当前位置:文档之家› PLC编码器技术术语

PLC编码器技术术语

PLC编码器技术术语
PLC编码器技术术语

编码器技术术语

技术术语说明

90°相位差二信号和零位信号 A.B路相位差90°的两信号和零位信号。

UVW信号用来表征相位差120°的3路信号(电角度)关系。

电压输出 NPW型晶体管发射极接地,集电极带负载电阻输出的电路。

集电极开路输出NPW型直接从晶体管的集电极输出的电路。

长线驱动器输出长距离输出用集成电路,信号为正反方向输出,速度快,抗干扰能力强,还可以检测电缆的断线。

长线接收器接收由驱动器所输出信号的专用IC。使用时,请注意:长线驱动器与长线接收器必须匹配。如选取用75113长线驱动器输出,应使用75115线路接收器接收,如不匹配,将影响使用。

互补输出 NPN型和PNP型对管的发射极对接输出电路。这种电路反应速度快,也可以长距离传送。

允许注入电流编码器单路信号最大吸收的电流值。

输出电阻输出电路的内部阻抗。

最小负载阻抗输出电路所允许的最小负载阻抗。

允许轴负载轴所能承受轴向及径向载荷的能力。

准确度输出脉冲数累加得到的回转角与理论回转角之差的二分之一。冠以正负号。

周期误差输出脉冲数周期与理论脉冲数周期之差。

相临周期误差相邻脉冲周期之差。

增量式输出脉冲列或正弦波的周期列的方式。位置是根据累计而得到的。绝对式把机械位移量用二进制码或格雷码作为绝对位置而进行输出的方式。正逻辑符号“1”是对应输出电压“H”的输出逻辑。

负逻辑符号“1”是对应输出电压“L”的输出逻辑。

编码器基础知识大全

编码器 科技名词定义 中文名称: 编码器 英文名称: coder;encoder 定义: 一种按照给定的代码产生信息表达形式的器件。 应用学科: 通信科技(一级学科);通信原理与基本技术(二级学科)以上内容由全国科学技术名词审定委员会审定公布 编码器 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电

刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 作用 设计图纸 利用电磁感应原理将两个平面型绕组之间的相对位移转换成电信号的测量元件,用于长度测量工具。感应同步器(俗称编码器、光栅尺)分为直线式和旋转式两类。前者由定尺和滑尺组成,用于直线位移测量;后者由定子和转子组成,用于角位移测量。1957年美国的R.W.特利普等在美国取得感应同步器的专利,原名是位置测量变压器,感应同步器是它的商品名称,初期用于雷达天线的定位和自动跟踪、导弹的导向等。在机械制造中,感应同步器常用于数字控制机床、加工中心等的定位反馈系统中和坐标测量机、镗床等的测量数字显示系统中。它对环境条件要求较低,能在有少量粉尘、油雾的环境下正常工作。定尺上的连续绕组

的周期为2毫米。滑尺上有两个绕组,其周期与定尺上的相同,但相互错开1/4周期(电相位差90°)。感应同步器的工作方式有鉴相型和鉴幅型的两种。前者是把两个相位差90°、频率和幅值相同的交流电压U1 和U2分别输入滑尺上的两个绕组,按照电磁感应原理,定尺上的绕组会产生感应电势U。如滑尺相对定尺移动,则U的相位相应变化,经放大后与U1和U2比相、细分、计数,即可得出滑尺的位移量。在鉴幅型中,输入滑尺绕组的是频率、相位相同而幅值不同的交流电压,根据输入和输出电压的幅值变化,也可得出滑尺的位移量。由感应同步器和放大、整形、比相、细分、计数、显示等电子部分组成的系统称为感应同步器测量系统。它的测长精确度可达3微米/1000毫米,测角精度可达1″/360°。 分类 按照工作原理编码器可分为增量式和绝对式两类。 增量式 增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。 绝对式

光电编码器详解

光电编码器详解标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

光电编码器 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。绝对脉冲编码器:APC增量脉冲编码 器:SPC? 1.光电编码器原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90°的脉冲信号。 增量式编码器 增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。 增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作

用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编码器输出A、B两相互差90度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。同时还有用作参考零位的Z相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。标志脉冲通常用来指示机械位置或对积累量清零。 增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成。码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期;检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线。它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差电度角。当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差电度角的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以得到被测轴的转角或速度信息。 增量式光电编码器的优点是:原理构造简单、易于实现;机械平均寿命长,可达到几万小时以上;分辨率高;抗干扰能力较强,信号传输距离较长,可靠性较高。其缺点是它无法直接读出转动轴的绝对位置信息。 1.1.2基本技术规格 在增量式光电编码器的使用过程中,对于其技术规格通常会提出不同的要求,其中最关键的就是它的分辨率、精度、输出信号的稳定性、响应频率、信号输出形式。 (1)分辨率

光电编码器分类及作用

光电编码器分类及作用 光电编码器是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器,主要由光源、码盘、光学系统及电路4部分组成, 光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器. 一、增量式编码器 增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。同时还有用作参考零位的Z 相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志

信号。标志脉冲通常用来指示机械位置或对积累量清零。 二、绝对式编码器 绝对式编码器每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。其位置是由输出代码的读数确定的。当电源断开时,绝对型编码器并不与实际的位置分离。重新上电时,位置读数仍是当前的。绝对编码器能够直接进行数字量大的输出,在码盘上会有若干的码道,码道数就是二进制位数。在每条码道上都会由透光与不透光的扇形区域组成,通过采用光电传感器对信号进行采集。在码盘两侧分别设置有光源和光敏元件,这样光敏元件则能够根据是否接受到光信号进行电平的转换,输出二进制数。并且在不同位置输出不同的数字码。从而可以检测绝对位置。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数。优点:可以直接读出角度坐标的绝对值,没有累积误差,电源切除后位置信息不会丢失。编码器的抗干扰特性、数据的可靠性大大提高了。 三、混合式绝对值编码器 混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 四、旋转变压器 旋转变压器简称旋变,是一种可变耦合原理工作的交流控制电机。它的副方(次级)输出电压与转子转角呈确定的函数关系。由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电

磁旋转编码器常见问题

磁旋转编码器常见问题 常见问题:磁旋转编码器I C 一般性问题 Q1:芯片如果不能按预期工作,我需要进行哪些测试才能找出原因? Q2:可以在不编程的情况下使用旋转编码器芯片吗? Q3:如何知道上电之后角度数据何时有效? Q4:启动时间是否会随温度而改变? Q5:不同类型的输出可用于哪些应用? Q6:我可以利用数字输出驱动大于4m A的电流,例如驱动一个10m A的L E D吗?Q7:为什么已存在下拉电阻还必须将P R O G连接到V S S? Q8:对准模式下限制数值32是什么意思? Q9:可以得到的最佳精度是多少? Q10:可以得到优于0.1度的精度吗? Q11地利微电子可以校准芯片以实现最佳的精度吗? Q12:数据资料中显示的误差曲线对于所有产品都是一样的吗? Q13:编码器的重复性是指什么? Q14:重复性怎样随着温度改变? Q15:C S n引脚可以永久地连接到V S S吗? Q16:角度数据采样与C S n是同步的吗? Q17:奥地利微电子可以提供预先编程的定制化编码器吗? Q18:编码器可承受的振动水平怎样? Q19:怎样降低A S5040/43/45的功耗? 磁铁相关问题 Q20:推荐的磁铁水平偏离容差是多少? Q21:如果不能将磁铁对准在推荐的容差内,会发生什么呢? Q22:我可以将编码器I C安装在环形磁铁的周围吗? Q23:怎样才能扩展磁铁的垂直间距? Q24:如果在―绿色‖(适当)范围之外使用传感器会有什么后果? Q25:哪些类型的磁铁可以和A S5035/40/43/45配合使用? Q26:在旋转轴内安装磁铁的时候需要注意什么? Q27:为什么在移除磁铁的时候不能触发C O F和L I N报警? Q28:为什么即使移除磁铁时我仍可以得到随机的角度数据? Q29:在什么磁场范围可以得到M a g I n c/-D e c、L I N和C O F报警信号? Q30:如何分辨磁铁场强过弱(或丢失)与磁铁场强过强的情况? Q31:要获得零位读数时,磁铁要处于哪一个缺省位置? Q32:磁编码器是如何做到对于外部磁场不敏感的? A S5035,A S5040,A S5045 磁旋转编码器产品系列常见问题 A S50000磁旋转编码器产品系列 常见问题 Q33:是否需要屏蔽传感器以避免外部磁场的影响? Q34:B L D C电动机的强磁场转子磁铁会对编码器造成什么影响? Q35:我可以将其它材料放置到磁铁和I C之间吗?

倍加福编码器基础讲解

P+F Absolute Rotary Encoder通讯参数设置 型号

1、地址选择和终端电阻1.1站地址 1.2 终端电阻 2、信号和电源线的连接

3、安装GSD文件 GSD文件为电子设备数据库文件,是可读的ASCII码文件。不同厂家的PROFIBUS产品集成在一起,生产厂家必须以GSD文件方式提供这些产品的功能参数,例如I/O点数、诊断信息、传输速率、时间监视等。在Step 7 的SIMATIC 管理器中打开硬件组态工具HW Config ,安装GSD后,在右边的硬件目录PROFIBUS DP→Additional Field Devices→Encoders→ENCODER将会出现刚刚安装的P+F Rotary Encoder。其数据传输原理如图所示。 4、组态通讯参数

在Step 7硬件配置窗口中,双击P+F Rotary Encoder 图标,打开编码器(DP Slave)的参数设置窗口,如图所示。结合工程实际,在此窗口中进行参数设置: a、代码顺序(Code Sequence):计数方向, CW(顺时针旋转,代码增加),CCW (逆时针旋转,代码增加); b、标定功能控制(Scaling function control):只有设置成Enable ,下面 c、d和e的设置才会生效; c、单圈分辨率(Measuring units per revolution):8192; d、测量范围高位(Total measuring range(units)hi): 512; e、测量范围低位(Total measuring range(units)lo): 0; f、其它参数采用默认值。 注:1、由c可以计算出编码器每圈产生(=8192)个二进制码,即单圈精度为13位。2、由d和e可以计算出编码器最大可以转(=512×65536+0)圈,即多圈精度为12位。 5、预置值 6、LED状态灯指示信息

绝对式光电编码器基本构造及特点

绝对式光电编码器基本构造及特点 用增量式光电编码器有可能由于外界的干扰产生计数错误,并且在停电或故障停车后无 法找到事故前执行部件的正确位置。采用绝对式光电编码器可以避免上述缺点。绝对式光电编码器的基本原理及组成部件与增量式光电编码器基本相同,也是由光源、码盘、检测光栅、光电检测器件和转换电路组成。与增量式光电编码器不同的是,绝对式光电编码器用不同的数码来分别指示每个不同的增量位置,它是一种直接输出数字量的传感器。在它的圆形码盘上沿径向有若干同心码道,每条上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有N 位 二进制分辨率的编码器,其码盘必须有N 条码道。绝对式光电编码器原理如图1-8 所示。 绝对式光电编码器是利用自然二进制、循环二进制(格雷码)、二-十进制等方式进行光 电转换的。绝对式光电编码器与增量式光电编码器不同之处在于圆盘上透光、不透光的线条图形,绝对光电编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。它的特点是:可以直接读出角度坐标的绝对值;没有累积误差;电源切除后位置信息不会丢失;编码器的精度取决于位数;最高运转速度比增量式光电编码器高。 图1-8 绝对式光电编码器原理 1.3.2 码制与码盘 绝对式光电编码器的码盘按照其所用的码制可以分为:二进制码、循环码(格雷码)、 十进制码、六十进制码(度、分、秒进制)码盘等。四位二元码盘(二进制、格雷码)如图1-9 所示。图中黑、白色分别表示透光、不透光区域。

数控铣床的工作原理【详解】

数控铣床的工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 数控机床是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作数控折弯机并加工零件。 数控机床的机床本体与传统机床相似,由主轴传动装置、进给传动装置、床身、工作台以及辅助运动装置、液压气动系统、润滑系统、冷却装置等组成。但数控机床在整体布局、外观造型、传动系统、刀具系统的结构以及操作机构等方面都已发生了很大的变化,这种变化的目的是为了满足数控机床的要求和充分发挥数控机床的特点。 ⑵、CNC单元 CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。 ⑶输入/输出设备 输入装置将各种加工信息传递于计算机的外部设备。在数控机床产生初期,输入装置为穿孔纸带,现已淘汰,后发展成盒式磁带,再发展成键盘、磁盘等便携式硬件,极大方便了信息输入工作,现通用DNC网络通讯串行通信的方式输入。 输出指输出内部工作参数(含机床正常、理想工作状态下的原始参数,故障诊断参数等),一般在机床刚工作状态需输出这些参数作记录保存,待工作一段时间后,再将输出与原始资料作比较、对照,可帮助判断机床工作是否维持正常。

编码器输出形式.

1 编码器基础 1.1光电编码器 编码器是传感器的一种,主要用来检测机械运动的速度、位置、角度、距离和计数等,许多马达控制均需配备编码器以供马达控制器作为换相、速度及位置的检出等,应用范围相当广泛。按照不同的分类方法,编码器可以分为以下几种类型: 根据检测原理,可分为光学式、磁电式、感应式和电容式。 根据输出信号形式,可以分为模拟量编码器、数字量编码器。 根据编码器方式,分为增量式编码器、绝对式编码器和混合式编码器。 光电编码器是集光、机、电技术于一体的数字化传感器,主要利用光栅衍射的原理来实现位移——数字变换,通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。典型的光电编码器由码盘、检测光栅、光电转换电路(包括光源、光敏器件、信号转换电路)、机械部件等组成。光电编码器具有结构简单、精度高、寿命长等优点,广泛应用于精密定位、速度、长度、加速度、振动等方面。 这里我们主要介绍SIMATIC S7系列高速计数产品普遍支持的增量式编码器和绝对式编码器。 1.2增量式编码器 增量式编码器提供了一种对连续位移量离散化、增量化以及位移变化(速度)的传感方法。增量式编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,它能够产生与位移增量等值的脉冲信号。增量式编码器测量的是相对于某个基准点的相对位置增量,而不能够直接检测出绝对位置信息。 如图1-1所示,增量式编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成。在码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期。检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线,它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差90°。当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差90°的近似于正弦波的电信号,电信号经过转换电路的信号处理,就可以得到被测轴的转角或速度信息。

光电编码器详解

光电编码器 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。绝对脉冲编码 器:APC 增量脉冲编码器:SPC 1.光电编码器原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90°的脉冲信号。 1.1 增量式编码器 增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。 增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。一般来说,增量式光电编码器输出A、B两相互差 90度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。同时还有用作参考零位的Z相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。标志脉冲通常用来指示机械位置或对积累量清零。 增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成。码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期;检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线。它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差电度角。当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差电度角的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以得到被测轴的转角或速度信息。 增量式光电编码器的优点是:原理构造简单、易于实现;机械平均寿命长,可达到几万小时以上;分辨率高;抗干

编码器原理及常见知识问答

编码器原理及常见知识问答 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 编码器工作原理: 利用电磁感应原理将两个平面型绕组之间的相对位移转换成电信号的测量元件,用于长度测量工具。感应同步器(俗称编码器、光栅尺)分为直线式和旋转式两类。前者由定尺和滑尺组成,用于直线位移测量;后者由定子和转子组成,用于角位移测量。 1957年美国的R.W.特利普等在美国取得感应同步器的专利,原名是位置测量变压器,感应同步器是它的商品名称,初期用于雷达天线的定位和自动跟踪、导弹的导向等。在机械制造中,感应同步器常用于数字控制机床、加工中心等的定位反馈系统中和坐标测量机、镗床等的测量数字显示系统中。它对环境条件要求较低,能在有少量粉尘、油雾的环境下正常工作。定尺上的连续绕组的周期为2毫米。滑尺上有两个绕组,其周期与定尺上的相同,但相互错开1/4周期(电相位差90°)。 感应同步器的工作方式有鉴相型和鉴幅型的两种。前者是把两个相位差90°、频率和幅值相同的交流电压U1和U2分别输入滑尺上的两个绕组,按照电磁感应原理,定尺上的绕组会产生感应电势U。如滑尺相对定尺移动,则U的相位相应变化,经放大后与U1和U2比相、细分、计数,即可得出滑尺的位移量。在鉴幅型中,输入滑尺绕组的是频率、相位相同而幅值不同的交流电压,根据输入和输出电压的幅值变化,也可得出滑尺的位移量。由感应同步器和放大、整形、比相、细分、计数、显示等电子部分组成的系统称为感应同步器测量系统。它的测长精确度可达3微米/1000毫米,测角精度可达1″/360°。

国内常用国外的编码器种类及品牌

国内常用编码器种类及品牌 编码器(xx高端): 海德汉Heidenhain(德国),编码器第一品牌。 倍加福P+F(德国),各类常用编码器,占有一定中国市场。 霍勒Hohner (德国,西班牙),编码器第二大生产厂商。RESATRON(德国),脉冲可达1000PPR,多圈至29BIT。 亨士乐Hengstler (德国),钢铁行业,化工行业等。 霍普纳Hubner-berlin(德国),中高端级应用,价格较高。 霍普纳Hubner-giessen(德国),重工行业,适用恶劣环境。 施克STEGMANN(德国),主要用于机床、电机回馈系统等方面。xxMEYER(xx),主要应用: 造纸机械。 库柏KUBLER(德国),品种齐全,应用广泛。 希科SIKO (德国),磁性设计,耐潮湿,耐油污。 xxT+R (xx)。 LENORD+LINDE(xx)。 xxLENORD+BAUER(xx)。 FRABA(xx)。 ELTRA(xx)。 图尔克TURCK(xx)。 莱卡LIKA(意大利),获得ESA认证,适用航空、烟机等。

xxxxELCIS(xx)。 SCANCON (丹麦),微型高精度编码器及防爆编码器。 堡盟Baumer (瑞士),高精度,高安全性,所占空间少。 莱纳林德LEINE LINDE(瑞典)。 丹纳赫Danaher (美国),供应ACURO系列编码器。 xxxxBEI IDEACOD(xx)。 日韩品牌(中低端): 欧姆龙OMRON(日本)以小型编码器居多,价格低廉。 内密控NEMICON(日本)小型编码器,产品稳定。 多摩川TAMAGAVA(日本)伺服电机,电梯应用较多 光洋KOYO(日本)同上,主要为TRD系列。 奥托尼克斯Autonics (韩国)市场以E40系列较多。 MTL(xx)以位置测量见长。 选用的是增量型还是绝对型编码器,绝对型有断电记忆功能,开机不用找零点,这是原理决定的,增量型不行,所以,绝对型编码器一般是增量型价格的好几倍,如果是增量型的选型,脉冲多少,电压多少,输出电路什么(跟后继电路要匹配),出线方式是什么,电缆还是插头,要几米,安装方式如何,(出轴还是空心或者半空),振动性如何,IP防护等级如何(视环境和应用而定)。主要分电气和机械2部分吧,你看着选就行了,一般来说,体积大的编码器用在重工业(抗冲击),钢铁,水利,石油化工,冶金等品牌比如P+F,SICK-STEGMAN,HUBNER-GIESSEN等,体积小的用在轻工业,纺织印刷包装等,品牌比如OMRON,NEMICON,AUTONICS,微型的不算在内哈,总之科技含量较高的一般都是欧洲(德国的多)和美国的编码器,主要是因为编码器是测量仪器,主要看的是精度,这方面德国海德汉Heidenhain公司是这方面的专家,

旋转编码器详解

增量式编码器的A.B.Z 编码器A、B、Z相及其关系

TTL编码器A相,B相信号,Z相信号,U相信号,V相信号,W相信号,分别有什么关系? 对于这个问题的回答我们从以下几个方面说明: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三 相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。详细来说,就是——一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。 带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的 时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ 之间可以说没有直接关系。 /#############################################################

绝对式光电编码器

绝对式光电编码器 (一)绝对式光电编码器的结构与原理 绝对式光电编码器的核心部件是编码祝.纳码盘内透叫区及不透明区组成。这些:透明区 反不透明K按定编码构成,编码盘L码道的条数就是数码的位数。阁13 [u(a)所不为—— 个4垃自然::进制编码册的编码盘。钽电容长涂黑部分力个透明R,输:U为“117,则主白部分为透叨 K。输i11为“o”.它毛4条码道,对应诲一条码道有一个光电冗件木接收透过编码双的光线。当 编仍痞;与被测物转抽赵转动时.片采用n位编码盘.则能分辨的角度为: o——36()。/2” 自然二进制码虽然简单.但存在着使用上的问题.这是巾于团束转换点处位置不分叫而引 起的粗大娱差。例如,在出7转换到8的位量时光束要通过编码盘?)111利1000的交界处(或 称汉越区)。山1编悦捻的制造工艺和光敏元件女装的误差.有可能使汝数头的最内圈(而位) 定价值世上的光电几件比其余的超前或落后一点.这构导致可能出现两种极洲的读数值,即 1111和oooo,从而引起读数的粗大误差.这种误差是绝刘不能允许的。

为了避免这种误差.uJ采用格雷码(G,3y code)图案的编码投,表13 3结出丁格 箭码和 自然::进制码的比较。山此表uJ以看出,格雷码具有代码从任何值转换到相邻值时字节各位 数户仅有一位发生状态变化的特点;闹自然二进制码则不同,代码经常有2—3位甚至4位数 值间N史化的情况。希迪电子这样,采用格雷码的方法即使发生前述的错移.由于它在迎位时相邻界面 团案的转换仅仅发小一个最小量化中仿(最小分辨率)的此变,因而不会产生粗大误差。这种 编码力法称作单位距离性码,是常采用的方菇。 绝对式光电编码器刘府每一条码道有——个光电元件,当码道处于不向角度时,经光电转换 的输出就呈现山不同的数码、如田13—10(b)所不。它的优点是没有触点磨损,因而允许转速 高.员外届缝隙宽度LJJ做得更小,所以精度也很高,其缺点是结构复杂、价格高、光源寿命短。 国内已有14他编码器的定型产品。

编码器的选型及技术解答

编码器的选型及技术解答 一、问:增量旋转编码器选型有哪些注意事项? 应注意三方面的参数: 1.机械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 二、问:请教如何使用增量编码器? 1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B 脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装臵中设立计数栈。 增量型编码器与绝对型编码器的区分:编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器(旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料;玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级。塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率:编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出:信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接:编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。如单相联接,用于单方向计数,单方向测速。A.B两相联接,用于正反向计数、判断正反向和测速。A、B、Z三相联接,用于带参考位修正的位臵测量。A、A-,B、B-,Z、Z-连接,

伺服电机编码器常用概念

编码器常用概念 线:编码器光电码盘的一周刻线,增量式码盘刻线可以10线、100线、2500线的刻线,只要你码盘能刻得下,可任意选数;绝对值码盘其码盘刻线因格雷码的编排方式,决定其基本是2的幂次方线,如256线、1024线、8192线等。 位:2的n次方,由于绝对值码盘常常是2的幂次方线输出,所以,大部分的绝对值码盘是以“位”来表达,但绝对值码盘也有特别的格雷余码输出的,如360线、720线、3600线等。增量值编码器也有用位来表示的,如15位、17位,其是通过内部细分,将计算的线数倍增后,一般大于10000线了,就用“位”来表达。 分辨率:编码器可以分辨的角度,对于一般计算,以360度/刻线数计算,目前大部分就直接用多少线来表达了。但这样就有一些概念的混淆,如增量值编码器,如用上A/B两相的四倍频,2500线的,分辨率实际可以是360/10000的,如果内部细分计算的“线”可以更多,达到15位、17位的,所以,常常的增量编码器用“线”来表达的,代表还没有倍频细分,用“位”来表达的,是已经细分过的了。分辨率:又称位数、脉冲数、几线制(绝对型编码器中会有此称呼),对于增量型编码器而言就是轴旋转一圈编码器输出的脉冲个数;对于绝对型编码器来说,则相当于把一圈360°等分成多少份,例如分辨率是256P/R,则等于把一圈360°等分成了256,每旋转1.4°左右输出一个码值。分辨率的单位是P/R。 增量式:码盘内刻线是两道:A/B,Z,通过数线累加(增量)计算旋转角度,有的增加了U\V\W,将编码器通过120度的分割,分成三个区来判断位置,称为混合型编码器。有的通过内部细分电路,提高分辨“线”,并用内部电池记忆及用“位”来表达,常常混称为“绝对值”,实际应该是“伪绝对”。 绝对式:码盘内刻线是n道,以2,4,8,16。。。编排组合,读数是以“0”“1”编码方式光盘直接读取,而非累加,故不受停电、干扰影响。至于增量,绝对哪个分辨率及精度更高,如果是实际的码盘刻线,绝对值码盘分辨“数”可以是增量码盘的一倍,如果是倍频技术,那增量值码盘分辨"数”又可以大于绝对值,但注意,我用的是“分辨数”,不代表精度,因为细分倍频是电气模拟技术,并不改善精度,精度是由码盘刻线、轴的机械安装、电气的响应综合因数决定的。综合来看,分辨率,是增量的可以做的比绝对的高,而精度,就是绝对值的高了,因为它是不受停电、干扰、速度、电气响应的影响的,尤其是高精度又要高速的情况下,增量细分是无法满足要求的。 欧洲市场伺服用绝对值多圈:每圈分辨率:11位是2048;12位4096;13位(即2的13次方)是8192;14位是16384;15位是32768;16位(即2的16次方)是65536;17位131072;18位262144;19位524288;20位1048576;.....25位33554432(德国海德汉的单圈最高可以到25位,国产的单圈16位)。连续测量圈数:大多数12位4096,少数14位16384,总位数25位--37位。(德国海德汉目前可以提供的分辨率+圈数最高可以到37位,;国产的28位GEMPLE) 输出信号:SSI+sin/cos,1MHz,格雷码 Biss,2MHz,纯二进制码 Hipeface+sin/cos,2MHz,纯二进制码(含校验)

After Effects操作常见问题集(二)

After Effects操作常见问题集(二) 1 MPG格式都无法导入 视频基本上全是MPG格式的,总是还是转成AVI再导入。 另外,什么终极解码我也装了,QuickTime也装了,怎么还是出现不支持的格式。 新装的AECS4,难道这个版本有问题? 把MPG文件后缀名改为AVI即可, 2 关于AE启动时出现After Effects error:can't get Unicode file 问题解决办法! 出现情况状态 现在以Adobe After Effects 7.0为例,在网上发现有不少人安装完Adobe After Effe cts 7.0后,在启动Adobe After Effects 7.0时或者新建文字报出如下一系列错误:er ror1:After Effects error:can't get Unicode file (80::4) error2:After Effects warning:Unknown BIB Error.invalid encoding BRV,0 (80::4) error3:After Effects error:failed to parse,transmap file. 这是怎么回事,原因和解决方法如下: 原因:你的是绿色版本的不需要安装所以你坑定没有公共文件夹但是以下方法应该可以解决你的问题导致这样的错误是因为Adobe公共文件夹里缺少Fonts和TypeSpt这两个文件夹,(位于C:Program FilesCommon FilesAdobe下),为什么这两个文件夹在安装Adobe After Effects 7.0时没有被安装?原因是在安装Adobe After Effects 7.0前,您的系统里肯定还安装了其它的Adobe产品(比如Adobe Photoshop CS2 V 9.0),并且这些产品都比Adobe After Effects 7.0的版本高(比如Adobe Photosho p CS2 V9.0版本为9.0,而Adobe After Effects只是7.0),问题的关键在于这些A dobe产品在安装时都安装高版本的Adobe公共文件,如果Adobe After Effects 7.0的安装程序启动时检测到已经安装了高版本的Adobe公共文件后,就不会再对Adobe公共文件夹下的内容做出任何更改,也就造成了Fonts和TypeSpt这两个文件夹没有被安装到Adobe公共文件夹下。 解决方法1: 打开Adobe相关产品的安装光盘(比如您安装了Adobe Photoshop CS2 V9.0,可以把Adobe Photoshop CS2 V9.0的安装光盘打开),在光盘根目录下有个commonfil esinstaller文件夹,双击进入,看到里面有个名为Adobe Common File Installer.msi 的文件,(注:这个文件能够卸载Adobe公共文件夹里的内容),双击它运行,选择界面里的“卸载”选项。卸载完后,再安装Adobe After Effects 7.0,安装完后,看看C:Pro gram FilesCommon FilesAdobe下是否存在了Fonts和TypeSpt这两个文件夹,如果存在,则启动Adobe After Effects 7.0时应该不会再提示错误信息了,这时,您也可以启动Adobe After Effects 7.0试试,确定错误信息不会出现后,做最后一步工作,重新运行一次刚才用来卸载Adobe公共文件夹的那个Adobe Common File Installer.msi,这次选择界面里的“安装”选项,把Adobe公共文件夹里的内容重新升级到高版本,以免A dobe Photoshop CS2 V9.0使用低版本的Adobe公共文件。 解决方法2: 下载地址https://www.doczj.com/doc/9f16359758.html,/TypeSpt.rar 将解压后的TypeSpt文件夹拷贝到C:Program FilesCommon FilesAdobe里面,再启动下AE 如果没有这个文件夹就自己按照路径新建然后在拷贝9200的不提错了很可能他的系统里面安装有其他的adobe的软件有公共文件夹很多网友在打开After Effects模板

常用旋转编码器型号规格

ROTARY ABSOLUTE ENCODERS

500P/R 4.3~A 相,A 相B 相Z 相NPN 、PNP 开路输出,电压输出A 6 C 2 - C WZ 6C A:绝对式编码器 C:增量式编码器S:单相输出(单“”相) W:多相输出 (双相“A 、B ”相) A Z:带复位相输出(零位) 1:DC5V 2:DC12V 3:DC5~12V B: PNP 开路输出PNP C: NPN 开路输出 E: 电压输出 G: 互补输出 X: 线性驱动输出 外 径 W:20mm A:25mm B:40mm C: H ΦΦΦ50Φ66设计号:中空轴编码器 Φmm D:mm 4:DC24V 5:DC12~24V 6:DC4.5~36V 微型增量 编 码 器Small Rotary Encoders Incremental

E6C2-C E6C3-C E6C3-C H 4.336VDC A 相,A 相B 相,相Z 相,A 相B 相Z 相E6C2-C H 4.3~36VDC 5VDC 10 2500P/R 、PNP 开路输出,电压输出、互补输出、线性驱动输出A 相,A 相B 相,A 相,A 相B 相Z 相PNP 开路输出,电压输出、互补输出、线性驱动输出10 3600P/R 10~ 2500P/R 10~ 5000P/R

10~ 3000P/R 4.3~,5VDC 10~ 5000P/R A 相,A 相B 相,相Z 相,A 相B 相Z 相E6G1-C E6G2-C E6G3-C TRD50-J-10~ 5000P/R E6G2-C E6G3-C E6G5-C E6G6-C 4.3~36VDC 5VDC 10~ 3000P/R NPN 、PNP 开路输出,电压输出、互补输出、线性驱动输出A 相,A 相B 相,A 相B 相相,A 相B 相Z 相通用增量 编 码 器Common Incremental Rotery Encoders

光电编码器的工作原理

1.光电编码器的工作原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90o的两路脉冲信号。 根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1增量式编码器 增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2绝对式编码器 绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。目前国内已有16位的绝对编码器产品。 绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。编码的设计可采用二进制码、循环码、二进制补码等。它的特点是: 1.2.1可以直接读出角度坐标的绝对值; 1.2.2没有累积误差; 1.2.3电源切除后位置信息不会丢失。但是分辨率是由二进制的位数来决定的,

相关主题
文本预览
相关文档 最新文档