当前位置:文档之家› 胆碱能受体在炎症的表达

胆碱能受体在炎症的表达

胆碱能受体在炎症的表达
胆碱能受体在炎症的表达

subcutaneous inflammation [11], postoperative ileus [12], pancreatitis [13], allergic lung inflammation [14,15], and acute lung injury [16]. The agonist of nAChRs nicotine has been used in clinical trials, but its clinical potential is limited by its collateral toxicity [17].Appreciations of an important role of α7 nAChR in regulation of the immune inflammation urged a search for selective nicotinic agonists that avoid the undesired side effects of nicotine [2]. Further elucidation of the nAChR-mediated regulation of inflammation should help develop novel treatments allowing to regulate specific types of immune reactions by selectively activating or blocking particular nAChR subtypes expressed in monocytes/macrophages.Various immune cells possess diverse repertoires of nAChRs and, therefore, respond differently to the nicotinic agonists that exhibit varying affinities to distinct nAChR subtypes.The pharmacologic subtype of the ACh-gated ion channel is determined by a specific combination of the nAChR subunits forming the channel. The “muscle”-type nAChRs can be comprised by α1, β1, γ, δ, and ε subunits, and the “neuronal”-type nAChRs—by α2–α10 and β2–β4 subunits [18–21]. The α7, and α9 subunits can form homomeric nAChR channels sensitive to α-bungarotoxin (αBtx ). The heteromeric channels can be composed of α2, α3, α4,α5, α6, β2, β3 and β4 subunits, e.g., α3(β2/β4)±α5, and α9 can also form a heteromeric channel with α10 [21]. The signal transduction pathways downstream of different nAChRs may be activated by both ionic events, such as Ca 2+ influx, and changes of the stoichiometry of a multiprotein complex formed by the nAChR subunit(s) [22,23]. Therefore, a net biologic effect of ACh in a particular type of immune cell depends on the subunit composition of the major nAChR subtypes expressed by the cell at a given stage of its development and activation.The presence of nAChRs in human monocyte/macrophages was suggested by the inhibitory effect of αBtx on monocyte activation [24] and nicotine binding to the human monocytic THP-1cell line [25]. By now, it has been documented that human, murine and monkey macrophages express classic nAChR subunits [4,26,27]. Expression of α1, α7, and α10 mRNAs has been detected in human macrophages [4], whereas both bone marrow-derived dendritic cells and

macrophages from C57BL/6J mice possess mRNAs encoding the nAChR subunits α2, α5, α6,

α7, α10 and β2 [28]. Macrophages also express the muscarinic class of ACh receptors [29,

30] that can modify the cell response to auto/paracrine ACh.

The human monoblastoid tumor cell line U937 [31] that can be differentiated into macrophage-

like cells by treatment with phorbol-12-myristate 13-acetate (PMA ) exhibits ACh synthesizing

activity of choline acetyltransferase and contains approximately 0.02 pmol/106 of ACh [32].

Although, to the best of our knowledge, the subunit composition of nAChRs expressed in U937

cells have not been established, it has been reported that these cells respond to nicotine [33,

34]. Therefore, U937 cells provide a useful model for studying basic mechanisms of

macrophage regulation by auto/paracrine ACh through nAChRs.

In this study, we characterized the profile of nAChR subunits expressed in the macrophage-

like differentiated U937 cells and demonstrated how the receptor repertoire changes upon cell

activation with lipopolysaccharide (LPS ). We also established relative contributions of α7-

and non-α7 nAChR subtypes expressed in these cells to regulation of the pro- and anti-

inflammatory cytokine production. The obtained results indicated that the macrophage nAChR

subtypes are differentially coupled to regulation of production of distinct cytokines by auto/

paracrine ACh. These findings offer a new insight on how nicotinic agonists control

inflammation, thus laying a groundwork for the development of novel immunomodulatory

therapies based on the nAChR subtype selectivity of nicotinic agonists.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

MATERIALS AND METHODS

Cells and Reagents

The human monoblastoid tumor cell line U937 was purchased from ATCC (Catalog #CRL-2367; Manassas, VA) and grown in the ATCC complete growth medium (Catalog #30-2001) at 37°C in a humid, 5% CO 2 incubator. To differentiate into macrophages, the U937cells were treated with 200 nM PMA (Sigma-Aldrich Corporation, St Louis, MO) and allowed to adhere to tissue culture plate for 3 days [35]. The nicotinic ligands epibatidine (Epi ),mecamylamine (Mec ), methyllycaconitine (MLA ) and αBtx, the inhibitor of ACh synthesis hemicholinium-3 (HC-3), and LPS were from Sigma-Aldrich Corporation. AR-R17779 was a gift from AstraZeneca Pharmaceuticals (Wilmington, DE). Particular doses of all drugs were selected based on the pilot dose-response experiments.Characterization of nAChRs Expressed in U937 Cells The profile of nAChR subunits expressed in differentiated, macrophage-like U937 cells was determined in a standard reverse-transcription PCR (RT-PCR ) assay using the published primer sets for human α1-α7, α9, α10, β1-β4, γ, δ and ε nAChR subunits (Operon, Alameda,CA) and the amplification conditions shown in Table 1. All primers were tested using normal human muscle and brain PCR ready first strand cDNAs purchased from BioChain Institute Inc. (Hayward, CA) [36]. To control for contamination of DNase-treated samples with residual genomic DNA, the reverse transcription step was omitted.Real-time Quantitative Polymerases Chain Reaction (qPCR) Experiments Total RNA was extracted from U937 cells at the end of exposure experiments with the RNeasy Mini Kit (Qiagen, Valencia, CA) and used in the qPCR assay detailed elsewhere [37]. All qPCR primers were designed with the assistance of the Primer Express software version 2.0computer program (Applied Biosystems, Foster City, CA) and the service Assays-on-Demand

provided by Applied Biosystems. The qPCR reactions were performed using an ABI Prism

7500 Sequence Detection System (Applied Biosystems) and the TaqMan Universal Master

Mix reagent (Applied Biosystems) in accordance to the manufacturer’s protocol, as described

by us in detail elsewhere [38]. To correct for minor variations in mRNA extraction and reverse

transcription, the gene expression values were normalized using the housekeeping gene

glyceraldehyde-3-phosphate dehydrogenase. The data were analyzed with a sequence detector

software (Applied Biosystems) and expressed as mean ± standard deviation of mRNA in

question relative to that of control.

In-cell Western (ICW) Assay

The ICW assay was performed as described by us in detail elsewhere [39], using the reagents

and equipment from LI-COR Biotechnology (Lincoln, NE). After incubation of 3×104 U937

cells/well of a 96-well plate in the growth medium with or without test agents for 16 h, the

experimental and control U937 cells were fixed in situ , washed, permeabilized with Triton

solution, incubated with the LI-COR Odyssey Blocking Buffer for 1.5 h and then treated

overnight at 4°C with a primary mouse antibody to human IL1-β, IL-6, IL-10 or IL-18, TNF-

α (R&D Systems, Minneapolis, MN). After that, the cells were washed, and stained for 1 h at

room temperature with a secondary LI-COR IRDye 800CW anti-mouse antibody diluted 1:800.

Sapphire700 (1:1000) was used to normalize for cell number/well. The protein expression was

then quantitated using the LI-COR Odyssey Imaging System.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Statistical Analysis

All experiments were performed in duplicates or triplicates, and the results were expressed as

mean ± standard deviation. Statistical significance was determined using Student’s t -test.

Differences were deemed significant if the calculated p value was <0.05.RESULTS The nAChR Subunits Expressed in U937 Cells The RT-PCR experiments using previously characterized human nAChR subunit gene-specific primers (Table 1) and PMA-differentiated U937 cells revealed the expression of α1, α4, α5,α6, α7, α9, α10, β1, β2, β3 and β4 subunits (Fig. 1A). The products were not amplified from putative contaminating DNA. These results indicated that the macrophage-like U937 cells express both the muscle (i.e., α1 and β1 containing)- and the neuronal (i.e., α4-, α6-, α9- and α7-made) subtypes of nAChRs. The homomeric ACh-gated ion channels in these cells can be comprised by several α7, and α9 subunits, and the heteromeric channels—by α9 plus α10subunits as well as a combination of several other nAChR subunits found in these cells.Activation of Differentiated U937 Cells Alters the Profile of their nAChR Subunits Using qPCR, we found that stimulation of PMA-pretreated U937 cells for 16 h with 200 ng/ml LPS altered expression of the genes encoding different nAChR subunits, suggesting reciprocal changes in the structure and function of the channels formed. Compared to unstimulated U937 cells, the relative amount of mRNA encoding α1, α4, α5, α7, α10 and β1subunits increased, that encoding α6 and β2 subunits decreased, and the relative quantity of α9, β3 and β4 mRNAs did not change significantly (Fig. 1B). Notably, the major increase was observed for α1 and β1 mRNAs (approximately 15-fold), as well as α5 and α7 mRNAs (approximately 7-fold). Because the initial levels of α1, β1 and α7 subunits appeared to be rather low (Fig. 1A), both the muscle-type and the α7-containing nAChR subtypes seem to be

the most sensitive to induction by LPS. An increase of α5 and α10 subunits indicates that the

subunit composition of constitutively expressed nAChRs becomes enriched with the non-ACh-

binding subunits forming α4β3α5 and α9α10 nAChR channels. Activation of U937 cells

appeared to be associated with a decrease of channels comprised by α6 and β2 subunits.

Nicotinic Effects on the LPS-induced Production of Pro-inflammatory Cytokines

The role of nAChRs in regulation of the inflammatory cytokine production was investigated

in differentiated U937 cells stimulated with LPS in the presence or absence of nAChR ligands.

Previous studies have demonstrated that LPS upregulates production of inflammatory

cytokines by PMA-pretreated U937 cells [40], and that nicotine can inhibit this effect [33]. To

elucidate the role of individual nAChR subtypes in mediating the reported anti-inflammatory

action of nicotinic agonists on monocyte/macrophages, we exposed U937 cells to 200 ng/ml

LPS in the absence (control) or presence of 1 μM agonist Epi that can activate all nAChR

subtypes expressed in these cells [41,42]. As expected, Epi significantly inhibited expression

of the genes encoding the inflammatory cytokines TNF-α, and IL-1β, both at the transcriptional

and translational levels, and IL-6 and IL-18—at the protein level (Fig. 2). The dose responses

were performed to examine the effects of Epi on the above cytokines at the protein levels. The

results demonstrated the dose-dependent inhibition of the levels of TNF-α, IL-1β, IL-6 and

IL-18 proteins in differentiated U937 cells stimulated with LPS in the presence of increasing

concentrations of Epi (Fig. 2C). To evaluate possible contribution of distinct nAChR subtypes

to the inhibitory action of Epi on production of inflammatory cytokines, the cells were exposed

to this agonist in the presence of 50 μM of Mec, which inhibits all neuronal nAChR subtypes,

or 1 μM of αBtx, which binds to and inhibits both the muscle-type nAChR and the homomeric

neuronal-type nAChR channels [41,43–46]. Each antagonist abolished the inhibitory effects

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

of Epi with a slightly distinctive efficacy, and changes in gene expression at the mRNA vs.

protein levels somewhat differed (Fig. 2). Both at the mRNA and the protein levels, the

expression of the TNF-α gene was altered predominantly through the αBtx-sensitive nAChRs

(p<0.05). Both the Mec- and αBtx-sensitive nAChRs regulated expression of the IL-1β mRNA

and protein equally efficiently (p<0.05). The alterations of IL-6 and IL-18 expression were

observed only at the protein level and were primarily induced through the Mec-sensitive

nAChRs (p<0.05).

These results suggested that the macrophage nAChR subtypes are differentially coupled to

regulation of production of pro-inflammatory cytokines.

Regulation of IL-10 Production

Since it has been documented that human monocytes and differentiated, macrophage-like U937

cells produce IL-10, which can be upregulated by LPS as well as agonists of cellular receptors

to cytotransmitters and endocrine hormones [47–49], we next measured nicotinic effects on

the expression of the IL-10 gene in PMA-pretreated U937 cells stimulated by LPS. As expected

from previous reports, LPS increased the relative amounts of IL-10 mRNA and protein (Fig.

3A,B). Epi significantly (p<0.05) upregulated expression of the IL-10 gene at the translational

level only. The effect of Epi was dose-dependent (Fig. 3C). Both Mec and MLA completely

abolished the Epi-depended upregulation of IL-10 (p<0.05).

Since it has been previously reported that α7 nAChR expressed in macrophages and dendritic

cells predominantly mediates the anti-inflammatory action of ACh [4,16], we sought to identify

the role of this receptor in the cholinergic control of IL-10 production. To selectively activate/

inactivate the α7-made nAChR we exposed differentiated U937 cells to LPS in the presence

of the increasing concentrations of the α7-selective agonist AR-R17779. The IL-10 production

was upregulated in a dose-dependent fashion (Fig. 3C). The cells exposed to LPS in the

presence of 50–100 μM AR-R17779 showed approximately 2.5-fold increase of IL-10

production that significantly (p<0.05) exceeded Epi-induced upregulation (Fig. 3A,B). To

confirm the receptor specificity of AR-R17779 action, we incubated cells with AR-R17779,

100 μM, in the presence or absence of the α7-preferring antagonist MLA, 100 nM [44,50] that

completely abolished effect of the agonist (Fig. 3A,B).

These findings indicated that upregulation of IL-10 production in macrophages by auto/

paracrine ACh is mediated predominantly through α7 nAChR.

The Role of Auto/paracrine ACh in the Nicotinic Anti-inflammatory Pathway

Since U937 cells synthesize ACh [32], we used these cells as a model-system to investigate

relative contribution of auto/paracrine ACh to the nicotinic anti-inflammatory pathway. In this

series experiments, 1 h prior to addition of LPS, the cultures of PMA-differentiated U937 cells

were fed with the medium containing 20 μM of the metabolic inhibitor of ACh synthesis HC-3

[51,52]. By both qPCR and ICW, the level of IL-10 gene expression in the HC-3 treated cells

decreased by approximately 5-fold (Fig. 4). If the HC-3 pretreated cells were stimulated with

LPS in the presence of Epi, which could substitute ACh at the nAChR binding site, the IL-10

production increased and approached the control levels determined in the cells exposed to LPS

without test drugs. Thus, elevation of IL-10 by Epi in the presence of HC-3 apparently occurred

because the exogenously added agonist exhibited an ACh-like effect by activating nAChRs.

This effect of Epi could be abolished by both Mec and MLA, with the latter antagonist

exhibiting a significantly (p<0.05) higher efficiency (Fig. 4).NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

These results indicated that the cholinergic control of inflammation due to upregulation of

IL-10 production through the α7-coupled pathway may represent a common mechanism of

anti-inflammatory action of non-neuronal ACh.

DISCUSSION It has become increasingly clear that in addition to its well known function as a neurotransmitter, ACh plays a much wider role in life being ubiquitously expressed in various cells and organisms and coupled to regulation of a large variety of biological processes [53,54]. The ACh regulatory axis, which is comprised by the cholinergic enzymes and receptors,choline high-affinity transporter and vesicular ACh transporter, has been found to play an important role in mediating host responses to environmental stimuli, including the immune response [55,56]. Recent research has convincingly demonstrated that the nicotinic arm of the regulatory ACh axis in immune cells is coupled to the physiologic control of T- and B-lymphocyte survival and function [57,58].In this study, we used the macrophage-like U937 cells to elucidate the mechanisms of the physiologic control of cytokine production by auto/paracrine ACh through the nicotinic class of ACh receptors expressed in these cells. Both the muscle- and the neuronal-types of nAChRs were found to be expressed in differentiated U937. The repertoire of the receptors changed upon cell stimulation with LPS. Distinct nAChR subtypes showed differential regulation of the production of pro- and anti-inflammatory cytokines. The IL-10 gene expression was altered due to inhibition of endogeneous ACh production, indicating that the auto/paracrine ACh plays an important role in the physiologic control of macrophage function during the immune inflammation.The cholinergic (nicotinic) anti-inflammatory pathway [3–5,59,60] is a physiologic (neuro)immune mechanism that regulates innate immune function and controls inflammation. The functional activity of this pathway can be modulated through both neuronal and non-neuronal

cholinergic components, such as efferent vagal neurons and macrophage nAChRs,

respectively. The outcome of pharmacologic stimulation of the nicotinic anti-inflammatory

pathway, however, may be either beneficial and harmful. On the one hand, the nicotinic

agonists have already been successfully used to treat various in vitro and in vivo models of

inflammation (reviewed in [61]). On the other hand, nicotine and cigarette smoke cause

alterations of the innate defense mechanisms and immune surveillance due to changes in local

cytokine environment and functional impairment of the monocyte/macrophage and dendritic

cell systems [62–68]. It has been documented that nicotine: (i) lowers endocytosis and

phagocytosis of human monocyte-derived dendritic cells and decreases the levels of IL-12

[67]; (ii) reduces cytokine release from LPS-stimulated human leukemia peripheral blood

monocyte cells [69] and human monocytes [70]; (iii) reduces TNF-α release and expression

of TNF-α mRNA in murine alveolar macrophage cell line [14]; (iv) downregulates IL-1β

production by human peripheral blood monocytes [71]; and (v) inhibits the LPS-induced IL-1

and IL-8 expression at the transcriptional level in the U937 cells [33]. This cell line was used

in this study as an in vitro model system for nicotinic regulation of cytokine production by

macrophages. Indeed, experiments with U937 cells have limitations, as the monocytic cell lines

do not often mimic data obtained from primary cells and importantly, in vivo situations.

Therefore, future studies should determine if the nicotinic effects on cytokine production

observed by us in the present study can be replicated with normal macrophages.

Our results demonstrated for the first time the complete profile of nAChRs expressed by U937

cells, and revealed changes in the repertoire of the nAChR subunits upon cell activation of with

LPS. The fact that activation of U937 cells with LPS produced a dramatic change in the levels

of expression of the nAChR subunit genes is not surprising. It has been documented that

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

mammalian cells change the repertoire of their nAChRs during differentiation and upon environmental stimulation [38,78–82]. Recent analysis of the biologic effects of macrophage nAChRs through microarray analysis of nicotine-induced changes in gene expression in U937cells revealed that 118 genes are up-regulated and 97 down-regulated [34].While expression of both α7 and non-α7 nAChRs was affected by LPS stimulation, the present study was focused on the anti-inflammatory function of ACh mediated by the α7-coupled pathway, in keeping with the notion that the ACh-gated ion channels comprised by α7 subunits are coupled to suppression of inflammation [4,70,72–74]. Noteworthy, activated U937 cells overexpressed α7. This observation, taken together with the results of pharmacologic experiments with the α7 ligands AR-R17779 and MLA, indicated that the major contribution of the macrophage α7 nAChR to the anti-inflammatory function of auto/paracrine ACh is upregulation of IL-10 production. Hence, our rationale for measuring the effect of HC-3 on production of only IL-10, but not other cytokines, was elucidation of the role of α7 nAChR in regulation of anti-inflammatory cytokine production by ACh.The observed changes of the repertoire of nAChRs indicates that activated U937 cells express pharmacologically different receptors compared to the resting cells. It is well documented that inclusion of α5 subunits alters the properties of heteromeric nAChRs. In particular, channels containing the α5 subunits can be activated and desensitized by much lower (nanomolar)concentrations of nicotine than their non-α5-containing analogues [75]. Moreover, α5 increases the channel permeability to Ca 2+ and its sensitivity to intracellular Ca 2+, which makes heteromeric receptors formed similar to α7 nAChR homomers [76,77]. Similarly, addition of α10 subunit to α9-made homomers alters the resulting receptor sensitivity to extracellular Ca 2+ and increases its agonist-mediated desensitization [21]. Therefore, activated U937 cells appear to not only overexpress α7 nAChRs but also re-organize other nAChR subtypes, thus synergizing with the α7 function.The ability of the nicotinic agonist epibatidine to decrease pro-inflammatory cytokines is in

keeping with known immunosuppressive action of nicotine [83], and with our previous reports

about negative effect of nAChR activation on T- and B-cell functions, and antibody production

[57,58,74,84]. The Mec-sensitive nAChRs coupled to downregulation of IL-6 and IL-18

production can be the α5 containing α4 receptors, because previous studies have demonstrated

that activation of α4 nAChR in a mouse macrophage cell line produces an anti-inflammatory

response by inhibiting TNF-α, IL-6, and IL-12 production [26]. On the other hand, since

upregulation of the genes encoding α1 and β1 subunits by LPS considerably exceeded that of

α7, one may speculate that the muscle-type macrophage nAChR also plays an important role

in the anti-inflammatory action of nicotinic agonists mediated by downregulation of pro-

inflammatory cytokines.

The knowledge about coupling of distinct nAChR subtypes to selective regulation of

production of pro- and anti-inflammatory cytokines may be exploited for the development of

novel therapeutic strategies allowing to achieve either immunosuppression or

immunostimulation, depending on the receptor selectivity of the nicotinic agonist used. In

addition to being pro-inflammatory, the studied cytokines can exert substantial effects on innate

and adaptive immunity. In particular, IL-1, IL-6 and TNF-α are co-stimulatory for T and B

lymphocytes; IL-6 drives proliferation and differentiation of B-cells into antibody-secreting

cells, whereas IL-18 is a potent activator of natural killer cells and a stimulator of the Th2

response [85].

In conclusion, results of the present study identified the major macrophage nAChR subtypes

that can mediate the physiologic control of cytokine production by auto/paracrine ACh, and

pointed out an important role of the macrophage ACh regulatory axis in the immune

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

inflammation. Our observations of the differential control of inflammation by ACh through

α7 and non-α7 nAChRs expand the current knowledge about the “cholinergic anti-

inflammatory pathway”. The unique coupling of macrophage nAChR subtypes to regulation

of specific pro- and anti-inflammatory cytokines can diversify the immunoregulatory effects

of ACh, thus allowing this auto/paracrine cytotransmitter to coordinate the immune response

to a specific environmental stimulus. The muscle- and the neuronal-types of the macrophage

nAChRs that regulate cytokine production are potential targets for the pharmacologic

regulation of inflammation. The pharmacologic regulation of inflammation outside the central

nervous system may be achieved by using nicotinic agents with poor or no permeability of the

blood-brain barrier. Future studies should be focused on the nAChR subtypes that appear to

mediate the immunomodulatory effects of ACh on monocyte/macrophages.Acknowledgments This work was supported by the NIH grants GM62136, DE14173 and ES014384, and research grants from the Institute for Science and Health (to S.A.G.), and Philip Morris USA Inc. and Philip Morris International (to M.V.S).References 1. Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 2005;4:673–84. [PubMed: 16056392]2. Ulloa L, Wang P. The neuronal strategy for inflammation. Novartis Found Symp 2007;280:223–33.discussion 33–7. [PubMed: 17380797]3. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N,Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000;405:458–62. [PubMed: 10839541]4. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Yang H, Ulloa L, Al-Abed Y,Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003;421:384–8. [PubMed: 12508119]

5. Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Metz C, Miller EJ, Tracey KJ,

Ulloa L. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis.

Nat Med 2004;10:1216–21. [PubMed: 15502843]

6. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta M, Ashok

M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L. Splenectomy inactivates the cholinergic

antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med

2006;203:1623–8. [PubMed: 16785311]

7. Hofer S, Eisenbach C, Lukic IK, Schneider L, Bode K, Brueckmann M, Mautner S, Wente MN, Encke

J, Werner J, Dalpke AH, Stremmel W, Nawroth PP, Martin E, Krammer PH, Bierhaus A, Weigand

MA. Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med

2008;36:404–8. [PubMed: 18091537]

8. Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, Squadrito G, Minutoli L,

Bertolini A, Marini R, Adamo EB, Venuti FS, Squadrito F. Efferent vagal fibre stimulation blunts

nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation

2003;107:1189–94. [PubMed: 12615800]

9. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA. Nutritional stimulation of

cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 2005;202:1023–9.

[PubMed: 16216887]

10. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Susarla S, Czura CJ, Tracey KJ. Cholinergic

antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. J Vasc

Surg 2002;36:1231–6. [PubMed: 12469056]

11. Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, Tracey KJ, Al-Abed Y,

Metz CN. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during

inflammation. J Exp Med 2005;201:1113–23. [PubMed: 15809354]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

12. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 2005;6:844–51. [PubMed: 16025117]13. van Westerloo DJ, Giebelen IA, Florquin S, Bruno MJ, Larosa GJ, Ulloa L, Tracey KJ, van der Poll T. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice.Gastroenterology 2006;130:1822–30. [PubMed: 16697744]14. Blanchet MR, Israel-Assayag E, Cormier Y. Inhibitory effect of nicotine on experimental hypersensitivity pneumonitis in vivo and in vitro. Am J Respir Crit Care Med 2004;169:903–9.[PubMed: 14701707]15. LaRosa G, Lamppu D, Tunkey C, Libertine L. α7 nicotinic acetylcholine receptor agonists attenuate allergic lung inflammation. Biochem Pharmacol 2007;74 SMA49 (5.2).16. Su X, Lee JW, Matthay ZA, Mednick G, Uchida T, Fang X, Gupta N, Matthay MA. Activation of the alpha7 nAChR reduces acid-induced acute lung injury in mice and rats. Am J Respir Cell Mol Biol 2007;37:186–92. [PubMed: 17431097]17. Thomas GA, Rhodes J, Ingram JR. Mechanisms of disease: nicotine--a review of its actions in the context of gastrointestinal disease. Nat Clin Pract Gastroenterol Hepatol 2005;2:536–44. [PubMed:16355159]18. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995;269:1692–6. [PubMed:7569895]19. Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Lena C, Le Novere N, Marubio L,Picciotto M, Zoli M. Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev 1998;26:198–216. [PubMed: 9651527]20. Leonard S, Bertrand D. Neuronal nicotinic receptors: from structure to function. Nicotine Tob Res 2001;3:203–23. [PubMed: 11506765]21. Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J. α10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci U S A 2001;98:3501–6. [PubMed: 11248107]

22. Egleton RD, Brown KC, Dasgupta P. Nicotinic acetylcholine receptors in cancer: multiple roles in

proliferation and inhibition of apoptosis. Trends Pharmacol Sci 2008;29:151–8. [PubMed: 18262664]

23. Chernyavsky AI, Arredondo J, Qian J, Galitovskiy V, Grando SA. Coupling of ionic events to protein

kinase signaling cascades upon activation of α7 nicotinic receptor: Cooperative regulation of α2-

integrin expression and Rho-kinase activity. J Biol Chem 2009;284:22140–8. [PubMed: 19549780]

24. Whaley K, Lappin D, Barkas T. C2 synthesis by human monocytes is modulated by a nicotinic

cholinergic receptor. Nature 1981;293:580–3. [PubMed: 7290192]

25. Morgan D, Parsons ME, Whelan CJ. Investigation of nicotine binding to THP-1 cells: evidence for

a non-cholinergic binding site. Biochem Pharmacol 2001;61:733–40. [PubMed: 11266659]

26. Matsunaga K, Klein TW, Friedman H, Yamamoto Y. Involvement of nicotinic acetylcholine receptors

in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella

pneumophila infection by nicotine. J Immunol 2001;167:6518–24. [PubMed: 11714820]

27. Galvis G, Lips KS, Kummer W. Expression of nicotinic acetylcholine receptors on murine alveolar

macrophages. J Mol Neurosci 2006;30:107–8. [PubMed: 17192650]

28. Kawashima K, Yoshikawa K, Fujii YX, Moriwaki Y, Misawa H. Expression and function of genes

encoding cholinergic components in murine immune cells. Life Sci 2007;80:2314–9. [PubMed:

17383684]

29. Sato E, Koyama S, Okubo Y, Kubo K, Sekiguchi M. Acetylcholine stimulates alveolar macrophages

to release inflammatory cell chemotactic activity. Am J Physiol 1998;274:L970–9. [PubMed:

9609736]

30. Gwilt CR, Donnelly LE, Rogers DF. The non-neuronal cholinergic system in the airways: an

unappreciated regulatory role in pulmonary inflammation? Pharmacol Ther 2007;115:208–22.

[PubMed: 17597218]

31. Sundstrom C, Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell

line (U-937). Int J Cancer 1976;17:565–77. [PubMed: 178611]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

32. Kawashima K, Fujii T. Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther 2000;86:29–48. [PubMed: 10760545]33. Sugano N, Shimada K, Ito K, Murai S. Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaB activation. Biochem Biophys Res Commun 1998;252:25–8. [PubMed: 9813140]34. Koshi R, Sugano N, Orii H, Fukuda T, Ito K. Microarray analysis of nicotine-induced changes in gene expression in a macrophage-like human cell line. J Periodontal Res 2007;42:518–26. [PubMed:17956464]35. Nilsson K, Forsbeck K, Gidlund M, Sundstrom C, Totterman T, Sallstrom J, Venge P. Surface characteristics of the U-937 human histiocytic lymphoma cell line: specific changes during inducible morphologic and functional differentiation in vitro. Haematol Blood Transfus 1981;26:215–21.[PubMed: 7033063]36. Arredondo J, Chernyavsky AI, Grando SA. The nicotinic receptor antagonists abolish pathobiologic effects of tobacco-derived nitrosamines on BEP2D cells. J Cancer Res Clin Oncol 2006;132:653–63. [PubMed: 16835749]37. Arredondo J, Chernyavsky AI, Marubio LM, Beaudet AL, Jolkovsky DL, Pinkerton KE, Grando SA.Receptor-mediated tobacco toxicity: Regulation of gene expression through α3β2 nicotinic receptor in oral epithelial cells. Am J Pathol 2005;166:597–613. [PubMed: 15681842]38. Arredondo J, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA. Receptor-mediated tobacco toxicity: acceleration of sequential expression of α5 and α7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J 2008;22:1356–68. [PubMed: 18450646]39. Arredondo J, Chernyavsky AI, Webber RJ, Grando SA. Biological effects of SLURP-1 on human keratinocytes. J Invest Dermatol 2005;125:1236–41. [PubMed: 16354194]40. Garrelds IM, van Hal PT, Haakmat RC, Hoogsteden HC, Saxena PR, Zijlstra FJ. Time dependent production of cytokines and eicosanoids by human monocytic leukaemia U937 cells; effects of glucocorticosteroids. Mediators Inflamm 1999;8:229–35. [PubMed: 10704077]41. Jensen AA, Frolund B, Liljefors T, Krogsgaard-Larsen P. Neuronal nicotinic acetylcholine receptors:structural revelations, target identifications, and therapeutic inspirations. J Med Chem 2005;48:4705–45. [PubMed: 16033252]

42. Lembeck F. Epibatidine: high potency and broad spectrum activity on neuronal and neuromuscular

nicotinic acetylcholine receptors. Naunyn Schmiedebergs Arch Pharmacol 1999;359:378–85.

[PubMed: 10498287]

43. Conti-Tronconi BM, McLane KE, Raftery MA, Grando SA, Protti MP. The nicotinic acetylcholine

receptor: structure and autoimmune pathology. Crit Rev Biochem Mol Biol 1994;29:69–123.

[PubMed: 8026215]

44. Alexander SP, Mathie A, Peters JA. Guide to receptors and channels, 1st edition (2005 revision). Br

J Pharmacol 2005;144 (Suppl 1):S1–128. [PubMed: 15793590]

45. Gerzanich V, Peng X, Wang F, Wells G, Anand R, Fletcher S, Lindstrom J. Comparative

pharmacology of epibatidine: a potent agonist for neuronal nicotinic acetylcholine receptors. Mol

Pharmacol 1995;48:774–82. [PubMed: 7476906]

46. Rueter LE, Donnelly-Roberts DL, Curzon P, Briggs CA, Anderson DJ, Bitner RS. A-85380: a

pharmacological probe for the preclinical and clinical investigation of the alphabeta neuronal

nicotinic acetylcholine receptor. CNS Drug Rev 2006;12:100–12. [PubMed: 16958984]

47. Kavelaars A, van de Pol M, Zijlstra J, Heijnen CJ. Beta 2-adrenergic activation enhances interleukin-8

production by human monocytes. J Neuroimmunol 1997;77:211–6. [PubMed: 9258252]

48. Carruba G, D’Agostino P, Miele M, Calabro M, Barbera C, Bella GD, Milano S, Ferlazzo V, Caruso

R, Rosa ML, Cocciadiferro L, Campisi I, Castagnetta L, Cillari E. Estrogen regulates cytokine

production and apoptosis in PMA-differentiated, macrophage-like U937 cells. J Cell Biochem

2003;90:187–96. [PubMed: 12938167]

49. Izeboud CA, Mocking JA, Monshouwer M, van Miert AS, Witkamp RF. Participation of beta-

adrenergic receptors on macrophages in modulation of LPS-induced cytokine release. J Recept Signal

Transduct Res 1999;19:191–202. [PubMed: 10071758]

50. Levin ED, Bettegowda C, Blosser J, Gordon J. AR-R17779, and α7 nicotinic agonist, improves

learning and memory in rats. Behav Pharmacol 1999;10:675–80. [PubMed: 10780509]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

51. Guyenet P, Lefresne P, Rossier J, Beaujouan JC, Glowinski J. Inhibition by hemicholinium-3 of (14C)acetylcholine synthesis and (3H)choline high-affinity uptake in rat striatal synaptosomes. Mol Pharmacol 1973;9:630–9. [PubMed: 4788157]52. Veldsema-Currie RD, Labruyere WT, Langemeijer MW. Depletion of total acetylcholine by hemicholinium-3 in isolated rat diaphragm is less in the presence of dexamethasone. Brain Res 1984;324:305–12. [PubMed: 6529621]53. Grando SA, Kawashima K, Wessler I. The non-neuronal cholinergic system in humans. Life Sci 2003;72:2009–12. [PubMed: 12628450]54. Grando SA, Kawashima K, Kirkpatrick CJ, Wessler I. Recent progress in understanding the non-neuronal cholinergic system in humans. Life Sci 2007;80:2181–5. [PubMed: 17467010]55. Fujii T, Takada-Takatori Y, Kawashima K. Basic and clinical aspects of non-neuronal acetylcholine:expression of an independent, non-neuronal cholinergic system in lymphocytes and its clinical significance in immunotherapy. J Pharmacol Sci 2008;106:186–92. [PubMed: 18285654]56. Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 2008;154:1558–71. [PubMed: 18500366]57. Chernyavsky AI, Arredondo J, Galitovskiy V, Qian J, Grando SA. Structure and function of the nicotinic arm of acetylcholine regulatory axis in human leukemic T cells. Int J Immunopathol Pharmacol 2009;22:461–72. [PubMed: 19505399]58. Arredondo J, Omelchenko DM, Chernyavsky AI, Qian J, Skok M, Grando SA. Functional role of the nicotinic arm of the acetylcholine regulatory axis in human B-cell lines. J Exp Pharmacol. 2009 in press.59. Czura CJ, Tracey KJ. Autonomic neural regulation of immunity. J Intern Med 2005;257:156–66.[PubMed: 15656874]60. de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 2007;151:915–29. [PubMed: 17502850]61. Bonaz B. The cholinergic anti-inflammatory pathway and the gastrointestinal tract. Gastroenterology 2007;133:1370–3. [PubMed: 17919507]62. Green GM, Carolin D. The depressant effect of cigarette smoke on the in vitro antibacterial activity

of alveolar macrophages. N Engl J Med 1967;276:421–7. [PubMed: 6019163]

63. Schwartz SL, Evans DE, Lundin JE, Bond JC. Inhibition of pinocytosis by nicotine. J Pharmacol Exp

Ther 1972;183:370–7. [PubMed: 5083551]

64. Schwartz SL. Interaction of nicotine and other amines with the endocytic and exocytic functions of

macrophages. Fed Proc 1976;35:85–8. [PubMed: 942702]

65. Thyberg J, Hedin U, Stenseth K, Nilsson J. Effects of nicotine on the fine structure of cultivated

mouse peritoneal macrophages. Acta Pathol Microbiol Immunol Scand [A] 1983;91:23–30.

66. Ortega E, Barriga C, Rodriguez AB. Decline in the phagocytic function of alveolar macrophages from

mice exposed to cigarette smoke. Comp Immunol Microbiol Infect Dis 1994;17:77–84. [PubMed:

8004937]

67. Nouri-Shirazi M, Guinet E. Evidence for the immunosuppressive role of nicotine on human dendritic

cell functions. Immunology 2003;109:365–73. [PubMed: 12807482]

68. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245–52.

[PubMed: 9521319]

69. Sykes AP, Brampton C, Klee S, Chander CL, Whelan C, Parsons ME. An investigation into the effect

and mechanisms of action of nicotine in inflammatory bowel disease. Inflamm Res 2000;49:311–9.

[PubMed: 10959551]

70. Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, Kamochi H, Suzuki N. Nicotine

inhibits the production of proinflammatory mediators in human monocytes by suppression of I-

kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic

acetylcholine receptor alpha7. Clin Exp Immunol 2006;146:116–23. [PubMed: 16968406]

71. Pabst MJ, Pabst KM, Collier JA, Coleman TC, Lemons-Prince ML, Godat MS, Waring MB, Babu

JP. Inhibition of neutrophil and monocyte defensive functions by nicotine. J Periodontol

1995;66:1047–55. [PubMed: 8683417]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

72. The FO, Boeckxstaens GE, Snoek SA, Cash JL, Bennink R, Larosa GJ, van den Wijngaard RM,Greaves DR, de Jonge WJ. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology 2007;133:1219–28. [PubMed: 17919496]73. Hamano R, Takahashi HK, Iwagaki H, Yoshino T, Nishibori M, Tanaka N. Stimulation of alpha7nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 2006;26:358–64. [PubMed: 16980882]74. Fujii YX, Fujigaya H, Moriwaki Y, Misawa H, Kasahara T, Grando SA, Kawashima K. Enhanced serum antigen-specific IgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. J Neuroimmunol 2007;189:69–74. [PubMed:17675251]75. Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L. Functional contributions of alpha-5subunit to neuronal acetylcholine receptor channels. Nature 1996;380:347–51. [PubMed: 8598930]76. Gerzanich V, Wang F, Kuryatov A, Lindstrom J. α5 subunit alters desensitization, pharmacology, Ca ++ permeability and Ca ++ modulation of human neuronal α3 nicotinic receptors. J Pharmacol Exp Ther 1998;286:311–20. [PubMed: 9655874]77. Girod R, Crabtree G, Ernstrom G, Ramirez-Latorre J, McGehee D, Turner J, Role L. Heteromeric complexes of alpha 5 and/or alpha 7 subunits. Effects of calcium and potential role in nicotine-induced presynaptic facilitation. Ann N Y Acad Sci 1999;868:578–90. [PubMed: 10414339]78. Ndoye A, Buchli R, Greenberg B, Nguyen VT, Zia S, Rodriguez JG, Webber RJ, Lawry MA, Grando SA. Identification and mapping of keratinocyte muscarinic acetylcholine receptor subtypes in human epidermis. J Invest Dermatol 1998;111:410–6. [PubMed: 9740233]79. Nguyen VT, Ndoye A, Hall LL, Zia S, Arredondo J, Chernyavsky AI, Kist DA, Zelickson BD, Lawry MA, Grando SA. Programmed cell death of keratinocytes culminates in apoptotic secretion of a humectant upon secretagogue action of acetylcholine. J Cell Sci 2001;114:1189–204. [PubMed:11228162]80. Arredondo J, Hall LH, Ndoye A, Nguyen VT, Chernyavsky AI, Bercovich D, Orr-Urtreger A, Beaudet AL, Grando SA. Central role of fibroblast α3 nicotinic acetylcholine receptor in mediating cutaneous effects of nicotine. Lab Invest 2003;83:207–25. [PubMed: 12594236]81. Kues WA, Sakmann B, Witzemann V. Differential expression patterns of five acetylcholine receptor

subunit genes in rat muscle during development. Eur J Neurosci 1995;7:1376–85. [PubMed:

7582112]

82. Bairam A, Joseph V, Lajeunesse Y, Kinkead R. Developmental profile of cholinergic and purinergic

traits and receptors in peripheral chemoreflex pathway in cats. Neuroscience 2007;146:1841–53.

[PubMed: 17478045]

83. Kalra R, Singh SP, Kracko D, Matta SG, Sharp BM, Sopori ML. Chronic self-administration of

nicotine in rats impairs T cell responsiveness. J Pharmacol Exp Ther 2002;302:935–9. [PubMed:

12183649]

84. Skok M, Grailhe R, Changeux JP. Nicotinic receptors regulate B lymphocyte activation and immune

response. Eur J Pharmacol 2005;517:246–51. [PubMed: 15963492]

85. Chaix J, Tessmer MS, Hoebe K, Fuseri N, Ryffel B, Dalod M, Alexopoulou L, Beutler B, Brossay

L, Vivier E, Walzer T. Cutting edge: Priming of NK cells by IL-18. J Immunol 2008;181:1627–31.

[PubMed: 18641298]

86. Maus ADJ, Pereira EFR, Karachunski PI, Horton RM, Navaneetham D, Macklin K, Cortes WS,

Albuquerque EX, Conti-Fine BM. Human and rodent bronchial epithelial cells express functional

nicotinic acetylcholine receptors. Mol Pharmacol 1998;54:779–88. [PubMed: 9804613]

87. Kurzen H, Berger H, Jager C, Hartschuh W, Naher H, Gratchev A, Goerdt S, Deichmann M.

Phenotypical and molecular profiling of the extraneuronal cholinergic system of the skin. J Invest

Dermatol 2004;123:937–49. [PubMed: 15482483]

88. Sgard F, Charpantier E, Bertrand S, Walker N, Caput D, Graham D, Bertrand D, Besnard F. A novel

human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit. Mol Pharmacol

2002;61:150–9. [PubMed: 11752216]

89. Carlisle DL, Hopkins TM, Gaither-Davis A, Silhanek MJ, Luketich JD, Christie NA, Siegfried JM.

Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human

bronchial epithelial cells and airway fibroblasts. Respir Res 2004;5:27. [PubMed: 15588326]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Figure 1. PCR analysis of nAChR subunit expression in differentiated U937 cells

A. Expression of nAChR subunits in the U937 cells pretreated with 200 nM PMA was analyzed

by RT-PCR using published primers (Table 1). Left lane is a 100 bp molecular weight ladder.

B. qPCR was performed after 16 h of incubation of differentiated U937 cells with 200 ng/ml

LPS in a humid, 5% CO 2 incubator at 37°C, as detailed in the Materials and Methods section.

The results are expressed as fold of control determined in control PMA-differentiated U937

cells, and taken as 1. Asterisk = p<0.05 compared to control.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Figure 2. Nicotinic effects on inflammatory cytokine production by LPS-stimulated U937 cells

A, B. Differentiated U937 cells, 1×106 cells/well, were incubated for 16 h in a humid, 5%

CO 2 incubator with 200 ng/ml LPS in the absence or presence of 1 μM Epi ± 50 μM Mec or

1 μM αBtx, after which the expression of the genes encoding TNF-α, IL-1β, IL-6 and IL-18 at

the mRNA and protein levels was measured by qPCR (A ) and ICW (B ), respectively, as detailed

in Materials and Methods. Asterisk = p<0.05 compared to LPS given alone; pound sign =

p<0.05 compared to Epi given alone.

C. The dose-dependent inhibition of the levels of TNF-α, IL-1β, IL-6 and IL-18 proteins in

differentiated U937 cells stimulated with LPS in the presence of increasing concentrations of

Epi.

The results are expressed as fold of control determined in control PMA-differentiated U937

cells, and taken as 1.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Figure 3. Nicotinic effects on IL-10 production by LPS-stimulated U937 cells A, B. Differentiated U937 cells were stimulated with LPS in the presence or absence of 1 μM Epi ± 50 μM Mec or 100 nM MLA, or 100 μM AR-R17779 (AR ) ± 100 nM MLA and used in the qPCR (A ) and ICW (B ) assays of the IL-10 gene expression as described in the legend to Fig. 2. Asterisk = p<0.05 compared to LPS given alone; pound sign = p<0.05 compared to the relevant agonist given alone.C. Concentration-dependent effects of Epi and AR-R17779 on the level of IL-10 protein in differentiated U937 cells stimulated with LPS.The results are expressed as fold of control determined in control PMA-differentiated U937

cells, and taken as 1.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Figure 4. Assessment of contribution of auto/paracrine ACh to the nAChR-mediated upregulation of IL-10 production Differentiated U937 cells, 1×106 cells/well, were preincubated for 1 h with 20 μM HC-3 in a humid, 5% CO 2 incubator, after which, the cells were exposed without washing to 200 ng/ml LPS and 1 μM Epi ± 50 μM Mec or 100 nM MLA, and used in the qPCR and ICW assays of IL-10 gene expression, as detailed in Materials and Methods. The dose of Epi used in this experiment was chosen based on the dose response curve for Epi shown in the panel “C” of Fig. 3, since in both experiments Epi was used to upregulate IL-10. The results are expressed as fold of control determined in PMA-differentiated U937 cells without stimulation with LPS or test drugs, and taken as 1. Plus sign = p<0.05 compared to control; asterisk = p<0.05compared to LPS given alone; pound sign = compared to HC-3 given alone.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Table 1

Primers used for RT-PCR analysis of nAChRs in differentiated U937 cells*

Target mRNA Forward/reverse primers Product size, bp Anneal temperature Sources α1CGT CTG GTG GCA AAG CT

CCG CTC TCC ATG AAG TT

58055[86]

α2GGA GCT CTG CCA CCC CCT AC

AAC ATA CTT CCA GTC CTC

32764[87]

α3CTG GTG AAG GTG GAT GAA GT

CTC GCA GCA GTT GTA CTT GA

46458[86]

α4GGA TGA GAA GAA CCA GAT GA

CTC GTA CTT CCT GGT GTT GT

44458[86]

α5TCA ACA CAT AAT GCC ATG GC

CCT CAC GGA CAT CAT TTT CC

21964[87]

α6GTG GCC TCT GGA CAA GAC AA

AAT TAT AAA TAC CCA AAG A

37258[86]

α7CTT CAC CAT CAT CTG CAC CAT

C

GGT ACG GAT GTG CCA AGG

ATA T

30855[87]

α9GTC CAG GGT CTT GTT TGT

ATC CGC TCT TGC TAT GAT

40358[87]

α10CTC TCA AGC TGT TCC GTG ACC

AAG GCT GCT ACA TCC ACG C

39464[88]

β1TGT ACC TGC GTC TAA AAA GG

GCA GGT TGA GAA CCA CGA CA

45560[87]

β2CAG CTC ATC AGT GTG CA

GTG CGG TCG TAG GTC CA

34758[89]

β3AGA GGC TCT TTC TGC AGA

GCC ACA TCT TCA AAG CAG

35460[89]

β4GTG AAT GAG CGA GAG CAG AT

GGG ATG ATG AGG TTG ATG GT

52458[86]

δCAG ATC TCC TAC TCC TGC AA

CCA CTG ATG TCT TCT CAC CA

47158[86]

γCGC CTG CTC TAT CTC AGT CA

GGA GAC ATT GAG CAC AAC CA

54656[86]

εGTA ACC CTG ACG AAT CTC AT

GTC GAT GTC GAT CTT GTT GA

43255[86]

*

All products were sequenced by the designers of the PCR primer used in this study.

2020年湖南省郴州市高考生物三模试卷 (含答案解析)

2020年湖南省郴州市高考生物三模试卷 一、单选题(本大题共6小题,共36.0分) 1.下列对处于不同免疫状态的小鼠分析合理的是() A. 吞噬细胞缺陷的小鼠特异性免疫无法产生 B. 胸腺被破坏的小鼠因无淋巴因子产生,无体液免疫 C. 骨髓被破坏的小鼠输入造血干细胞后能恢复体液免疫和细胞免疫 D. B淋巴细胞缺陷的小鼠虽无法合成抗体,但仍能对结核杆菌产生免疫反应 2.自由基学说认为,自由基能攻击和破坏细胞内多种执行正常功能的生物分子,最终致使细胞衰 老。下列有关自由基的说法错误的是() A. 攻击蛋白质降低某些酶的活性 B. 攻击DNA可能引发基因突变 C. 攻击磷脂直接导致中心体损伤 D. 攻击生物膜引发新的自由 基产生 3.植株甲是二倍体水稻,利用植株甲获得了植株乙,然后利用植株甲和乙 又获得植株丙和丁。培养过程如图所示。下列有关叙述正确的是() A. 用秋水仙素处理植株甲的雌蕊柱头可获得植株乙 B. 植株丙与植株丁的体细胞中染色体组的数目相同 C. 获得植株丙和植株丁的过程都要经过减数分裂 D. 植株丁的花药离体培养可得到植株丙 4.如图表示乙酰胆碱(兴奋性神经递质)释放与作用机制,下列叙述错误的是() A. 突触小泡避免乙酰胆碱被细胞内酶破坏 B. 乙酰胆碱持续作用于突触后膜的受体 C. 乙酰胆碱与受体结合引发离子通道的开放 D. 乙酰胆碱的释放体现了细胞膜的结构特点 5.下列关于“探索生长素类似物促进插条生根的最适浓度实验”的叙述,错误的是()

A. 实验中应设置一组用蒸馏水处理的插条作为对照组 B. 用不同浓度的生长素类似物溶液浸泡插条基部是为了控制自变量 C. 实验中因变量可用观察统计每组插条生根的数目表示 D. 通过预实验摸索大致浓度范围是为了避免无关变量的干扰 6.如图为某家族遗传病的系谱图,己知Ⅱ-3的妻子,和Ⅱ-5的丈夫不携带该病的致病基因,且该 病在群体中的发病率为1:10000.下列说法错误的是() A. 这种遗传病是常染色体隐性遗传病 B. 若Ⅲ-5和Ⅲ-6近亲婚配,子代患病概率为1 24 C. Ⅲ-1与正常女性婚配子代患病概率为1 202 D. Ⅰ-1、Ⅰ-2、Ⅲ-1、Ⅲ-2-定是杂合子 二、探究题(本大题共5小题,共60.0分) 7.作物与光合作用 如图是无籽西瓜叶片净光合速率Pn(以CO2吸收速率表示)与胞间CO2浓度(Ci)的日变化曲线,据图回答下列问题: (1)胞间CO2进入叶绿体内参与______循环。 (2)在9:00至11:00之间,净光合速率Pn升高,此阶段发生的变化还有______。 A.经气孔释放的CO2增多B.单个叶绿素A分子的氧化性不断增强

麻醉药理学 作用于胆碱受体的药物(8.6)--作用于胆碱受体的药物习题

第八章 作用于胆碱受体的药物 (一) 单项选择题 1、胆碱能神经不包括 A 副交感神经的节前、节后纤维 B 交感神经的节前纤维 C 大部分交感神经的节后纤维 D 运动神经 E 支配肾上腺髓质的内脏大神经分支 2、毛果芸香碱(匹鲁卡品) A 激动M、N受体,为完全拟胆碱药 B 滴眼后引起扩瞳 C 降低眼内压 D 引起调节麻痹 E 不能透过血一脑脊液屏障 3、阿托品对眼的作用 A 缩瞳、增高眼内压、调节麻痹 B 缩瞳、降低眼内压、调节麻痹 C 扩瞳、降低眼内压、调节麻痹 , D 扩瞳、增高眼内压、调节麻痹 E 扩瞳、增高眼内压、调节痉挛 4、阿托品常用于哪种心律失常 A 迷走神经过度兴奋引起的室性心动过缓 B 心动过速 C 室性心律失常 D 频发早搏 E 器质性房室传导阻滞 5、阿托品用作麻醉前用药的目的是 A 增加腺体分泌 B 减少腺体分泌 C 增强心血管的迷走神经反射 D 增强胃肠道张力 E 促进胃肠蠕动,减少术后恶心、呕吐 6、阿托品没有哪种不良反应 A 口干 B 视力模糊 C 出汗 D 皮肤潮红 E 体温升高

7、阿托品不宜用于 A 扩瞳检查眼底 B 验光 C 虹膜睫状体炎 D 青光眼 E 心动过缓 8、阿托品引起的中枢抗胆碱能综合征宜用何药治疗 A 新斯的明 B 毒扁豆碱 C 东莨菪碱 D 山莨菪碱 E 咖啡因 9、与阿托品相比,东莨菪碱的特点有 A 对中枢神经系统的抑制作用较强 B 对中枢神经系统的抑制作用较弱 C 扩瞳、调节麻痹的作用较弱 D 抑制腺体分泌的作用较弱 E 对心血管的作用较强 10、与阿托品相比,山莨菪碱的特点有 A 口服吸收好,多口服给药 B 外周抗胆碱作用强,中枢作用强 C 外周抗胆碱作用弱,中枢作用强 D 外周抗胆碱作用弱,中枢作用弱 E 外周抗胆碱作用强,中枢作用弱 11、神经节阻滞药用于治疗高血压的特点 A 降压温和、持久 B 不良反应少 C 常用于中度高血压 D 常用于轻度高血压 E 仅用于高血压脑病、高血压危象等 (二)多选题 1、有关长托宁的描述正确的是 A 新型的抗胆碱药 B 不能通过血-脑脊液屏障 C 具有中枢抗胆碱作用 D 具有外周抗胆碱作用 E 常引起心动过速

浙江省2020版高考生物二轮复习第12讲神经

第12讲 神经调节考点 考试内容考试要求1. 神经调节与体液调节的区别 a 2.神经系统的作用 a 3.神经元的种类、主要结构及特性 a 4.动作电位的概念 a 神经冲动的产生、 传导与传递 5.神经冲动的产生、传导与传递 b 1.反射的概念、过程及结构基础 b 2.大脑皮层的功能 a 反射与反射弧 3.体温调节的方式和过程 a  神经冲动的产生与传导1.神经元的结构和功能 (1)结构 (2)特点:神经元是一种可兴奋细胞,即受到刺激后能产生神经冲动并沿轴突传送出去。 (3)兴奋在一个神经元中传导的方向为树突→胞体→轴突。(4)神经系统的重要作用:感受体内、外环境的变化,并相应地调节人和动物多方面的活动,使机体适应外部环境的变化。 2.神经冲动的产生 (1)构建K +和Na +运输方式的概念模型 a 为主动转运(需要K +载体蛋白,消耗ATP); b 为易化扩散(需要K +通道蛋白); c 为主动转运(需要Na +载体蛋白,消耗ATP); d 为易化扩散(需要Na +通道蛋白)。 (2)理清Na +通道和K +通道开闭与动作电位的关系

①极化状态静息时(ab):K+通道开放,Na+通道关闭。 ②去极化(bc)和反极化(cd):Na+通道开放,Na+内流,膜内电位上升。 ③复极化(df):Na+通道关闭,K+外流,膜电位下降。 ④恢复静息电位:K+通道重新开放。 (3)静息电位与动作电位的测量 ①静息电位的测量 灵敏电流计一极与神经纤维膜外侧连接,另一极与膜内侧连接,只观察到指针发生一次偏转(如图甲)。两极都与神经纤维膜外侧(或膜内侧)相连接时,指针不偏转(如图乙)。 ②动作电位的测量 灵敏电流计的两极都连接在神经纤维膜外(或内)侧,可观察到指针发生两次方向相反的偏转。 (4)动作电位传导过程图解和传导特点

生理第二章 单项 答案

122 复查测验:第二章单项选择题 用户 陈飞医学1104 已提交12-10-7 上午11:53 名称 第二章单项选择题 状态已完成 分数得56 分,满分60 分 说明 问题1得 1 分,满分 1 分骨骼肌细胞中的三联管结构是指 所选答案:每个横管及其两侧的终池 问题 运动神经纤维末梢释放ACh属于 所选答案:出胞 问题3 得0 分,满分 1 分在骨骼肌收缩实验中,当后一刺激落在前一次收缩的舒张期内,会引起 所选答案:完全强直收缩 问题 生理学上所谓的兴奋性实质上是指 所选答案:细胞在受到刺激时产生动作电位的能力 问题 平滑肌细胞兴奋时,钙离子来自 所选答案:细胞外液、肌浆网和其他钙库 问题 下列关于平滑肌特性的说法,错误的是 所选答案:细肌丝结构中含有肌钙蛋白

问题 与动作电位的去极相有关的离子通道是 所选答案: 电压门控通道 问题 神经-骨骼肌接头处的化学递质是 所选答案: 乙酰胆碱 问题 当神经冲动到达神经末梢时 所选答案: 钙离子通道开放 问题 大多数细胞产生和维持静息电位的主要原因是 所选答案: 细胞内高K +浓度和安静时膜主要对K + 有通透性 问题 白细胞吞噬细菌是属于 所选答案: 入胞 问题 判断组织兴奋性高低的简便指标是 所选答案: 阈强度 问题 骨骼肌细胞中横管的主要功能是 所选答案: 将兴奋传向肌细胞深部 问题 肌肉舒张时,肌浆中的钙离子被何处的钙泵转运? 所选答案: 肌浆网膜 问题 运动终板膜上的乙酰胆碱受体是

所选答案: N 2受体 问题 心肌不会发生强直收缩,其原因是 所选答案: 心肌是机能合胞体 问题 刺激引起兴奋的基本条件是使膜电位达到 所选答案: 阈电位 问题 18 得 1 分,满分 1 分 骨骼肌受到一次阈下刺激时 所选答案: 无收缩反应 问题 动作电位的特点之一是 所选答案: 各种可兴奋细胞动作电位的幅度和持续时间可以各不相同 问题 以下关于肌球蛋白的说法,错误的是 所选答案: 横桥可与肌钙蛋白进行可逆的结合 问题 组织处于绝对不应期时,其兴奋性为 所选答案: 零 问题 在骨骼肌收缩实验中,后一刺激落在前—刺激引起的收缩期内,会引起 所选答案: 完全强直收缩 问题 神经细胞的阈电位是指 所选答案: 造成膜对钠离子通透性突然增大的临界膜电位 问题 物质在特殊细胞膜蛋白质帮助下顺电化学递度通过细胞膜的过程属于

细胞生物学简答论述题

细胞wai膜的功能 ◆分开细胞质与外环境,使细胞形成相对独立的内环境。 ◆保持细胞与外环境的联系,进行物质能量交换及信息传递。 内膜系统 构成许多细胞器的界膜,将各细胞器与胞质溶胶分隔开,以行使不同的功能 不同功能的细胞器相互联系,在细胞合成、代谢、分泌等过程中起重要作用。 膜糖类功能 ?保护作用:提高膜的稳定性,增强膜蛋白对蛋白酶的抗性。 ?分子识别:参与细胞的信号识别、细胞的粘着。 (膜糖脂、糖蛋白中的糖基是细菌和病毒感染时的识别和结合位点。) ?帮助新合成蛋白质运输和定位。 ?免疫原性:ABO血型 1.简述细胞膜的特性。 (1)细胞膜的不对称性 膜脂分布的不对称;膜蛋白分布的不对称;糖类分布的不对称,总在非胞质面 (2)细胞膜的流动性 生物膜的流动性是指膜脂和膜蛋白处于不断的运动状态,是保证正常膜功能的重要条件。细胞膜的流动性细胞进行生命活动的必要条件,脂双层是一种二维流体,处于晶态和液态之间。膜脂分子能进行多种运动:①侧向扩散②旋转运动③摆动运动④伸缩震荡⑤翻转运动⑥旋转异构 (3)膜蛋白的流(运)动性 侧向扩散:膜蛋白可以在膜质中自由漂浮和在膜表面自由扩散;旋转运动:膜蛋白能围绕与膜平面垂直的轴进行旋转运动,但旋转运动的速度比侧向扩散更为缓慢。 2.何为离子通道蛋白?在胞膜物质运输中该类蛋白有何作用?。。。。。。。 (channelprotein)Ca2+、Na+、K+、Cl-、HCO3-等离子能经膜上的孔道扩散。又名孔道蛋白。构成跨膜的亲水性通道,允许适当大小,携带一定电荷的溶质通过,故称为“离子通道”(ionchannel)。一种离子通道只通过某种离子,选择性较高。离子通道运输速度也很高,约106 个离子/秒,比任何载体蛋白的运输速度大几十到上百倍。它不被“饱和”,动力学曲线是一斜线,但由于孔道蛋白分子对通过的离子有一定的电吸引,限定了它的最大运输速度。 离子通道有两类,一类持续开放,例如K+漏通道(K+leakchannel),K+由此通道扩散,在膜电压—75mV 时,出胞和入胞的K+一样多,达到动态平衡,起到调节和维持一定膜电压的作用。另一类通道间断开放,在某些因素作用时才开放,故称为门通道(gatedchan-nel),共有三种:(1)电压-门控通道,对跨膜电压的变化发生反应。例如神经冲动传到神经末梢时,末梢质膜上的Ca2+-电压门通道暂时开放,Ca2+涌入末梢内,促使其释放神经递质。(2)配体-门控通道,当配体与膜表面特异受体结合后,通道开放。配体可以是神经递质、离子、核苷酸等各种信号物质。如神经-肌肉接头处,肌膜乙酰胆碱受体即是一个乙酰胆碱控制的Na+-K+通道,神经末梢释放乙酰胆碱与受体结合,通道开放,Na+内流,然后K+外流,造成肌膜去极化,如此将化学信号转变为电信号,最后导致肌肉收缩。(3)应力激活通道,应力激活通道是通道蛋白感应力而改变构象,开启通道使“门”打开,离子通过亲水通道进入细胞,引起膜电位变化,产生电信号。 3.举例说明离子泵在主动运输中的作用。 离子泵是膜运输蛋白之一。也看作一类特殊的载体蛋白,能驱使特定的离子逆电化学梯度穿过质膜,同时消耗A TP形成的能源,属于主动运输。离子泵本质是受外能驱动的可逆性ATP酶。外能可以是电化学梯度能、光能等。被活化的离子泵水解A TP,与水解产物磷酸根结合后自身发生变构,从而将离子由低浓度转运到高浓度处,这样ATP的化学能转变成离子的电化学梯度能。 由ATP直接提供能量的钠钾泵主动运输 过程:Na+-K+泵由两个亚基组成(α和β),α亚基是一个跨膜多次的整合膜蛋白,具有ATP酶活性, β亚基是具有组织特异性的糖蛋白.工作模式是在细胞内侧α亚基与Na+结构促进ATP水解, α亚基上的一个天冬氨酸残基磷酸

乙酰胆碱

乙酰胆碱(acetylcholine,ACh)是一种神经递质,能特异性的作用于各类胆碱受体,在组织内迅速被胆碱酯酶破坏,其作用广泛,选择性不高。临床不作为药用。 在神经细胞中,乙酰胆碱是由胆碱和乙酰辅酶A在胆碱乙酰移位酶(胆碱乙酰化酶)的催化作用下合成的。由于该酶存在于胞浆中,因此乙酰胆碱在胞浆中合成,合成后由小泡摄取并贮存起来。去甲肾上腺素的合成以酪氨酸为原料,首先在酪氨酸羟化酶的催化作用下合成多巴,再在多巴脱羧酶(氨基酸脱竣酶)作用下合成多巴胺(儿茶酚乙胺),这二步是在胞浆中进行的;然后多巴胺被摄取入小泡,在小泡中由多巴胺β羟化酶催化进一步合成去甲肾上腺素,并贮存于小泡内。多巴胺的合成与去甲肾上腺素揆民前二步是完全一样的,只是在多巴胺进入小泡后不再合成去甲肾上腺素而已,因为贮存多巴胺的小铴内不含多巴胺β羟化酶。5-羟色胺的合成以色氨酸为原料,首先在色氨酸羟化酶作用下合成5-羟色氨酸,再在5-羟色胺酸脱竣酶(氨基酸脱竣酶)作用下将5-羟色氨酸合成5-羟色胺,这二步是在胞浆中进行的;然后5-羟色胺被摄取入小泡,并贮存于小泡内。γ-氨基丁酸是谷氨酸在谷氨酸脱羧催化作用下合成的。肽类递质的全盛与其他肽类激素的合成完全一样,它是由基因调控的,并在核糖体上通过翻译而合成的。 进入突触间隙的乙酰胆碱作用于突触后膜发挥生理作用后,就被胆碱酯酶水解成胆碱和乙酸,这样乙酰胆碱就被破坏而推动了作用,这一过程称为失活。去甲肾上腺素进入突触间隙并发挥生理作用后,一部分被血液循环带走,再在肝中被破坏失活;另一部分在效应细胞内由儿茶酚胺内由儿茶酚胺位甲基移位酶和单胺氧化酶的作用而被破坏失活;但大部分是由突触前膜将去甲肾上腺素再摄取,回收到突触前膜处的轴浆内并重新加以利用 乙酰胆碱的生理功能 1.心血管系统副交感神经通过其末梢释放ACh可支配心血管系统功能,主要产生以下作用: (1)血管扩张给正常成人静脉注射小剂量(20μg ~50 μg/min)ACh 可使全身血管扩张,也包括肺血管和冠状血管。其扩血管作用主要由于激动血管内皮细胞M3胆碱受体亚型,导致内皮依赖性舒张因子(endothelium-derived relaxing factor, EDRF)即一氧化氮(nitric oxide, NO)释放,从而引起邻近平滑肌细胞松弛。如果血管内皮受损,则ACh的上述作用将不复存在,反可引起血管收缩。此外,ACh所致的肾上腺素能神经末梢NA释放减少也与其扩血管作用有关。由于血管扩张引起血压短暂下降,常伴有反射性心率加快。 (2)减慢心率大剂量的ACh可使心率减慢,此作用亦称负性频率作用( negative chronotropic action)。此与药物抑制房室结传导有关,

作用于乙酰胆碱受体药物全真练习

作用于乙酰胆碱受体药物 Ⅰ本章考试大纲 续表 Ⅱ考试大纲精解 一、胆碱受体激动药 1.乙酰胆碱(ACh):表现为全部的M、N受体兴奋的作用。 2.毛果芸香碱(匹鲁卡品):M受体激动药。 【药理作用】①眼:缩瞳、降低眼内压及调节痉挛。②腺体:激动腺体的M受体,使分泌增加,以汗腺和唾液腺最为明显。③平滑肌:除眼内平滑肌,还可兴奋肠道、支气管、子宫、膀胱和胆道平滑肌。 【临床应用】①青光眼:开角型和闭角型均有效。②缩瞳:与阿托品交替使用防止虹膜睫状体炎症时的组织粘连。 3.烟碱:N胆碱受体激动药。 二、抗胆碱酯酶药和胆碱酯酶复活药 (一)易逆性胆碱酯酶抑制剂 1.新斯的明:①兴奋骨骼肌作用强,主要用于重症肌无力症;②兴奋平滑肌作用强,尤其是胃肠和膀胱平滑肌,用于术后腹气胀和尿潴留;③引起心率减慢,传导减慢,用于阵发性室上性心动过速;④治疗筒箭毒碱中毒。不良反应主要为过量可引起“胆碱能危象”。禁用于支气管哮喘和机械性肠梗阻、心绞痛和尿路梗阻等。 2.毒扁豆碱(依色林):易通过血脑屏障,毒性大;主要用于青光眼,作用比毛果芸香碱强而持久。

(二)难逆性胆碱酯酶抑制剂——有机磷酸酯类 【中毒机制】与胆碱酯酶结合,生成磷酰化胆碱酯酶,使胆碱酯酶失去水解ACh能力,ACh在体内增多,产生M和N受体过度兴奋及中枢症状。 【急性中毒症状】①M样作用症状;②N样症状;③中枢神经系统症状:轻度中毒以M 样症状为主;中度中毒同时出现M、N样症状;严重中毒除M、N样症状,还有中枢神经系统症状。 【中毒解救】阿托品对抗M受体过度兴奋所产生的症状;不能对抗骨骼肌震颤症状,也不能恢复胆碱酯酶活性。解救有机磷酸酯类中毒需碘解磷定或氯磷定与阿托品合用。 (三)胆碱酯酶复活剂——碘解磷定(PAM-Ⅰ) 溶解度低,含碘,刺激性大,必须静脉注射。可恢复胆碱酯酶活性;直接与体内游离的有机磷酸酯结合,生成无毒的磷酰化解磷定排出体外;对体内已积聚的ACh所产生M的样表现无对抗作用;可迅速解除骨骼肌震颤症状。对内吸磷、对硫磷等疗效好,对敌百虫、敌敌畏效果差,对乐果无效。有时引起咽痛及腮腺肿大。 三、抗胆碱药分类 (一)M胆碱受体阻断药 1.阿托品:随剂量增加依次出现腺体分泌减少,瞳孔散大,调节麻痹,解除平滑肌痉挛,心率加快,大剂量中枢兴奋。 【作用与用途】①抑制唾液腺、汗腺等外分泌腺分泌:用于盗汗、流涎和麻醉前给药。②眼睛:散瞳,用于检查眼底、虹膜炎。不良反应为致眼内压升高;调节麻痹用于验光。③松弛胃肠、膀胱等平滑肌:主要用于内脏绞痛,胆绞痛需配用度冷丁。④心脏:治疗量时可兴奋迷走中枢,使心率减慢;大剂量使心率快,治疗心动过缓和房室传导阻滞。 【临床应用】用于抗休克作用,大剂量扩张血管,改善微循环,治疗感染性休克。解除M 样作用症状,治疗有机磷酸酯类引起的中毒。 【不良反应】口干、视近物模糊、瞳孔散大等。治疗休克时要补充血容量;体温在39℃以上,用阿托品前要先降温;前列腺肥大、青光眼及有眼压升高者应禁用。 【中毒解救】对症处理。用镇静药或抗惊厥药对抗其中枢兴奋症状,同时用毛果芸香碱等对抗其周围作用,毒扁豆碱对抗其中枢症状。 2.东莨菪碱:外周作用与阿托品相似,中枢镇静及抑制腺体分泌作用强于阿托品。主要用于麻醉前给药、震颤麻痹、防晕止吐和感染性休克。 3.山莨菪碱(654-2):作用与阿托品相似,解痉作用选择性高,有较强的改善微循环作用,抑制唾液分泌和扩瞳作用较阿托品弱,中枢兴奋作用很弱。主要用于感染性休克和胃肠绞痛。 4.阿托品的合成代用品:①合成扩瞳药:后马托品。②合成解痉药:丙胺太林(普鲁本辛)、贝那替秦、哌仑西平。

南方医科大学生理题库

第一章细胞的基本功能 1.细胞膜脂质双分子层中,镶嵌蛋白的形式:E A.仅在内表面B.仅在外表面 C.仅在两层之间D.仅在外表面与内面 E.靠近膜的内侧面,外侧面,贯穿整个脂质双层三种形式均有 2.细胞膜脂质双分子层中,脂质分子的亲水端:D A.均朝向细胞膜的内表面 B.均朝向细胞的外表面 C.外层的朝向细胞膜的外表面,内层的朝向双子层中央 D.都在细胞膜的内外表面E.面对面地朝向双分子层的中央 3.人体O2.CO2进出细胞膜是通过:A A.单纯扩散B.易化扩散C.主动转运D.入胞作用E.出胞作用 4.葡萄糖进入红细胞膜是属于:C A.主动转运B.单纯扩散C.易化扩散D.入胞作用E.吞饮 5.安静时细胞膜内K+向膜外移动是由于:B A.单纯扩散B.单纯扩散.C.易化扩散D.出胞作用E.细胞外物入胞作用6.以下关于细胞膜离子通道的叙述,正确的是:C A.在静息状态下,Na+K+通道都处于关闭状态 B.细胞受刺激刚开始去极化时,就有Na+通道大量开放 C.在动作电位去极相,K+通道也被激活,但出现较慢 D.Na+通道关闭,出现动作电位的复极相E.Na+、K+通道被称为化学依从性通道7.在一般生理情况下,每分解一分子ATP,钠泵运转可使:D A.2个Na+移出膜外B.2个K+移人膜内 C.2个Na+移出膜外,同时有2个K+移人膜内 D.3个Na+移出膜外,同时有2个K+移人膜内 E.2个Na+移出膜外,同时有3个K+移人膜内 8.细胞膜内外正常的Na+和K+浓度差的形成和维持是由于;D A.膜在安静时对K+通透性大 B.膜在兴奋时对Na+通透性增加 C Na+,K+易化扩散的结果 D.膜上Na+—K+泵的作用

乙酰胆碱及受体的作用和与人类健康的关系

乙酰胆碱及受体的作用和人类健康 王帅 (09级辽宁大学生命科学院生物技术专业本科生 291303118) [ 摘要]乙酰胆碱( acetylcho line, ACh) 是一种经典的兴奋性神经递质, 通过结合特异受体, 在神经细胞之间或神经细胞与效应器细胞之间中起着信息传递作用。ACh 及其受体存在于从细菌到人类、从神经细胞到其他多种非神经细胞中, 提示它是一类与系统发生相关的古老分子, 可能不仅仅具有作为生理性递质的传递功能。多种人类疾病与ACh 及其受体相关, 尤其是近年来的研究发现ACh 及其受体在多种肿瘤中发挥自分泌和旁分泌因子作用, 参与细胞的生长调节, 甚至与肿瘤的发生发展相关。因此, ACh 涉及到神经系统外非胆碱能传递的作用显得格外引人注目, 可能成为新的肿瘤治疗靶标。 [ 关键词]受体;乙酰胆碱;人类健康;肿瘤 1 乙酰胆碱及其受体简述 乙酰胆碱( acetylcho line, ACh) 是一种经典的兴奋性神经递质, 包括外周神经如运动神经、自主神经系统的节前纤维和副交感神经节后纤维均合成和释放这种神经递质。ACh 由胆碱( choline) 和乙酰辅酶A 合成, 由胆碱乙酰化酶( choline acety lase, ChAT ) 催化,随后进入囊泡贮存。当动作电位沿神经到达神经末梢时, 触发神经末梢Ca2+ 通道开放,囊泡与突触前膜融合、破裂, ACh 释放入突触间隙或接头间隙, 作用于突触后膜或效应细胞膜的乙酰胆碱受体( acet ylcholine recepto rs, AChRs) 引起生理效应。其中位于副交感神经节后纤维所支配的效应器细胞膜的胆碱受体对以毒蕈碱为代表的拟胆碱药较为敏感, 故称为毒蕈碱型胆碱受体( muscar inic acet ylcho line receptor s, mAChRs) ; 位于神经节细胞膜和骨骼肌细胞膜的胆碱受体对烟碱比较敏感, 故称为烟碱型胆碱受体( nicot inic acety lcholine r ecepto rs,nAChRs) 。mAChRs 属于G 蛋白偶联受体家族, nAChRs 是配体门控的离子通道蛋白[1] , 属于具有共同起源的半胱氨酸环受体家族, 在中枢神经系统、周围神经系统和肌肉组织广泛表达。 2 乙酰胆碱受体与疾病 神经肌肉接头处的烟碱型受体是第一个被认识和命名的受体, 也是第一个采用电生理手段进行研究及获得生化性质的受体。在哺乳类, nAChRs 可分为肌肉和神经2 种类型, 肌肉型nAChRs 亚单位种类和组合形式比较固定, 位于神经肌肉接头处, 介导神经与肌肉间的递质转换作用; 而神经型nAChRs 虽然也由类似的 5 个亚单位构成, 但亚单位类型和组合形式变化极大, 是神经系统nAChRs 功能复杂化的分子基础。除原始的神经肌肉间和运动自主神经细胞间的快速神经递质转换作用之外, nAChRs 还与多种中枢神经系统的功能有关,

药理学第五节胆碱受体激动药和作用于胆碱酯酶药

打印本页[题目答案分离版]字体:大中小 一、A1 1、毛果芸香碱引起调节眼睛痉挛的机制是激动 A、瞳孔括约肌上的M受体 B、晶状体上的M受体 C、睫状肌上的M受体 D、悬韧带上的M受体 E、睫状肌上的N2受体 【正确答案】C 【答案解析】 毛果芸香碱调节痉挛(视近物清楚、视远物模糊):激动睫状肌M受体,使睫状肌收缩。【该题针对“胆碱激动剂和胆碱酯酶”知识点进行考核】 【答疑编号100393792,点击提问】 2、毒扁豆碱和新斯的明的共同机制主要是 A、均用于青光眼的治疗 B、均可激动N2受体 C、均刺激运动神经纤维释放乙酰胆碱 D、均可逆性抑制胆碱酯酶活性 E、均易透过血脑屏障 【正确答案】D 【答案解析】 【该题针对“胆碱激动剂和胆碱酯酶”知识点进行考核】 【答疑编号100393794,点击提问】 3、毛果芸香碱不具有的药理作用是

A、腺体分泌增加 B、胃肠道平滑肌收缩 C、心率减慢 D、骨骼肌收缩 E、眼压减低 【正确答案】D 【答案解析】 【该题针对“胆碱激动剂和胆碱酯酶”知识点进行考核】 【答疑编号100393795,点击提问】 4、有机磷酸酯类中毒时,M样症状产生的原因是 A、胆碱能神经递质释放增加 B、M胆碱受体敏感性增强 C、胆碱能神经递质破坏减少 D、直接兴奋M受体 E、抑制ACh摄取 【正确答案】C 【答案解析】 有机磷酸酯类中毒M样症状:是蓄积的乙酰胆碱过度地激动外周M受体使有关效应器功能失常所致。 【该题针对“胆碱激动剂和胆碱酯酶”知识点进行考核】 【答疑编号100393796,点击提问】 5、青光眼患者治疗药物首选 A、东莨菪碱 B、阿托品 C、苯海索 D、毛果芸香碱

生理学练习二

动物生理学练习(二) 第五章神经系统 1 .下列中枢神经系统内,兴奋性化学传递特征的描述,错误的是()。 A .单向传递 B .中枢延搁 C ?总和D.兴奋节律不变E .易受内环境条件改变的影响 2 ?下列关于兴奋性突触后电位产生的叙述,错误的是()。 A .突触前轴突末梢去极化 B . Ca2+由膜外进入突触前膜内 C .突触小泡释放递质,并与突触后膜受体结合 D.突触后膜对Na+ K+ Ca2+,特别是对K+的通透性升高 E .突触后膜电位去极化达到阈值时,引起突触后神经元发放冲动 3?突触前抑制产生是由于()。 A .突触前轴突末梢去极化 B .突触前轴突末梢超极化 C .突触后膜的兴奋性发生变化 D .突触前轴突末梢释放抑制性递质 E .突触后神经元超极化 4. M受体()。 A .位于骨骼肌神经一肌肉接头的肌膜上 B .位于植物神经节细胞膜上 C .可被酚妥拉明阻断 D .可被儿茶酚胺激活 E .以上都不是 5 ?下列物质中,属于中枢抑制性递质的是()。 A . Y-氨基丁酸、甘氨酸 B .谷氨酸、门冬氨酸 C .肾上腺素、去甲肾上腺素 D .多巴胺、酪氨酸 E .乙酰胆碱 6 ?下列关于儿茶酚胺与B受体结合后产生效应的描述中,错误的是()。 A .血管舒张 B .子宫舒张 C .小肠平滑肌舒张 D .心脏活动减弱 E .支气管舒张 7 ?下列哪项属于胆碱能受体()。 A . M、a B . M、B C . M、a 1 和B 2 D . M、a 1 和B 1 E . M、N1 和N2 8 ?一般认为,既可作为突触前抑制,也可作为突触后抑制的递质是()。 A .多巴胺 B .甘氨酸 C . 5-羟色胺 D . Y -氨基丁酸 E .去甲肾上腺素 9?交感神经节后纤维的递质是()。 A .乙酰胆碱 B .去甲肾上腺素 C . 5-羟色胺 D .多巴胺 E .去甲肾上腺素或乙酰胆碱 10 ?下列关于丘脑功能的描述,正确的是()。 A .是所有感觉传入纤维的换兀站 B .是感觉的最高级中枢 C .与大脑皮质的联系称为丘脑皮质投射 D .感觉接替核属非特异投射系统 E .特异投射系统可维持大脑的清醒状态 11 ?痛觉的感受器可能属于()。 A .机械感受器 B .化学感受器 C .温度感受器D.触压感受器E .牵张感受器 12 ?脊髓突然被横断以后,断面以下的脊髓所支配的骨骼肌的紧张度()。 A .增强,但能恢复正常B.降低,但不能恢复正常 C .降低,但能恢复正常 D .增强,但不能恢复正常 E .基本不变 13 ?维持躯体姿势的最基本的反射是()。 A .屈肌反射 B .对侧伸肌反射C.腱反射D.肌紧张反射E .以上都不是

胆碱受体激动药习题

药理学练习题:第六章胆碱受体激动药一、选择题 A型题 1.毛果芸香碱对眼睛的作用是: A.瞳孔缩小,升高眼内压,调节痉挛 B.瞳孔缩小,降低眼内压,调节痉挛 C.瞳孔扩大,升高眼内压,调节麻痹 D.瞳孔扩大,降低眼内压,调节麻痹 E.瞳孔缩小,降低眼内压,调节麻痹 2.毛果芸香碱的缩瞳机制是: A.阻断虹膜a受体,开大肌松弛 B.阻断虹膜M胆碱受体,括约肌松弛 C.激动虹膜a受体,开大肌收缩 D.激动虹膜M胆碱受体,括约肌收缩 E.抑制胆碱酯酶,使乙酰胆碱增多 3.下列关于卡巴胆碱作用错误的是: A.激动M胆碱受体 B.激动N胆碱受体 C.用于术后腹气胀与尿潴留 D.作用广泛,副作用大 E.禁用于青光眼 4、氨甲酰胆碱临床主要用于: A.青光眼 B.术后腹气胀和尿潴留 C.眼底检查

D.解救有机磷农药中毒 E.治疗室上性心动过速 5、对于ACh,下列叙述错误的是: A.激动M、N-R B.无临床实用价值 C.作用广泛 D.化学性质稳定 E.化学性质不稳定 6、与毒扁豆碱相比,毛果芸香碱不具备哪种特点? A.遇光不稳定 B.维持时间短 C.刺激性小 D.作用较弱 E.水溶液稳定 7、切除支配虹膜的神经(即去神经眼)后再滴入毛果芸香碱,则应: A.扩瞳 B.缩瞳 C.先扩瞳后缩瞳 D.先缩瞳后扩瞳 E.无影响 8、小剂量ACh或M-R激动药无下列哪种作用: A.缩瞳、降低眼内压 B.腺体分泌增加 C.胃肠、膀胱平滑肌兴奋 D.骨骼肌收缩

E.心脏抑制、血管扩张、血压下降 9、与毛果芸香碱相比,毒扁豆碱用于治疗青光眼的优点是: A.作用强而久 B.水溶液稳定 C.毒副作用小 D.不引起调节痉挛 E.不会吸收中毒 10、可直接激动M、N-R的药物是: A.氨甲酰甲胆碱 B.氨甲酰胆碱 C.毛果芸香碱 D.毒扁豆碱 E.加兰他敏 B型题 问题11~13 A.激动M-R及N-R B.激动M-R C.小剂量激动N-R,大剂量阻断N-R D.阻断M-R和N-R E.阻断M-R 11、ACh的作用是: 12、毛果芸香碱的作用是: 13、氨甲酰胆碱的作用是: 问题14~15 A.用于青光眼和虹膜炎

药理学—— 胆碱受体激动药和作用于胆碱酯酶药知识点归纳

药理学——胆碱受体激动药和作用于胆碱酯酶药知识点归纳拟胆碱药可分为: 一、胆碱受体激动药: 1.M、N受体激动药: 【乙酰胆碱(Ach)的药理作用】

2.M 受体激动剂: 【毛果芸香碱的药理作用、临床应用和不良反应】 有关毛果芸香碱的叙述,错误的是 A.能直接激动M受体,产生M样作用 B.可使汗腺和唾液腺的分泌明显增加 C.常用制剂为1%滴眼液 D.可用于治疗青光眼 E.可使眼内压升高 『正确答案』E 毛果芸香碱缩瞳作用的机制是 A.阻断M受体,使瞳孔括约肌松弛 B.激动M受体,使瞳孔括约肌收缩 C.激动α受体,使瞳孔扩大肌收缩 D.阻断α受体,使瞳孔扩大肌松弛 E.激动β受体,使瞳孔扩大肌收缩 『正确答案』B

眼的调节

二、作用于胆碱酯酶药 (一)抗胆碱酯酶药: 抑制AChE的活性,致使ACh不能被水解而大量堆积,从而激动M受体和N受体,产生M样作用和N样作用。 1.易逆性胆碱酯酶抑制剂 【体内过程】 季铵类化合物,不易穿过血脑屏障和血眼屏障。 【新斯的明的药理作用、临床应用和不良反应】 新斯的明的药理作用特点是 A.兴奋骨骼肌作用最强 B.兴奋胃肠平滑肌作用最强 C.促进腺体分泌作用最强 D.兴奋中枢作用最强 E.抑制心脏作用最强 『正确答案』A

『答案解析』新斯的明对骨骼肌的N2受体既有间接作用,又有直接作用。 新斯的明治疗重症肌无力的机制是 A.兴奋大脑皮质 B.激动骨骼肌M胆碱受体 C.促进乙酰胆碱合成 D.抑制胆碱酯酶和激动骨骼肌N2胆碱受体 E.促进骨骼肌细胞Ca2+内流 『正确答案』D 新斯的明过量可致 A.中枢兴奋 B.中枢抑制 C.胆碱能危象 D.窦性心动过速 E.青光眼加重 『正确答案』C 【其他药物】毒扁豆碱 也称依色林,可透过血脑屏障,对外周和中枢都有较强的作用。 眼内局部应用时,作用类似于毛果芸香碱,但较强而持久。对睫状肌作用强,容易出现头痛、眼瞳视力模糊。 临床主要为局部用于治疗急性青光眼,起效较快,刺激性亦较强,长期给药时,患者不易耐受,可先用本品滴眼数次,后改用匹鲁卡品维持疗效。 2.难逆性抗胆碱酯酶药: 【种类】敌百虫敌敌畏马拉硫磷 对硫磷内吸磷乐果 【毒理】 有机磷+胆碱酯酶=磷酰化胆碱酯酶复合物(不可复活) →老化! 【中毒表现】M 样症状→轻度中毒 M + N样症状→中度中毒 M + N +中枢症状→重度中毒

气道乙酰胆碱释放机制及其受体表达

气道乙酰胆碱释放机制及其受体表达 1 序言 气道胆碱能系统(Cholinergic system)在调节气道平滑肌的张力方面发挥重要作用,且与一系列的生理病理反应有关。乙酰胆碱(ACh)的合成,在神经和非神经系统可能是不同的。在神经节的传递和效应器的连接处,ACh是经典的神经递质[1]。有充分的证据表明,ACh可以从许多非神经细胞合成和释放,在这些细胞上有烟碱型(N)和毒蕈碱型(M)两种胆碱受体[2],这些细胞可以作为ACh的靶目标。本文将综述气道胆碱能系统的释放和功能,描述胆碱受体及它们的信号系统。 2 ACh-神经递质和旁分泌介质 2.1 神经性ACh的合成和释放在自主神经节前和副交感神经节后的胆碱能神经末端,通过特定的高亲和力胆碱转运体(ChT1)在细胞外转运吸收胆碱到细胞内,乙酰辅酶A和胆碱(choline)在胆碱乙酰转移酶(ChAT)的作用下合成ACh[3]。然后通过囊胞ACh转运体(V AChT),在跨囊胞质子梯度作用下在突触囊胞中聚集[4]。最后,去极化导致的钙离子内流引起ACh的释放。释放的ACh可以和靶细胞上的受体结合(结后受体),同时和胆碱能神经末端的自身受体结合(结前的自身受体)。ACh被胆碱酯酶(AChE)分解,作用中止。在胆碱能神经附近不论是在结前还是在结后,都有胆碱酯酶的高度表达。 副交感神经节后末端存在释放ACh抑制性和兴奋性的自身受体。其中有抑制性的M 2毒蕈碱自身受体、α 2肾上腺素受体、前列腺素类EP 3受体、内皮素1受体、μ阿片受体和大麻素受体。兴奋性的有β 2肾上腺素受体和速激肽NK 2受体。β 2肾上腺素受体介导的兴奋可能是通过激活腺苷酸环化酶 (AC),另外磷酸二酯酶抑制剂(ADEI)也能够促进气道副交感神经的ACh的释放。一氧化氮(NO)在气道副交感神经纤维ACh的释放表现出双重作用,小量的直接抑制作用被间接的神经激肽兴奋效果所掩盖[1]。 2.1.1 ACh释放障碍证据表明抑制性毒蕈碱M 2自身受体功能异常导致了ACh的释放增加,使迷走神经介导支气管收缩反射加强,常见于过敏原接触后。活化的嗜酸性粒细胞释放阳离子蛋白,特别是主要的碱性蛋白(MBP),可以导致毒蕈碱M 2受体功能异常。哮喘患者的嗜酸性粒细胞阳离子蛋白增加。

生理学概论 期末考试 题库

维持机体稳态的最重要的调节过程是:负反馈 在人体功能调节的三种主要方式中,与神经调节相比较,体液调节的作用:较持久 在人体功能调节的三种主要方式中,神经调节的基本方式是:反射 机体的内环境是指:细胞外液 内环境的稳态是指:细胞外液理化性质和化学成分相对稳定 细胞1 人体内O2、CO2进出细胞膜主要是通过:单纯扩散 在一般生理情况下,钠泵运转时,每分解一分子ATP,可使3Na+,2K+同时移入膜内 小肠黏膜上皮细胞吸收葡萄糖和氨基酸主要是通过:继发性主动转运 细胞膜内外正常的Na+和K+浓度差的形成和维持是由于:膜上钠钾泵的作用 载体介导的易化扩散的特点:结构体异性、有饱和性、有竞争性抑制、与膜蛋白质有关(不具有电压依赖性) 细胞2 静息电位增大(指绝对值)的过程或状态,称为:超极化 神经纤维动作电位的去极化过程主要是由下列哪种离子内流形成的?Na+ 神经纤维动作电位的复极化过程主要是由下列哪种离子外流形成的?K+ 细胞的静息电位通常表现为:膜外带正电,膜外带负电 阈电位是指:造成细胞膜对Na+通透性突然增大的临界膜电位 动作电位的“全或无”特性是指同一细胞动作电位的幅度:与刺激强度和传导距离无关 具有局部兴奋特征的电信号是:终板电位 有髓神经纤维的传导特点是:跳跃式传导 单根神经纤维动作电位中,正后电位出现在:负后电位之后 关于神经纤维静息电位的形成机制: 1.细胞外的K+浓度小于细胞内的K+浓度 2.细胞膜对Na+有点通透性 3. 细胞膜主要对K+有通透性 细胞3 骨骼肌细胞中纵管的功能是:储存、释放、聚积Ca+ 在神经-骨骼肌接头的兴奋传递中,消除乙酰胆碱的酶是:胆碱酯酶 兴奋通过神经-骨骼肌接头时,乙酰胆碱与受体结合使终板膜:对Na+,K+通透性增加,发生去超极化。 骨骼肌收缩和舒张的基本功能单位是:肌节 神经-骨骼肌接头处的化学递质是:乙酰胆碱 肌张力最大的收缩是:完全强直收缩 肌肉的初长度取决于:前负荷 肌细胞中的三联管结构指的是:每个横管及其两侧的终末池 关于骨骼肌收缩机制,下列哪项是错误的:Ca+与横桥结合 骨骼肌发生收缩时,能保持长度不变的是:暗带 神经-骨骼肌接头处兴奋传递的特点不包括:双向传递

胆碱受体激动剂

胆碱受体激动剂 (总分:71.00,做题时间:90分钟) 一、A型题(总题数:34,分数:34.00) 1.具有H2受体拮抗作用的药物为 ?A.溴丙胺太林(Propantheline Bromide) ?B.贝那替秦(Benactyzine) ?C.盐酸苯海索(Trihexyphenidyl Hy-droehloride) ?D.哌仑西平(Pirenzepine) ?E.樟柳碱(Anisodine) (分数:1.00) A. B. C. D. √ E. 解析: 2.以下药物中不属于拟胆碱药物的是 ?A.匹鲁卡品(Pilocarpine) ?B.氯醋甲胆碱(Methacholine Chloride) ?C.毒扁豆碱(Physostigmine) ?D.氯贝胆碱(Bethanechol Chloride) ?E.卡巴碱(Carbachol) (分数:1.00) A. B. C. √ D. E. 解析: 3.与安贝氯铵(Ambenonium Chloride)结构和活性相近的化合物是 ?A.氢溴酸加兰他敏(Galantamine Hy-drobromide) ?B.溴化新斯的明(Neostigmine) ?C.毒扁豆碱(Physostigmine) ?D.依酚溴铵(Edrophonium Bromide) ?E.他克林(Tactine)

(分数:1.00) A. B. C. D. √ E. 解析: 4.下列哪项与氯琥珀胆碱(Suxamethonium Chloride)的性质不符 ?A.酯类化合物,难溶于水 ?B.季铵盐类化合物,易溶于水 ?C.水溶液中不稳定,易被水解 ?D.去极化性肌松药 ?E.在血浆中极易被水解,作用时间短 (分数:1.00) A. √ B. C. D. E. 解析: 5.对Ml受体拮抗剂选择性较强的M乙酰胆碱受体拮抗剂是 ?A.阿托品(Atropine) ?B.(-)-东莨菪碱((-)-Scopo-lamine) ?C.山莨菪碱(Anisodamine) ?D.樟柳碱(Anisodine) ?E.毒扁豆碱(Physostigmine) (分数:1.00) A. B. √ C. D. E. 解析: 6.下述关于乙酰胆碱酯酶抑制剂的表述中,错误的是 ?A.乙酰胆碱酯酶抑制刑能使乙酰胆碱在突触处的浓度增高

(医疗药品)药理学讲稿之第六章胆碱受体激动药和作用于胆碱酯酶药

第六章胆碱受体激动药和作用于胆碱酯酶药 第一节胆碱受体激动药 胆碱受体激动药:可与胆碱受体结合,激动受体,产生与递质乙酰胆碱相似的作用。 按其对受体亚型的选择性分三种:1、M、N胆碱受体激动药;2、M胆碱受体激动药;3、N胆碱受体激动药; 一、M、N胆碱受体激动药 既可兴奋M受体,产生M样作用,也可兴奋N受体,产生N样作用。 (一)乙酰胆碱:胆碱能神经递质 1、性质:(1)季胺类化合物,化学性质不稳定,遇水易分解,脂溶性低; (2)作用专一性差,副作用多,体内易被ACHE分解——工具药——无临床应用价值。讲这个药的目的:有利于学习和掌握胆碱受体激动药和阻断药的药理 2、药理作用: (1)M样作用:小剂量iv便可能性产生与兴奋胆碱能神经节后纤维相似的作用 表现:心率↓,血管扩张、血压下降、支气管和胃肠道平滑肌兴奋、瞳孔缩小、腺 体分泌; (2)N样作用:剂量较大时,兴奋N胆碱受体——作用复杂 N2——骨骼肌兴奋; N1——交感神经节和副交感神经节兴奋,表现复杂,体内大多数器官受胆碱能和肾上腺素能神经双重支配,表现为优势效应: 胃肠道、膀胱平滑肌和腺体——胆碱能优势——平滑肌兴奋,腺体分泌;

心肌和血管——NA神经优势——心肌收缩、血管收缩、血压升高; 肾上腺髓质:NA分泌 (3)中枢作用:胆碱能神经通路,基底节-海马通路,与学习记忆关系密切 增加胆碱能功能,增进学习记忆; 阻断胆碱能通路,导致学习记忆功能减退; (二)氨甲酰胆碱:兴奋M、N受体 特点:1、化学结构与乙酰胆碱相似,直接兴奋M、N受体,也能剌激胆碱能神经末梢释放乙酰胆碱发挥间接作用; 2、选择性比乙酰胆碱高——胃肠道、膀胱和眼部受体——手术后腹胀、尿潴留、青 光眼; 3、副作用多,阿托品解毒效果差——滴眼液——青光眼。 二、M胆碱受体激动药 毒蕈碱:激动M受体——产生M作用——毒性大——不作药用; 毛果芸香碱(匹罗卡品) (一)来源:毛果芸香碱属植物中提取得到的生物碱,也可人工合成; (二)性质:叔胺类化合物,水溶液稳定; (三)药理作用:兴奋M受体——产生M样作用 特点:1、全身用药毒性大; 2、对眼和腺体作用明显——眼科用药,滴眼剂; 作用:1、眼:缩瞳、降低眼内压、调节痉挛

最新胆碱受体激动药和抗胆碱酯酶药

胆碱受体激动药和抗胆碱酯酶药 胆碱能药物 1 、直接作用于胆碱受体的胆碱能药物 1.完全胆碱能 (+)M、N 乙酰胆碱 2.M受体激动剂(神经节后胆碱能) 毛果云香碱 3.N受体激动剂 尼古丁 二、抗胆碱酯酶 1.可逆性:新斯的明 2.顽固性:有机磷酸酯,M受体激动剂 毛果云香碱 (毛果芸香碱,毛果芸香碱),药理作用,1.眼 减数分裂 M (+)瞳孔括约肌收缩瞳孔收缩(2)降低眼内压;瞳孔缩小;鸢尾根变薄;角度间隙变宽;房水恢复顺利;眼压通畅(3)调节痉挛M (+)睫状肌向眼中心收缩悬吊韧带;镜头放松;凸形远物模糊(近视)2.腺体: M (+)腺体分泌、房水形成和循环、、、[临床应用] 青光眼主要是闭角型青光眼,也用于早期开角型虹膜睫状体炎和

散瞳药如阿托品。乙酰胆碱酯酶药物可以与乙酰胆碱酯酶紧密结合,抑制乙酰胆碱酯酶活性,从而使胆碱能神经末梢释放的乙酰胆碱积聚起来,产生胆碱能效应。易逆转乙酰胆碱酯酶药物新斯的明、毒扁豆碱,以及难治性乙酰胆碱酯酶药物 有机磷酸酯是一种易逆转的抗乙酰胆碱酯酶药物新斯的明,其特点是对骨骼肌、的胃肠平滑肌有很强的作用, 腺体虚弱、眼睛、心血管、支气管 极性很大。口服吸收不规则,不易进入中枢和前房,1.兴奋骨骼肌 ① (-)乙酰胆碱酯酶②直接(+)N2-R ③(+)运动神经末梢释放乙酰胆碱刺激胃肠、膀胱平滑肌 抑制心率减慢和传导减慢,,药理作用,临床应用,1。重症肌无力是一种自身免疫性疾病,患者体内有抗N2受体抗体,终板膜中的N2受体数量减少70%-90%,2。术后腹部胀气和尿潴留。阵发性室上性心动过速。非去极化肌松药中毒,如筒箭毒碱,给药途径,口服(15毫克/次,3次/天)、皮下或肌肉 注射(0.25-1.0mg/次,3次/天),禁忌症,支气管哮喘、机械性肠梗阻、尿路梗塞,不良反应,过度M样、N样症状 有毒量毒扁豆碱(乙烯利)引起的胆碱能危象 (毒扁豆碱 源于非洲,是从有毒的小扁豆中提取的生物碱。现在它是人工合

相关主题
文本预览
相关文档 最新文档