因是什么 (1)遥感平台位置和运动状态变化的影响;(2)地形起伏的影响; (3)地球表面曲率的影响;(4)大气折射的影响;(5)地球自转的影响。 5.遥感图像计算机分类中存在的主要问题是什么 (1)未充分利用遥感图像提供的多种信息;(2)提高遥感图象分类精度受到限制:包括大气状况的影响、下垫面的影像、其他因素的

影响。 6.谈谈你对遥感影像解译标志的理解。 为了提高摄影像片解译精度与解译速度,掌握摄影像片的解译标志很有必要。遥感摄影像片解译标志又称判读标志,它指能够反映和表现目标地物信息的遥感影像各种特征,这些特征能帮助判读者识别遥感图像上目标地物或现象。解译标志分为直接判读标志和间接解译标志。直接判读标志是指能够直接反映和表现目标地物信息的遥感图像各种特征,它包括遥感摄影像片上的色调、色彩、形状、阴影、纹理、大小、图型等,解译者利用直接解译标志可以直接识别遥感像片上的目标地物。间接解译标志是指航空像片上能够间接反映和表现目标地物的特征,借助间接解译标志可以推断与某地物的属性相关的其他现象。遥感摄影像片上经常用到的间接解译标志有:目标地物与其相关指示特征。例如,像片上呈线状延伸的陡立的三角面地形,是推断地质断层存在的间接标志。像片上河流边滩、沙咀和心滩的形态特征,是确定河流流向的间接解译标志;地物及与环境的关系。任何生态环境都具有代表性地物,通过这些地物可以指示它赖以生活的环境。如根据代表性的植物类型推断它存在的生态环境,“植物是自然界的一面镜子”,寒温带针叶林的存在说明该地区属于寒温带气候;目标地物与成像时间的关系。一些目标地物的发展变化与季节变化具有密切联系。了解成像日期和成像时刻,有助于对目标地物的识别。例如,东部季风区夏季炎热多雨,冬季寒冷干燥,土壤含水量因此具有季节变化,河流与水库的水位也有季节变化。 7. 何谓遥感、地理信息系统、全球定位系统简要回答三者之间的相互

遥感原理与方法期末考试复习

遥感原理与方法期末考试复习 第一章绪论 ★遥感的定义?遥感对地观测有什么特点? 广义遥感:泛指一切无接触的远距离探测,包括对电磁场、力场(磁力、重力)、机械波(声波、地震波)等的探测。实际工作中,重力、磁力、声波、地震波等的探测被划为物探(物理探测)的范畴,只有电磁波探测属于遥感的范畴。 狭义:是指对地观测,即从不同高度的工作平台上通过传感器,对地球表面目标的电磁波反射或辐射信息进行探测,并经信息记录、传输、处理和解译分析,对地球的资源与环境进行探测和监测的综合性技术。 定义:遥感是指不与目标物直接接触,应用探测仪器,接收目标物的电磁波信息,并对这些信息进行加工分析处理,从而识别目标物的性质及变化的综合性对地观测技术。 英文定义:Remote Sensing 简写为RS(3S之一) 空间特点—全局与局部观测并举,宏观与微观信息兼取 时相特点—快速连续的观测能力 光谱特点—技术手段多样,可获取海量信息 经济特点—应用领域广泛,经济效益高 ★遥感技术系统有哪几部分组成?每部分的作用。 信息获取是遥感技术系统的中心工作 信息记录与传输工作主要涉及地面控制系统 信息处理通过各种技术手段对遥感探测所获得的信息进行各种处理 信息应用是遥感的最终目的,包括专业应用和综合应用 ☆遥感有哪几种分类方法及哪些分类? 1)按遥感平台分:地面遥感、航空遥感和航天遥感 2)按工作方式分:主动式和被动式遥感.ps【主动式遥感是指传感器自身带有能发射电磁波的辐射源,工作时向探测区发射电磁波,然后接收目标物反射或散射的电磁波信息。被动式遥感是传感器本身不发射电磁波,而是直接接受地物反射的太阳光线或地物自身的热辐射。】 3)按工作波段分:紫外、可见光、红外、微波遥感、多光谱和高光谱遥感 4)按记录方式分:成像和非成像遥感 5)按应用领域分:外层空间、大气层、陆地、海洋遥感等,具体应用领域可分为城市遥感、环境、农业和林业遥感、地质、气象、军事遥感等。 遥感对地观测技术现状及发展展望? 现状(国内): 1)民用遥感卫星像系列化和业务化方向发展 2)传感器技术发展迅速 3)航空遥感系统日趋完善 4)国产化地球空间信息系统软件发展迅速 5)应用领域不断扩展 发展展望: 1)研制新一代传感器,以获得分辨率更高、质量更好的遥感数据 2)遥感图像信息处理技术发展迅速

遥感复习资料

名词解释: 1、遥感:是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2、地理信息系统:它是在计算机硬、软件系统支持下,对整个或部分地球表面空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。 3、电磁波:当电磁震荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁震荡在空间传播,这就是电磁波。 4、电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减,则构成了电磁波谱。 5、大气窗口:电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段。 6、遥感图像目视解译:指专业人员通过直接观察或借助铺助仪器判读在遥感图像上获取特定目标地物信息的过程。 7、遥感数字图像:以数字形式表示的遥感影像。 8、监督分类:包括利用训练区样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。 9、非监督分类:不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱信息进行特征提取,再统计特征的差别来达到分类的目的,最后对已分出的各个类别的实际属性进行确认。 10、地理实体:是地理数据库中的实体,是指在现实世界中再也不能划分为同类现象的现象。 11、拓扑关系:用来描述实体间相邻、连通、包含和相交等关系。 12、矢量数据:计算机对地理实体的隐式描述。 13、栅格数据:计算机对地理实体的显式描述。 14、数据库:为了一定目的,在计算机系统中以特定的结构组织,存储和应用相关联数据的集合。 15、空间数据库:是地理信息系统在计算机物理存储介质上存储的与应用相关的地理空间数据的总和。 16、关系模型:是根据数学概念建立的,它把数据的逻辑结构归结为满足一定条件的二维表形式。 17、叠置分析:是将有关主题层组成的各个数据层面进行叠置产生一个新的数据层面。

遥感导论考试重点(旗舰版)

遥感:泛指一切无接触的远距离探测,包括 对电磁场、力场、机械波(声波、地震波) 等的探测。 遥感与遥控遥测的区别:遥感不同于遥测和 遥控。遥测是指对被测物体某些运动参数和性质进行远距离测量的技术,分接触测量和非接触测量。遥控是指远距离控制目标物运动状态和过程的技术。 遥感系统包括:被测目标的信息特征、信息 的获取、信息的接收、信息的处理、信息的 应用 遥感的类型:按遥感平台分:地面遥感、航 空遥感、航天遥感、航宇遥感 按探测波段分:紫外遥感、可见光遥感、红 外遥感、微波遥感、多波段遥感 按工作方式分:主动遥感和被动遥感、成像 遥感与非成像遥感 按应用领域分:外层空间遥感、大气层遥惑、陆地遥感、海洋遥感等 遥感的特点:大面积的同步观测、时效性、 数据的综合性和可比性、经济性、局限性 电磁波谱:按照波长或频率、波数、能量的 顺序把电磁波排列起来,这就是电磁波谱。 波段划分:长波,中波和短波,超短波,微波,红外波段 电磁辐射:电场和磁场的交互变化产生电磁波,电磁波向空中发射或泄露的现象,叫电磁辐射。 辐射测量内容:辐射能量、辐射通量、辐照度、辐射出射度、辐射亮度 绝对黑体:如果一个物体对于任何波长的电 磁辐射都全部吸收,则这个物体是绝对黑体。大气散射有三种情况:瑞利散射、米氏散射、无选择性散射 大气窗口:通常把电磁波通过大气层时较少 被反射、吸收或散射的,透过率较高的波段称为大气窗口。 大气窗口对应的光谱段: 0.3—1.3ym,即紫外、可见光、近红外波段。 1.5-1.8pm和 2.0— 3.5tm,即近、中红外波段。 3.5—5.5_um,即中红外波段。 8-14pm,即远红外波段。 0.8~2.5cm,即微波波段。 地球辐射的分段特性: 可见光与近红外:波长0.3-2.5辐射特性-地 表反射太阳辐射为主 中红外:波长2.5-6辐射特性-地表反射太阳 辐射和自身的热辐射 远红外:波长>6辐射特性-地表物体自身热辐 为主 遥感平台:遥感平台是搭载传感器的工具。 分类:航天平台、航空平台、地面平台 航天比例尺(像片比例尺):即像片上两点之 间的距离与地面上相应两点实际距离之比。 扫描成像成像方式:光/机扫描成像、固体 自扫描成像、高光谱成像光谱扫描 微波遥感:是指通过微波传感器获取从目标 地物发射或反射的微波辐射,经过判读处理来识别地物的技术。微波遥感特点: 能全天候、全天时工作 对某些地物具有特殊的波谱特征 对冰、雪、森林、土壤等具有一定穿透能力 对海洋遥感具有特殊意义 分辨率较低,但特性明显 主动微波遥感:是指通过向目标地物发射微波 并接收其后向散射信号来实现对地观测遥感 方式。 雷达:意为无线电测距和定位。 遥感图像特征:几何特征、物理特征、时间特 征 表现参数:空间分辨率、光谱分辨率、辐射分 辨率、时间分辨率 颜色的性质:由明度、色调、饱和度来描述 遥感摄影像片解译标志:又称判读标志,它 指能够反映和表现目标地物信息的遥感影像各 种特征,这些特征能帮助判读者识别遥感图像 上目标地物或现象。解译标志分为直接判读标 志和间接解译标志。 热红外像片的解译: 直接解译标志包括:色调、形状与大小、地物 大小、阴影、 地物的解译:水体与道路、树林与草地、土壤 与岩石: 遥感图像目视解译步骤: (1)目视解译准备工作阶段 (2)初步解译与判读区的野外考察 (3)室内详细判读 (4)野外验证与补判 (5)目视解译成果的转绘与制图 遥感影像地图:是一种以遥感影像和一定的 地图符号来表现制图对象地理空间分布和环境 状况的地图。 遥感数据与非遥感数据的复合步骤如下: 1.地理数据的网格化 (1)网格数据生成、(2)与遥感数据配准: 2.最优遥感数据的选取 3.配准复合 数字图像的校正:辐射校正、几何校正 几何校正三层次:遥感影像变形的原因、几 何畸变校正、控制点的选取 控制点的选取: (1)数目确定:控制点数目的最低限是按未知 系数的多少来确定的。 (2)选取原则:控制点的选择要以配准对象为 依据。以地面坐标为匹配标准的,叫做地面控 制点。有时也用地图作地面控制点标准,或用 遥感图像作为控制点标准。无论用哪一种坐标 系,关键在于建立待匹配的两种坐标系的对应 点关系。 数字图像增强的5种方法:对比度变换、空 间滤波、彩色变换、图像运算、多光谱变换 多波段数字图像数据格式:BSQ、BIP、BIL 度量特征空间中的距离经常采用的算法:绝 对值距离、欧氏距离、马氏距离、均值向量的 混合距离、相关系数 遥感图像的计算机分类方法:包括监督分类 和非监督分类。 水体遥感:是通过对遥感影像的分析,获得 水体的分布、泥沙、有机质等状况和水深、水 温等要素的信息,从而对一个地区的水资源和 水环境等作出评价,为水利、交通、航运及资 源环境等部门提供决策服务。 水体遥感的研究内容:水体的光谱特征、水 体界线的确定、水体悬浮物质的确定、水温的 探测、水体污染的探测、水深的探测 植物的光谱特征:可使其在遥感影像上有效 地与其他地物相区别。同时,不同的植物各有 其自身的波谱特征,从而成为区分植被类型、 长势及估算生物量的依据。 健康植物的反射光谱特征:健康植物的波谱 曲线有明显的特点,在可见光的0.55附近有 一个反射率为10%~20%的小反射峰。在0.45 和0.65附近有两个明显的吸收谷。在0.7-0.8 是一个陡坡,反射率急剧增高。在近红外波段 0.8—1.3之间形成一个高的,反射率可达40% 或更大的反射峰。在1.45,1.95和2.6—2.7 处有三个吸收谷。 影响植物光谱的因素: 主要因素有植物叶子的颜色、叶子的细胞构造 和植物的水分等。植物的生长发育、植物的不 同种类、灌溉、施肥、气候、土壤、地形等因 素 不同植物类型的区分: 1.不同植物由于叶子的组织结构和所含色素 不同,具有不同的光谱特征。 2·利用植物的物候期差异来区分植物 3.根据植物生态条件区别植物类型 大面积农作物的遥感估产三方面内容: 农作物的识别与种植面积估算、长势监测、 估产模式的建立。 高光谱遥感与一般遥感区别(特点)在于: 高光谱遥感的成像光谱仪可以分离成几十甚至 数百个很窄的波段来接收信息;每个波段宽度 仅小于10nm;所有波段排列在一起能形成一条 连续的完整的光谱曲线;光谱的覆盖范围从可 见光到热红外的全部电磁辐射波谱范围。 应用领域:在地质调查中的应用、在植被研 究中的应用、在其他领域中的应用 中心投影与垂直投影的区别: 1.投影距离的影响:垂直投影图像的缩小和放 大与投影距离无关,并有统一的比例尺。中心 投影则受投影距离影响,像片比例尺与平台高 度和焦距有关 2.投影面倾斜的影响:当投影面倾斜时,垂直 投影的影像仅表现为比例尺有所放大,像点相 对位置保持不变。在中心投影的像片上其比例 关系有显著的变化,各点的相对位置和形状不 再保持原来的样子 3.地形起伏的影响:垂直投影时,随地面起伏 变化,投影点之间的距离与地面实际水平距离 成比例缩小,相对位置不变。中心投影时,地 面起伏越大,像上投影点水平位置的位移量就 越大

遥感导论复习题及答案

1.什么是遥感?国内外对遥感的多种定义有什么异同点? 定义:从不同高度的平台(Platform)上,使用各种传感器(Sensor),接收来自地球表层的各种电磁波信息,并对这些信息进行加工处理,从而对不同的地物及其特性进行远距离探测和识别的综合技术。 平台:地面平台、航空平台、航天平台;传感器:各种光学、电子仪器 电磁波:可见光、红外、微波 //2. 根据你对遥感技术的理解,谈谈遥感技术系统的组成。 3. 什么是散射?大气散射有哪几种?其特点是什么? 辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开称为散射;大气散射有三种:分别为瑞利散射:特点是散射强度与波长的四次方成反比,既波长越长,散射越弱; 米氏散射:散射强度与波长的二次方成反比。云雾对红外线的散射主要是米氏散射 无选择性散射:特点是散射强度与波长无关。 4. 遥感影像变形的主要原因是什么? (1)遥感平台位置和运动状态变化的影响;(2)地形起伏的影响; (3)地球表面曲率的影响;(4)大气折射的影响;(5)地球自转的影响。 5.遥感图像计算机分类中存在的主要问题是什么? (1)未充分利用遥感图像提供的多种信息;(2)提高遥感图象分类精度受到限制:包括大气状况的影响、下垫面的影像、其他因素的

影响。 6.谈谈你对遥感影像解译标志的理解。 为了提高摄影像片解译精度与解译速度,掌握摄影像片的解译标志很有必要。遥感摄影像片解译标志又称判读标志,它指能够反映和表现目标地物信息的遥感影像各种特征,这些特征能帮助判读者识别遥感图像上目标地物或现象。解译标志分为直接判读标志和间接解译标志。直接判读标志是指能够直接反映和表现目标地物信息的遥感图像各种特征,它包括遥感摄影像片上的色调、色彩、形状、阴影、纹理、大小、图型等,解译者利用直接解译标志可以直接识别遥感像片上的目标地物。间接解译标志是指航空像片上能够间接反映和表现目标地物的特征,借助间接解译标志可以推断与某地物的属性相关的其他现象。遥感摄影像片上经常用到的间接解译标志有:目标地物与其相关指示特征。例如,像片上呈线状延伸的陡立的三角面地形,是推断地质断层存在的间接标志。像片上河流边滩、沙咀和心滩的形态特征,是确定河流流向的间接解译标志;地物及与环境的关系。任何生态环境都具有代表性地物,通过这些地物可以指示它赖以生活的环境。如根据代表性的植物类型推断它存在的生态环境,“植物是自然界的一面镜子”,寒温带针叶林的存在说明该地区属于寒温带气候;目标地物与成像时间的关系。一些目标地物的发展变化与季节变化具有密切联系。了解成像日期和成像时刻,有助于对目标地物的识别。例如,东部季风区夏季炎热多雨,冬季寒冷干燥,土壤含水量因此具有季节变化,河流与水库的水位也有季节变化。 7. 何谓遥感、地理信息系统、全球定位系统?简要回答三者之间的相

河南大学遥感期末复习资料

第一讲作业:1.遥感的概念以及狭义遥感的特点 广义的遥感:即遥远的感知,泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。 狭义的遥感:运用探测仪器,不与探测目标相接触,从远处记录目标的电磁波特性,通过分析,揭示物体的物理特性及变化的综合性探测技术。 狭义的遥感具有以下三个特点: 1.运用探测仪器进行探测 2.仅记录物体的电磁波特性 3.揭示物体的物理特性及变化 2.遥感系统的组成 总的来说,遥感系统的组成可以分为四个部分。 1.信息源。信息源是指遥感需要对其探测的目标物。 2.信息获取。信息获取是指运用遥感技术装备接受、记录目标物电磁波特性的探测过程。 3.信息处理。信息处理是指运用光学仪器和计算机设备对所获取的遥感信息进行校正、分 析和解译处理的技术过程。

4.信息应用。信息应用是根据不同的目的将遥感信息应用于各个领域的过程。 3.遥感的工作波段以及它们具有的特性 遥感中较多地使用可见光、红外、微波波段以及紫外线的一部分。 特性:1.可见光:鉴别物质特征的主要波段,以光学摄影或扫描方式接收和记录反射特征。 2.红外线:近红外的性质与可见光相似,红外遥感主要采用热感应方式探测地物本身的 辐射,可以全天时遥感。 3.微波:分为毫米波、厘米波、分米波,具有热辐射性质,可以全天候全天时遥感探测, 可采用主动和被动方式成像,具有一定的穿透能力。 4.紫外线:用于探测碳酸盐分布和油污染的监测,一般高空遥感不宜采用。 4.遥感平台的种类 地面遥感平台、航空遥感平台以及航天遥感平台。 5.遥感器的成像方式 遥感器:搭载在遥感平台上,接收、记录目标物电磁波特性的仪器,包括照相机、扫描仪、成像雷达等。 遥感器成像方式: 摄影成像类型(光学/电成像类型)

遥感导论复习总结

1. 主动遥感:由探测器主动发射一定电磁波能量并接收目标的后向散射信号。 2. 被动遥感:传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。 3. 太阳常数:是指不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量。 4. 大气散射:大气辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开。 5. 大气窗口:电磁波通过大气层时较少被反射、吸收或散射的,透过率高的波段称为大气窗口。 6. 像点位移:在中心投影的像片上,地形的起伏除引起像片比例尺变化外,还会引起平面上的点位在像片位置上的移动。 7. 空间分辨率:像素所代表的地面范围的大小,即扫描仪的瞬时视场,或地面物体能分辨的最小单元。 8. 光谱分辨率:传感器在接收目标辐射的波谱时能分辨的最小波长间隔。间隔愈小,分辨率愈高。 9. 辐射分辨率:传感器接收波谱信号时,能分辨的最小辐射差。 10. 互补色:若两种颜色混合产生白色或灰色,这两种颜色称为互补色。 11. 三原色:若三种颜色,其中的任一种都不能由其余二种颜色混合想加产生,这三种颜色按一定比例混合,可以形成各种色调的颜色,称之为三原色。 12. 遥感的特点:大面积的同步观测;时效性;数据的综合性和可比性;经济性;局限性。 13. 电磁辐射的性质:是横波;在真空以光速传播;电磁波具有玻粒二象性;满足fλ=c E=hf 14. 绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。 黑体辐射的特性:辐射通量密度随波长连续变化,每条曲线只有一个最大值;温度越高,辐射通量密度越大,不同温度的曲线不同;随着温度的升高,辐射最大值所对应的波长向短波方向移动。 15. 大气散射的三种情况:瑞利散射、米氏散射、无选择性散射。 无云的晴空呈现蓝色,就是因为蓝光波长段,散射强度大,因此蓝光向四面八方散射,使整个天空蔚蓝,使太阳辐射传播方向的蓝光被大大削弱。这种现象在日出和日落时更为明显,因为这时太阳高度角小阳光斜射向地面,通过的大气层比阳光直射时要厚得多。在过长的传播中,蓝光波长最短,几乎被散射殆尽,波长次短的绿光散射强度也居其次,大部分被散射掉了。只剩下波长最长的红光,散射最弱,因此透过大气最多。加上剩余的少量绿光,最后合成呈现橘红色。所以朝霞和夕阳都偏橘红色。无选择性散射,当大气中粒子的直径比波长大得多时发生的散射。这种散射的特点是散射强度与波长无关,也就是说,在符合无选择性散射的条件波段中,任何波长的散射强度相同。如云、雾粒子直径虽然与红外波长接近,但相比可见光波段,云雾中的水滴的粒子直径就比波长大很多,因而对可见光中各个波长的光散射强度相同,所以人们看到云雾呈现白色。 16. 0.3~1.3μm,紫外线,可见光,近红外波段。1.5~1.8和2.0~3.5.近、中红外波段。3.5~5.5中红外波段。8~14远红外波段。0.8~2.5微波波段。 17. 亮度温度:衡量地物辐射特征的重要指标。指当物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为该物体的亮度温度。 18. 同物异谱:是指一种地物对应几种不同的光谱特征(有周围环境,时相上的原因)例如坡度,破向,密度,季,相,覆盖度以及地物的组合方式。 异物同谱:不同类型的地物具有相同的波谱特征。 19. 气象卫星的特点:(1)轨道,有低轨和高轨两种,运行中每条轨道都要经过地球南北两极附近上空。优点:每天对全球扫描两遍,获取全球气象资料,得全球大气变化宏观资料;缺点:对一定特定区域一天只能观测2次,不能取得连续变化观测。 (2)短周期重复观测(3)成像面积大,有利于获得宏观同步信息,减少数据处理容量(4)资料来源连续、实时性强、成本低。 20. 摄影机分类:分幅式摄影机、全景摄影机、多光谱摄影机、数码摄影机。 21. 中心投影与垂直投影的区别:①投影距离的影响:垂直投影图像的缩小和放大与投影距离无关,并没有统一的比例尺。中心投影则受投影距离(遥感平台高度)影响,像片比例尺与平台高度H和焦距f有关。②投影面倾斜的影响:当投影面倾斜时,垂直投影的影像仅表现为比例尺有所放大。在中心投影的像片上,比例尺有显著的变化。 ③地形起伏的影响:垂直投影时,随地面起伏变化,投影点之间的距离与地面实际水平距离成比例缩小版,相对位置不变。中心投影时,地面起伏越大,像上投影点水平位移量就越大,产生投影误差。 22. 像点位移的特征:①位移量与地形高差h成正比。即高差越大引起的像点位移量也越大。②位移量与像主点的距离r成正比。即距主点越远的像点位移量越大,像片中心部分位移量较小。③位移量与摄影高度成反比。即摄影高度越大,因地表起伏引起的位移量就越小。 23. 微波遥感的特点:能全天候,全天时工作;对某一地物具有特殊的波谱特征;对冰,雪,森林,土壤等具有一定的穿透力;对海洋遥感具有特殊意义;分辨率较低,但特性明显。

遥感导论复习资料终极版!!

遥感导论复习资料 1.遥感( Remote Sensing )应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 a 主动遥感:传感器主动发射一定电磁波能量并接受目标物的后向散射信号。 b 被动遥感:传感器不向目标物发射电磁波,仅被动接受目标物自身发射和对自然辐射的反射能量。 2.遥测:是指对被测物体某些运动参数和性质进行远距离测量的技术,分接触测量和非接触测量。 3.遥控:是指远距离控制运动状态和过程的技术。 4.遥感系统 1)遥感信息源;2)空间信息的获取;3)遥感数据传输与接受;4)遥感图像处理;5)遥感信息提取、分析与应用 5.遥感技术分类 1)按遥感平台分: 地面遥感、航空遥感、航天遥感、宇航遥感。 2)按电磁波段分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感等。 3)按传感器的工作方式分:主动遥感、被动遥感数据(光学摄影、扫描成像)。 4)按遥感信息获取方式分:成像方式、非成像方式。 5)按遥感应用领域分: 从大的研究领域分为:外层空间遥感、大气层遥感、陆地遥感和海洋遥感。 从具体应用领域可分为:资源环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、气象遥感、灾害遥感、军事遥感等。 6.遥感技术的特点 1)宏观特性:居高俯视,探测范围大 2)多时相性:获取资料速度快、周期短、 能反映动态变化 3)信息丰富:进行探测的波段包括可见光、红外光、微波等,雷达遥感可以全天时、全天候工作、穿透地下一定深度,多级分辨率、多时相、多波段、高光谱遥感图像的获取 4)经济性:5)局限性: 7.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱。 8.电磁波特性:①是横波②在真空中以光速传播③满足 f ·λ=c 、E=h ·f ④具有波粒二象性。 9绝对黑体:对于任何波长的电磁辐射都全部性吸收的物体。 (黑色的烟煤被认为是最接近绝对黑体的自然物质。) 10.黑体辐射三个规律:a 辐射通量密度随波长连续变化, 每条曲线只有一个最大值。b 温度越高辐射通量密度越大, 不同的温度有不同的曲线。c 随温度的升高。辐射最大值 所对应的波长向短波方向移动。 11.斯忒藩-玻耳兹曼定律:M=σ·T ∧4绝对黑体的总辐射出射度与40 )(T d M M σλλλλ==?∞ 黑体的温度的四次方成正比。所以,温度的微小变化就会引起辐射通量密度很大的变化。 12.维恩位移定律:b T =?max λ随着温度的升高,辐射最大值对应的峰值波长向短波方向移动。 13.辐照度I 单位W/m2被辐射的物体表面单位面积的辐射通量

遥感原理期末复习资料(知识点汇总)

遥感的定义: 遥感是指利用飞机、卫星或其他飞行器等运载工具(平台)上安装的某种装置(传感器),探测目标的特征信息(电磁波的反射或发射辐射),经过传输、处理,从中提取感兴趣信息的过程 遥感类型:按平台分为地面遥感、航空遥感、航天遥感、宇航遥感 遥感信息特点: (1)真实性、客观性 (2)探测范围大 (3)资料新颖且能迅速反应动态变化 (4)成图迅速 (5)收集资料方便 遥感系统的组成: 1、目标的信息特性 2、目标信息的传输 3、空间信息的采集 4、地面接收与预处理 5、信息处理 6、信息分析与应用

电磁波:交互变化的电磁场在空间的传播。 (1)电磁波与电磁波谱红外划分 ※紫外线:波长范围为0.01~0.38um,太阳光谱中只有0.3~0.38um波长的光到达地面,对油污染敏感,但探测高度在2000m 以下。 ※可见光:波长范围0.38~0.76um,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。 ※红外线:波长范围为0.76~1000um,根据性质可分为近红外、中红外、远红外和超远红外。 ※微波:波长范围为1mm~1m,穿透性好,不受云雾的影响。红外划分: ※近红外:0.76~3.0um,与可见光相似。 ※中红外:3.0~6.0um,地面常温下的辐射波长,有热感,又

叫热红外。 ※远红外:6.0~15.0um,地面常温下的辐射波长,有热感,又叫热红外。 ※超远红外:15.0~1000um,多被大气吸收,遥感探测器一般无法探测。 偏振:指横波的振动矢量偏于某些方向的现象或振动方向对于传播方向的不对称性。 黑体:在任何温度下,对各种波长的电磁辐射的吸收系数等于1(100%)的物体。 ※黑体辐射:黑体的热辐射称为黑体辐射。 黑体辐射定律:包括普朗克定律,玻尔兹曼定律,维恩位移定律,瑞里—金斯公式(注:基尔霍夫定律是一般物体发射定律。) 发射率概念:地物的辐射出射度(单位面积上发出的辐射总通量)W与同温度下的黑体辐射出射度 W黑的比值。 按照发射率与波长的关系,把地物分为: 黑体或绝对黑体:发射率为1,常数 灰体:发射率小于1,常数 选择性辐射体:反射率小于1,且随波长而变化。 物体的发射辐射—基尔霍夫定律:在一定温度下,地物单位面积上的辐射通量W和吸收率之比,对于任何物体都是一个常数,并等于该温度下同面积黑体辐射通量W 黑。在给定的温度下,物体的发射率=吸收率(同一波段);吸收率越大,发射率也越

遥感导论考试重点

遥感:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。 遥感与遥控遥测的区别:遥感不同于遥测和遥控。遥测是指对被测物体某些运动参数和性质进行远距离测量的技术,分接触测量和非接触测量。遥控是指远距离控制目标物运动状态和过程的技术。 遥感系统包括:被测目标的信息特征、信息的获取、信息的接收、信息的处理、信息的应用 遥感的类型: 按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感 按探测波段分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感 按工作方式分:主动遥感和被动遥感、成像遥感与非成像遥感 按应用领域分:外层空间遥感、大气层遥惑、陆地遥感、海洋遥感等 遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性、局限性 电磁波谱:按照波长或频率、波数、能量的顺序把电磁波排列起来,这就是电磁波谱。 波段划分:长波,中波和短波,超短波,微波,红外波段 电磁辐射:电场和磁场的交互变化产生电磁波,电磁波向空中发射或泄露的现象,叫电磁辐射。 辐射测量内容:辐射能量、辐射通量、辐照度、辐射出射度、辐射亮度 绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。 大气散射有三种情况:瑞利散射、米氏散射、无选择性散射 大气窗口:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口。大气窗口对应的光谱段: 0.3—1.3ym,即紫外、可见光、近红外波段。 1.5-1.8pm和 2.0— 3.5tm,即近、中红外波段。 3.5—5.5_um,即中红外波段。 8-14pm,即远红外波段。 0.8~2.5cm,即微波波段。 地球辐射的分段特性: 可见光与近红外:波长0.3-2.5辐射特性-地表反射太阳辐射为主 中红外:波长2.5-6辐射特性-地表反射太阳辐射和自身的热辐射 远红外:波长>6辐射特性-地表物体自身热辐为主 遥感平台:遥感平台是搭载传感器的工具。 分类:航天平台、航空平台、地面平台 航天比例尺(像片比例尺):即像片上两点之间的距离与地面上相应两点实际距离之比。 扫描成像成像方式:光/机扫描成像、固体自扫描成像、高光谱成像光谱扫描 微波遥感:是指通过微波传感器获取从目标地物发射或反射的微波辐射,经过判读处理来识别地物的技术。 微波遥感特点: 能全天候、全天时工作 对某些地物具有特殊的波谱特征 对冰、雪、森林、土壤等具有一定穿透能力 对海洋遥感具有特殊意义 分辨率较低,但特性明显 主动微波遥感:是指通过向目标地物发射微波并接收其后向散射信号来实现对地观测遥感 方式。 雷达:意为无线电测距和定位。 遥感图像特征:几何特征、物理特征、时间特征 表现参数:空间分辨率、光谱分辨率、辐射分辨率、时间分辨率

遥感导论复习资料

遥感导论复习资料 1、遥感的概念:遥感是应用探测仪器,不与探测目标想接触,从远出把目标的电磁波特征记录下来,通过分析,揭示出物体的特征性质极其变化的综合性探测技术。 2、遥感系统包括:目标物的电磁波特征、信息的获取、信息接收、信息的处理和信息的应用。 3、遥感的类型:(1)按遥感平台分:地面遥感;航空遥感;航天遥感;航宇遥感(2)按传感器的探测波段分:紫外遥感(探测波段在0.05-0.38UM之间);可见光遥感(0.38-0.76);红外遥感(0.76-1000);微波遥感(1MM-10M);多波段遥感;(3)按工作方式分:主动遥感和被动遥感;成像遥感与非成像遥感。 4、遥感的特点:(1)大面积的同步探测;(2)时效性;(3)数据的综合性和可比性;(4)经济性;(5)局限性。 5、辐射测量 辐射通量:单位时间内通过某一面积的辐射能量,单位是W; 辐射通量密度(E):单位时间内通过单位面积的辐射能量,单位:W/M2,S为面积; 辐照度(I):被辐射的物体表面单位面积上的辐射通量,单位是W/M2,S为面积; 辐射出射度(M):辐射源物体表面单位面积上的辐射通量,单位是W/M2,S为面积。 6、斯忒潘-玻尔兹曼定律:绝对黑体的总辐射出射度与黑体温度的四次方成正比。公式:维恩位移定律:黑体辐射光谱中最强辐射的波长与黑体绝对温度成反比。公式: 7、例题:P23 8、大气散射的三种情况:瑞利散射;米氏散射;无选择性散射。 9、大气窗口:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段。大气窗口的光谱段主要有: 0.3-1.3UM,即紫外、可见光、近红外波段。 1.5-1.8UM和 2.0- 3.5UM,即近、中红外波段。 3.5-5.5UM,即中红外波段。 8-14UM,即远红外波段。 0.8-2.5CM,即微波波段。 10、遥感平台根据运载工具的类型,可分为航天平台、航空平台和地面平台;根据航天遥感平台的服务内容,可以分为气象卫星系列、陆地卫星系列和海洋卫星系列。 11、低轨:近极地太阳同步轨道。高轨:指地球同步轨道,轨道高度36000KM左右,绕地球一周需24小时。 12、气象卫星系列:美国NOAA卫星、GMS日本葵花气象卫星、FY中国风云气象卫星。陆地卫星系列:陆地卫星(Landsat):共发射7颗,5和7仍在运转工作,设计寿命6年。轨道是太阳同步的近极地圆形轨道。分为5个波段。主要成像系统有:MSS(多光谱扫描仪)、ETM(增强主题绘图仪)、TM(主题绘图仪)。 斯波特卫星(SPOT):发射5颗,主要成像系统有高分辨率可见光扫描仪(高分辨扫描仪HRV、高分辨几何装置HRG、高分辨立体成像装置HRS)。轨道是太阳同步圆形近极地轨道。 中国资源一号卫星-中巴地球资源卫星(CBERS):高分辨相机CCD、红外多谱段扫描仪IR-MSS、广角成像仪WFI。轨道是太阳同步近极地轨道。 快鸟卫星(Quickbied):多光谱波段1(蓝色):0.45-0.52,分辨率2.44M;波段2(绿色):

相关主题
文本预览
相关文档 最新文档