当前位置:文档之家› 基于MATLAB的脉宽调制(PWM,SPWM,SVPWM)

基于MATLAB的脉宽调制(PWM,SPWM,SVPWM)

基于MATLAB的脉宽调制(PWM,SPWM,SVPWM)
基于MATLAB的脉宽调制(PWM,SPWM,SVPWM)

第1章绪论

1.1 脉宽调制技术的研究背景——电气传动的发展

随着电力电子技术、微处理器技术的发展以及材料技术尤其是永磁材料技术的进步,电气传动系统,包括交、直流电动机调速及伺服系统,正在向系统高性能、控制数字化、一体化机电的方向发展。直流传动系统控制简单、调速特性好,一直是调速传动领域中的重要组成部分。现代的直流传动系统的发展方向是电动机主极永磁化及换向无刷化,而无刷直流电动机正是在这样的趋势下所发展起来的机电一体化电动机系统。一般意义上的无刷直流电动机(Bruhless DC Motor,BLDCM)是指方波无刷直流电动机,其特征是只需简单的开关位置信号即可通过逆变桥驱动永磁电动机工作。1975年无刷直流电动机首次出现在NASA报告中。之后,由于高性能、低成本的第三代永磁材料的出现,以及大功率、全控型功率器件的出现,使无刷直流电动机系统获得了迅速的发展。1977年,出现了采用钐钻永磁材料的无刷直流电动机。之后不久,无刷直流电动机系统开始广泛采用高磁能积、高矫顽力、低成本的第三代NdFeB永磁材料,且采用霍尔元件作位置传感器,采用三相全桥驱动方式,以提高输出转矩,使其更加实用。1986年,H.R.Bolton对方波无刷直流电动机系统进行了全面的总结,这标志着方波无刷直流电动机系统在理论上、驱动控制方法上已基本成熟。近年来,虽然永磁直流电动机也随着永磁材料技术的发展而得到了性能的提高,依然在直流传动系统中被广泛应用,但直流传动系统已经处于无刷直流电动机大规模普及与应用的阶段。

现代交流传动系统已经由感应电动机为主发展为多机种,尤其是以永磁同步电动机的发展最为显著。一方面,由感应电动机构成的交流调速系统性能依然不断提高,变压变频(VVVF)技术及矢量控制技术完全成熟。通过模仿直流电动机中转矩控制的思路,采用坐标变换,把交流感应电动机的定子电流分解成励磁分量和转矩分量,并通过对磁通和转矩的独立控制、使感应电动机获得类似直流电动机的控制特性。近年来又陆续提出了直接转矩控制、解耦控制等方法,从而使交流调速控制有了突破性的发展,并出现了一系列用于交流调速系统的高性价比的通用变频器。

另一方面,永磁同步电动机调速及高性能伺服技术发展迅速,应用功率范围不断扩大。永磁同步电动机(Permanent Magnet Synchronous Motor,PMSM),又被称为正弦波无刷直流电动机系统,实际上为带有位置传感器的、由逆变器驱动的

永磁同步电动机系统。其反电势波形为正弦波,相应的绕组电流也为正弦波。关于永磁同步电动机的研究主要集中于电动机的新型结构形式、气隙磁场的设计、计算和绕组电流的控制。其中,绕组电流的控制为大部分文献研究的焦点。1982年,G.P.Fatt从理论上指出了两种有效获得正弦绕组电流的方法,即静止坐标系下的电流控制方法,它包括电流调节型SPWM控制方法(CRPWM)和电流滞环控制方法,指出了其应用范围,并加以实验验证。至今,这两种方法在永磁同步电动机系统中得到了最广泛的应用。1987年,P.Pillay对方波无刷直流电动机和正弦波无刷直流电动机系统进行了全面的对比,在总结正弦波无刷直流电动机各种研究成果的基础上,提出了基于旋转坐标系下的正弦波无刷直流电动机系统绕组电流控制方法:id、iq法。此后的研究虽然在控制手段上不断改进,但控制方法没有本质的突破。一般实现电流控制的手段有模拟方法、模拟数字混合方法、全数字方法等,并在逐步向全数字控制方向发展。

感应电动机和永磁同步电动机系统相比较,无论是在效率、功率密度等各方面,永磁同步电动机系统均具有相当优势。因此,交流永磁同步电动机在交流传动系统中的应用范围会继续扩大。

综上所述,高性能直流传动系统在向方波无刷直流电动机为主的方向发展,而方波无刷直流电动机在向电流正弦化的方向发展;同时,高性能交流传动系统在向交流永磁同步电动机系统为主的方向发展,而永磁同步电动机系统也在向无位置检测或位置检测简易化的方向发展。由于二者的电动机本体均为永磁同步电动机,且系统结构大致相同,因此交、直流之分越来越模糊,二者的发展方向相同,概念趋向一致。在电动机理论和其他相关技术发展的推动下,“无刷直流电动机”的概念已由最初特指具有电子换向的直流电动机发展到泛指一切具备有刷直流电动机外部特征的由驱动器驱动的永磁同步电动机。无刷直流电动机或永磁同步电动机的发展亦促使电动机理论与电力电子技术、微电子技术、计算机技术、现代控制理论及高性能材料的紧密结合。如今,无刷直流电动机或永磁同步电动机系统集特种电动机、变流机构、检测元件、控制软件和硬件于一体,形成新一代的一体化电动机系统,体现着当今应用科学的最新成果,是机电一体化的高技术产物。

1.2 脉宽调制技术的发展

随着全控型功率电子器件的发展,脉冲调宽(PWM)技术与开关功率电路成为主流技术,在功率应用中基本取代了线性功率放大电路,以减小功率器件导通

损耗,提高驱动效率。在PWM技术中,功率器件工作在开关饱和导通状态,通过改变功率器件的驱动脉冲信号的开通与关断的时间,来改变加在负载两端的平均电压的大小。当负载为直流电动机时,也就实现了电动机的调压调速控制,这也就是PWM控制的基本原理。改变脉冲信号的开通、关断时间有两种基本方式。一种方式是将脉冲信号的开关频率及周期Ts固定,通过改变导通脉冲的宽度来改变负载的平均电压,这就是脉冲宽度调制(Pulse Width Modulation,PWM)。另一种方式是将脉冲信号的导通宽度固定,通过改变开关频率及周期T来改变负载的平均电压,这就是脉冲频率调制(Pulse Frequency Modulation,PFM)。由于PFM控制是通过改变脉冲频率来实现平均电压的调节的,频率变化范围较大。在频率较低时,往往人耳所感觉到的电磁噪声较高;而在频率较高时,会导致功率器件开关损耗的增加,而且还存在功率器件关断速度的限制。最严重的情况是,在某些特殊频率下系统有可能产生机械谐振,就会导致系统产生振荡和出现音频啸叫声。而在PWM控制中,由于脉冲频率固定,通过频率选择不但可以克服上述问题,而且有利于消除系统中由于功率器件开关所导致的固定频率的电磁干扰。因此在电气传动领域内PWM控制技术成为应用的主流。在交流电气传动中,脉宽调制技术用于产生单相或三相交流电即实现逆变,控制信号变为幅值和频率均可变化的周期信号。在各种形式的周期控制信号中,正弦波控制信号应用最为普遍,因此一般统称为正弦波脉宽调制(Sinusoidal Pulse Width Modulation,SPWM)。传统的SPWM 技术多采用模拟技术来实现,即脉宽调制信号的获得是通过三角波与所希望的调制函数直接比较而获得。随着高性能的交流伺服驱动系统的全数字控制的发展,要求用数字方法来实现脉宽调制。纵观现有的文献,数字脉宽调制方法多采用规则采样技术,通过三角载波与所希望的调制函数的比较获得数学方程式,PWM信号则是通过对规则采样技术获得的数学方程式的计算获得的。这种数字脉宽调制方法是对模拟自然采样的三角波——正弦波(SPWM)方法的近似:虽然还存在一些SPWM优化算法,诸如谐波型SPWM技术以及准最优SPWM技术等,但算法复杂,计算时间增加,应用较少。

而近年来出现的空间矢量脉宽调制(SVPWM)技术,相应的数字计算方法形成的脉宽调制信号与传统的SPWM信号相比,具有更多优点。因此空间矢量脉宽调制技术在交流电动机驱动系统中得到了广泛的应用。

第2章 PWM 控制的原理介绍

2.1 概述

PWM (Pulse Width Modulation )控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形(含形状和幅值)。

2.2 PWM 控制技术分类

1)正弦PWM (SPWM );

2)特定谐波消除PWM (SHEPWM );

3)最小纹波电流PWM ;

4)空间矢量PWM (SVM );

5)随机PWM ;

6)滞环电流控制PWM ;

7)瞬时电流控制正弦PWM ;

8)Delta 调制PWM ;

9)Sigma-Delta 调制PWM 。

通常PWM 技术可以按电压控制或电流控制来分类,或按前馈方式或反馈方式来分类,也可以按基于载波或不基于载波来分类。本论文主要围绕其中的SPWM ,SVPWM ,滞环电流控制PWM 三种PWM 控制方法展开介绍,并进行对比。

2.3 PWM 控制的基本原理及其理论基础

在采样控制理论中有一个重要的结:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量即指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形的基本相同。如果把各输出波形用傅里叶变换分析,则其低频段非常接近,仅在高频段略有差异。例如图2.1所示的三个窄脉冲形状不同,其中图2.1a 为矩形脉冲,图2.1b 为三角形脉冲,图2.1c 为正弦半波脉冲,但它们的面积(即冲量)都等于1,那么,当它们分别加在具有惯性的同一个环节上时,其输出相应基本相同。当窄脉冲变为图2.1d 的单位脉冲函数)(t 时,环节的响应即为该环节的脉冲过渡函数。

图2.1 形状不同而冲量相同的各种窄脉冲

a ) 矩形脉冲

b )三角形脉冲

c )正弦半波脉冲

d )单位脉冲函数

图2.2a 的电路是一个具体的例子。图中)(t e 为电压窄脉冲,其形状和面积分别如图2.1的a 、b 、c 、d 所示,为电路的输入。该输入加载可以看成惯性环节的L R -电路上,设其电流)(t i 为电路的输出。图2.2b 给出了不同窄脉冲时)(t i 的响应波形。从波形可以看出,在)(t i 的上升段,脉冲形状不同时)(t i 的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各)(t i 波形的差异也越小。如果周期性地施加上述脉冲,则响应)(t i 也是周期性的。用傅里叶级数分解后将可看出,各)(t i 在低频段的特性将非常接近,仅在高频段有所不同。

上述原理可以称之为面积等效原理,它是PWM 控制技术的重要理论基础。

图1.2 冲量相同的各种窄脉冲的响应波形

a )电路

b )响应波形

下面分析如何用一系列等幅不等宽的脉冲来代替一个正弦半波。

把图2.3a 的正弦半波分成p 等分,就可以吧正弦半波看成是由p 个彼此相连的脉冲序列所组成的波形。这些脉冲宽度相等,都等于p ,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就得到图2.3b 所示的脉冲序列。这就是PWM 波形。可以看出,各脉冲的幅值相等,而宽度是按正弦规律变化的。根据面积等效原理,PWM 波形和正弦半波是等效的。对于正弦波的负半周,也可以用同样的方法得到PWM 波形。像这样脉冲宽

度按正弦规律变化而和正弦波等效的PWM 波形,也称SPWM 波形。

要改变等效输出正弦波的幅值是,只要按照同一比例系数改变上述各脉冲的宽度即可。

PWM 波形可分为等幅PWM 波和不等幅PWM 波两种。由直流电源产生的PWM 波通常是等幅PWM 波;由交流电源产生的PWM 波通常是不等幅波。不管是等幅PWM 波还是不等幅PWM 波,都是基于面积等效原理进行控制的,因此其本质是相同的。

图2.3 用PWM 波形代替正弦半波

a ) 正弦半波

b )脉冲序列

如图2.4把所希望的波形作为调制信号r u ,把接受调制的信号作为载波c u ,通过对载波的调制得到所期望的PWM 波形G u 。

图2.4 脉冲调制电路

通常采用等腰三角波作为载波,因为等腰三角波上下宽度与高度呈线性关系且左右对称,当它与任何一个平缓变化的调制信号波相交时,在交点时刻就可以得到宽度正比于调制信号波幅度的脉冲。

第3章 正弦脉冲宽度调制SPWM 基本原理

3.1 概述

为了阐述明白SPWM 的原理,下面先介绍简单的单相桥式逆变电路。逆变器理想的输出电压是如图3.1b 所示的正弦波t U t u m ωsin )(1=。将图3.1b 正弦波半个周期π均分p 个相等的时区,图中6=p ,每个时区的时间()62?=T T s 对应的时区宽度为61222πππωθ==?==s s s T f T ,第k 个时区s T 的终点时间为s kT ,起点时间为()s T k 1-,第k 个时区的中心点相位角k α为:

????

??-==s s k k T kT t 21ωωα (3.1)

图3.1 用SPWM 电压等效正弦电压

a) 逆变电路 b)正弦电压 c)SPWM 电压等效电压

图3.1b 中当时区数p 很大时,正弦波t U t u m ωsin )(1=可以看作是由正、负

半波各有p 个等宽(p s πθ=)但不等高(高度为t U m ωsin 1)的不连续脉波电压○1、○2、○3、…、○11、○12组成。图3.1a 中逆变电路的输入电压是直流电压d U ,依靠开关管的通、断状态变换,逆变电路只能直接输出三种电压值d U +、0、d U -。对单相桥式逆变器四个开关管进行实时、适式的通、断控制,可以得到图3.1c 所示在半个周期中有个多脉波电压的交流电压ab u 。图中正、负半周范围也被分为p 个(6=p )相等的时区,每个时区宽度为ππ=p ,每个时区有一个幅值为d U 、宽度为k θ的电压脉波,相邻两脉波电压中点之间的距离相等(6ππ=p ),6个脉波电压的高度都是d U ,但宽度不同,宽度分别为1θ、2θ、3θ、4θ、5θ、6θ。如果要图3.1c 中任何一个时间段s T 中的脉宽为k θ、幅值为d U 的矩形脉冲电压ab u 等效于图3.1b 中该时间段s T 中正弦电压t U t u m ωsin )(1=,首要的条件应该是在该时间段s T 中,两者对电压对时间的积分值,即电压和时间乘积所相当的面积相等。即:

()[]s s m kT T k m kT T k ab k d kT T k U dt t U dt t u T U s s s s ωωωωωcos 1cos )sin()(1)1(1)1(--===??-- (3.2) 即:

???? ??-???? ??=s s s m k d T kT T U T U 21sin 21sin 21ωωω

(3.3) 由图3.1c 可知,(3.3)式左边为第k 个逆变电压脉波的积分值,其电压幅值为d U 、作用时间为k T ,对应的脉波电压宽度k k T ωθ=,θk k T =;(3.3)式右边式中的???

? ??-s s T kT 21ω是(3.1)式的k α,即第k 个时区中心点的相位角k α,因此有(3.3)式可得到:

k m s k d k d U T U T U αωωωθsin 21sin 211???? ??==

(3.4) 如果半个周期T 中脉波数p 很多,即T T s <<,1<

T S ,则: T T T T T f T s s s s ?≈???? ?

??=???? ????=???? ??πππωsin 221sin 21sin 则(3.4)式为:

k m s k m s k d k d U T U T

T U T U ααπωωθsin sin 2111===

k m d

s k U U T T αsin 1= 因此,图3.1c 中第k 个脉波在时间段s T 中电压平均值为:

k m d s k d s k U U U T T αθθsin 1==

(3.5) 或第k 个脉波电压的占空比:

k d m s k s k U U T T D αθθsin 1===

(3.6) 由图3.1b 、c 可知,在每个脉波电压周期s T 中,逆变器输出一个等高不等宽的脉波电压。(3.5)式左边是宽度为k k T ωθ=、高度为d U 脉波电压在周期s T 中的电压平均值,(3.5)式右边式该脉波周期s T 中,脉波中心点位置角k α处正弦电压t U m ωsin 1的瞬时值,即k m U αsin 1,因此在任何一个脉波周期s T 中,只要等幅不等宽的脉波电压的平均值等于该脉波中心点(k α)处正弦电压的瞬时值,则等幅不等宽的脉波电压就与该脉波周期s T 中的正弦电压等效。换句话说,只要对逆变电路的开关器件进行实时、适式的通断控制,使每个脉波的平均电压、脉波宽度或占空比按(3.5)、(3.6)式的正弦规律变化,则逆变电路输出的多脉波电压就能与正弦电压等效。通过傅里叶分析可以得知,输出电压中除基波外仅含有与开关频率倍数相对应的某些高次谐波而消除了许多低次谐波,开关频率越高,脉波数越多,就能消除更多的低次谐波,是逆变电路的输出电压ab u 更近似于连续的正弦波。

3.2 PWM 的调制方式和相关术语

3.2.1 单极性(Unipolar )PWM 调制与双极性(Bipolar )PWM 调制

载波(三角波)在调制波半个周期内只在一个方向变化,所得到的PWM 波形也只在一个方向变化的控制方式称为单极性PWM 控制方式。单极性PWM 控制方式如图 3.3所示,逆变器同一桥臂的上部功率开关管和下部功率开关管在调制波(输出电压基波)的半个周期内仅有一个功率开关管多次开通和关断。

图3.2是采用IGBT 作为开关器件的单相桥式PWM 逆变电路。设负载为阻感负载,工作时1VT 和2VT 的通断状态互补,3VT 和4VT 的通断状态也互补。具体规律如

下:在输出电压o u (即为ab u )的正半周,电流有一段区间为正,一段区间为负。在负载为正的区间,1VT 和4VT 导通,负载电压o u 等于直流电压d U ;4VT 关断时,负

载电流通过1VT 和3D 续流,0=o u 。在负载电流为负的区间,仍为1VT 和4VT 导通,

因o i 为负,故o i 实际上从1D 和4VT 流过,仍有d o U u =;4VT 关断,3VT 开通后,o i 从3VT 和1D 续流,0=o u 。这样,o u 总可以得到d U 和零两种电平。同样,在o u 的负半周,让2VT 保持通态,1VT 保持断态,3VT 和4VT 交替通态,负载电压o u 可以得到d U -和零两种电平。

控制3VT 和4VT 的通断的方法如图3.3所示。调制信号r u 为正弦波,载波c u 在r u 的正半周为正极性的三角波,在r u 的五班周为负极性的三角波。在r u 和c u 的交点时刻控制IGBT 的通断。在r u 的正半周,1VT 保持通态,2VT 保持断态,当c r u u >时使4VT 导通,3VT 关断,d o U u =;当c r u u <时使4VT 关断,3VT 导通,0=o u 。在r u 的负半周,1VT 保持断态,2VT 保持通态,当c r u u <时使3VT 导通,4VT 关断,d o U u -=;当c r u u >时使3VT 关断,4VT 导通,0=o u 。这样,就得到了SPWM 波形o u 。图3.3中of u 表示o u 中的基波分量。

图3.2 单相桥式PWM 逆变电路 图3.3 单极性PWM 控制方式波形

和单极性PWM 控制方式相对应 双极性控制方式。图3.2的单相桥式逆变电路在采用双极性控制方式时的波形如图3.4所示。采用双极性控制方式时,在r u 的半个周期内,三角波载波不再是单极性的,而是有正有负,所得到的PWM 波也是有正有负。在r u 的一个周期内,输出的PWM 波只有d U ±两种电平,而不像单极性控制时还有零电平。仍然在调制信号r u 和载波信号c u 的交点时刻控制各开关器件的通断。在r u 的正负半周,对各开关器件的控制规律相同。即当c r u u >时,给1VT 和4VT 以导通信号,给2VT 和3VT 以关断信号,这时如0>o i ,则1VT 和4VT 导通,如0o i ,则2D 和3D 通,不管哪种情况都是输出电压d o U u -=。

可以看出,单相桥式电路既可以采取单极性调制,也可以采用双极性调制,由于对开关器件通断控制的规律不同,它们的输出波形也有较大的差别。这两种方式差别仅仅在于正弦波与三角波比较的方法,双极性调制时,任何半周期内调制波r u 、载波c u 及输出SPWM 波o u 均有正、负极性的电压交替出现,有效地提高了直流电压的利用率。一般来说,单极性PWM 调制方式产生的谐波较小,但是难于实现,在本论文中只讨论双极性PWM 调制方式。

图3.4 双极性PWM 控制方式波形

3.2.2 载波比、调制比对PWM 调制的影响

根据脉宽调制的特点,如图3.1逆变器主电路的功率开关器件在其输出电压半周期内要开关p 次,把期望的正弦波分段越多,则p 越大,脉冲序列波k 越小,上述分析结论的准确性越高,SPWM 波的基波更接近期望的正弦波。但是,功率开关器件本身的开关功能是有限的;因此在应用脉宽调制技术是必然要受到一定条件的制约,这主要表现在以下两个方面。

3.2.2.1功率开关器件的频率

各种电力电子器件的开关频率受到其固有的开关时间和开关损耗的限制,普通晶闸管用于无源逆变器时须采用强迫换流电路,其开关频率一般不超过300~500Hz ,现在在SPWM 逆变器中已很少应用。取而代之的是全控型器件,如电力晶体管(BJT 开关频率可达1~5kHz )、可关断晶闸管(GTO 开关频率为1~2kHz )、功率场效应管(P-MOSFET 开关频率可达50kHz )、绝缘栅双极晶体管(IGBT 开关频率可达20kHz )等。目前市场上的SPWM 逆变器产品以应用IGBT 为主。

定义载波频率c f 与参考调制波频率r f 之比为载波比(carrier ratio )C ,即

r c f f C =

(3. 7) 相对于前述SPWM 波形半个周期内的脉冲数p 来说,应该有p C 2=。为了使逆变器的输出波形尽量接近正弦波,应尽可能增大载波比;但若从功率开关器件本身的允许开关频率来看,载波比又不能太大。C 值应受到下列条件的制约:

号的频率

频段内最高正弦调制信关频率功率开关器件的允许开≤C (3. 8) (3.8)式中的分母实际上就是SPWM 逆变器的最高输出频率。

3.2.2.2最小间歇时间与调制度

为保证主电路开关器件的安全工作,必须是调制成的脉冲波有最小脉宽与最小间歇的限制,以保证最好脉冲宽度大于开关器件的导通时间on t ,而最小脉冲间歇大于器件的关断时间off t 。在脉宽调制时,若p 为偶数,调制信号的峰值rm U 与三角载波相交的地方恰好是一个脉冲的间歇。为了保证最小间歇时间大于off t ,必须使rm U 低于载波的峰值cm U 。为此定义rm U 与cm U 之比为调制度M ,即

cm rm U U M =

(3. 9) 在理想情况下,M 值可在0~1之间变化,以调整逆变器输出电压的大小。实际上M 总是小于1,在C 较大时,一把取最高值,即M 取0.8~0.9。

3.2.3 异步调制和同步调制

3.2.3.1 异步调制

异步调制——载波信号和调制信号不同步的调制方式。

通常保持c f 固定不变,当r f 变化时,载波比C 是变化的。在信号波的半周期内,PWM 波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后41周期的脉冲也不对称。当r f 较低时,C 较大,一周期内脉冲数较多,脉冲不对称的不利影响都较小,当r f 增高时,C 减小,一周期内的脉冲数减少,PWM 脉冲不对称的影响就变大。因此,在采用异步调制方式时,希望采用较高的载波频率,以使在信号波频率较高时仍能保持较大的载波比。

3.2.3.2 同步调制

同步调制——C 等于常数,并在变频时使载波和信号波保持同步。

基本同步调制方式,r f 变化时C 不变,信号波一周期内输出脉冲数固定。三相公用一个三角波载波,且取C 为3的整数倍,使三相输出对称。为使一相的PWM 波正负半周镜对称,C 应取奇数。

r f 很低时,c f 也很低,由调制带来的谐波不易滤除,r f 很高时,c f 会过高,使开关器件难以承受。为了克服上述缺点,可以采用分段同步调制的方法。

3.2.3.3 分段同步调制

把r f 范围划分成若干个频段,每个频段内保持C 恒定,不同频段C 不同。在r f 高的频段采用较低的C ,使载波频率不致过高,在r f 低的频段采用较高的C ,使载波频率不致过低。

图3.5 分段同步调制方式

第4章 三相逆变输出器的电压和波形的SPWM 控制 前面为了说明PWM 的原理,用了大量的图文解析单相桥式逆变电路的SPWM 控制。但本论文主要是通过SPWM 和电压矢量控制PWM (SVPWM )的对比和研究,而SVPWM 主要是控制三相异步电机的控制方式,采用的都是三相电路仿真,所以要在同一个电路中比较两种控制方式的优劣,必须说明三相SPWM 。

图4.1和图4.2中三角形高频载波c u 幅值为cm U 、频率为c f ,三相调制参考信号正弦电压ra u 、rb u 、rc u 为:

()()()()()

?????-=-==??240ωsin 120ωsin ωsin c t U t u t U t u t U t u rm r rm rb rm ra 式中ω为调制波r u 的角频率,r f 为正弦调制参考电压的频率, rm U 为正弦参考电压的幅值。

图4.1中,ra u 与载波电压c u 相比较,当c ra u u >时,1VT 导通,2

d ao U u =为正脉波电压;当c ra u u <时,1VT 截止,4VT 导通,2

d ao U u -=为负脉波电压。因此逆变电路输出电压ao u ,如图4.2所示,ao u 是一个双极性脉波电压。

同理当c rb u u >时,3VT 导通,2

d bo U u =为正脉波电压;当c rb u u <时,3VT 截止,6VT 导通,2d bo U u -

=为负脉波电压。bo u 也是一个双极性脉波电压,bo u 比ao u 滞后120°。

同理co u 也是一个双极性电压,co u 比ao u 滞后240°。

三相电压型逆变电路任何时刻一个桥臂只有一个开关管被驱动导通,上、下开关管驱动信号互补。因此三相桥式逆变电压型逆变器任何时刻都有三个开关管同时被驱动导通,根据图4.2所示,,由此可画出线电压ab u 及负载星形联结时负载相电压an u 等的波形,例如在4VT 、5VT 、6VT 三管导通期间,图 4.2中0=-=bo ao ab u u u 。在1VT 、5VT 、6VT 导通期间d bo ao ab U u u u =-=,类似地分析

可画出图4.2中线电压ab u 的波形——单极性PWM 脉波。同样的分析可知线电压bc u 、ca u 与ab u 一样也都是单极性脉波电压,且互差120°。

当负载为星形联结时如果负载中点为n ,则当1VT 、5VT 、6VT 同时导通时,a 、c 两点接电源正端,b 点接电源负端,若负载各相阻抗相等,则d d

an U Z Z Z U u 3

12121=?+=,当1VT 、5VT 、3VT 同时导通时,A 、B 、C 三点都连在一起,故0=an u ,类似地分析可以画出4.2所示星形联结负载相电压an u 的波形。类似地分析得知bn u 、cn u 与an u 一样都是单极性脉波电压而且互差120°。

图4.1 三相桥式PWM 逆变电路

图4.2 三相SPWM 波形

图4.2中调制比1≤=cm rm U U M 、载波比10==r

c f f C 、输出线电压ab u 是半周期中有5=p 个单极性脉波的SPWM 脉波电压,除基波外最低次谐波频率为912=-p 次谐波,输出电压ao u 时5=p 的双极性SPWM 波,幅值为2

d U 。则

有输出相电压的基波幅值:

d m ao U M

U 211=

(4.1) 输出线电压ab u 的基波幅值: d d m ab MU U M U 866.02

131== (4.2) 输出线电压ab u 的基波有效值:

d d ab MU MU U 612.023

211=?=

4.3) 所以三相SPWM 逆变电路直流电压利用率M U U d ab 612.01

=。

第5章三相逆变器电压空间矢量PWM控制(SVPWM)5.1 SVPWM介绍

传统的正弦脉宽调制(SPWM)技术是从电源的角度出发的,其着眼点是如何生成一个可以调频调压的三相对称正弦波电源。常规SPWM法已被广泛地应用于逆变器中,然而常规SPWM不能充分利用馈电给逆变器的直流电压,逆变器最大相

1,即逆变器输出相电压峰值最大为电压基波幅值与逆变器直流电压比值为2

U,直流利用率低。John采用谐波失真的方法来增加三相PWM逆变器的输出2

d

电压,可以使PWM逆变器最大相电压基波幅值增加约15%,但该方法的效果并不理想,因此它的实际应用受到很大的限制。并且SPWM逆变器是基于调节脉冲宽度和间隔来实现接近于正弦波的输出电流,这种调节会产生菜些高次谐波分量,引起电机发热,转矩脉动过大甚至会造起系统振荡。一些学者在此基础上提出了选择谐波消除法和梯形脉宽调制法(TPWM),但指定谐波消除法运算量大,且占用相当大的内存,实现起来比较困难;TPWM逆变器输出波形中谐波分量比SPWM 逆变器还多,结果并不理想。而且,传统的高频三角波与调制波比较生成PWM波的方式适合模拟电路,不适应于现代化电力电子技术数字化的发展趋势。因此,常规SPWM法不能适应高性能全数字控制的交流伺服驱动系统的发展趋势。

80年代中期,德国学者H.W.Van Der Broek等在交流电机调速中提出了磁链轨迹控制的思想,在此基础上进~步发展产生了电压空间矢量脉宽调制(Space —Vector Pulse—Width Modulation,简写为SVPWM)的概念。SVPWM,又称磁链追踪型PWM法,它是从电动机的角度出发,其着眼点是如何使电机获得圆磁场。具体地说,它是以三相对称正弦波电压供电下三相对称电动机定子理想磁链圆为基准,由三相逆变器不同开关模式下所形成的实际磁链矢量来追踪基准磁链圆,在追踪的过程中,逆变器的开关模式作适当的切换,从而形成PWM波。

采用空间矢量PWM(SVPWM)算法可使逆变器输出线电压幅值最大达到d U,比常规SPWM法提高了约15.47%。并且,由于SVPWM有多种调制方式,所以SVPWM控制方式可以通过改变其调制方式来减少逆变器功率器件开关次数,从而降低功率器件的开关损耗,提高控制性能。在同样的采样频率下,采用开关损耗模式SVPWM法的逆变器的功率器件开关次数比采用常规SVPWM法逆变器

1,大大降低了功率器件的开关损耗。SVPWM实质的功率器件开关次数减少了3

是一种基于空间矢量在三相正弦波中注入了零序分量的调制波进行规则采样的一种变形SPWM ,是具有更低的开关损耗的SPWM 改进型方法,是一种优化的PWM 方法,能明显减少逆变器输出电流的谐波成分及电机的谐波损耗,降低电机的脉动转矩,且SVPWM 其物理概念清晰,控制算法简单,数字化实现非常方便,故目前有替代传统SPWM 法的趋势。

5.2 SVPWM 原理说明

异步电机需要输入三相正弦电流的最终目的是在空间产生圆形旋转磁场,从而产生恒定的电磁转矩。因此,可以吧逆变器和异步电机视为一体,按照跟踪圆形旋转磁场来控制PWM 电压,这样的控制方式就叫做“磁链跟踪控制”。磁链的轨迹是靠电压空间矢量相加得到的,所以又称“电压空间矢量控制”。

所谓电压空间矢量是按照电压所加绕组的空间位置来定义的。在图5.1中,A 、

B 、

C 分别表示在空间静止不动的电机定子三相绕组的轴线,它们在空间互差120°,三相定子相电压ao U 、bo U 、co U 分别加在三相绕组上,可以定义三个电压空间矢量为ao u 、bo u 、co u ,它们的方向始终在各相轴线上,而大小则随时间按正弦规律作脉动式变化,时间相位互差120°。与电机原理中三相脉动磁动势相加产生合成的旋转磁动势相仿,可以证明,三相电压空间矢量相加的合成空间矢量s u 是一个旋转的空间矢量,它的幅值不变,是每相电压值的1.5倍;旋转频率为ω。用公式表示,则有

co bo ao s u u u u ++= (5.1)

同理,可以定义电流和磁链的空间矢量s I 和s ψ。

异步电动机定子电压空间矢量方程式为

dt d I R u s

s s s ψ+= (5.2)

图5.1 电压空间矢量

当转速不是很低时,电子电阻压降较小,可忽略不计,则定子电压与磁链的近似关系为

dt d u s s ψ≈

(5.3)

或 ?≈ψdt u s s (5.4)

(5.4)式表明,电压空间矢量s u 的大小等于s ψ的变化率,而其方向则与s ψ的运动方向一致。

在由三相平衡正弦电压供电时,电机定子磁链空间矢量为

t j sm s e ωψ=ψ (5.5)

式中,sm ψ为s ψ的幅值,ω为其旋转角速度。

磁链矢量顶端的运动轨迹形成圆形的空间旋转磁场(一般简称为磁链圆)。由(5.3)式和(5.5)式可得

()

()πωωωωω+ψ=ψ=ψ=t j sm t j sm t j sm s e e j e dt d u (5.6) 由(5.6)式可见,当磁链幅值sm ψ一定是,s u 的大小与ω成正比,其方向为磁链圆形轨迹的切线方向。当磁链矢量的空间旋转一周时,电压矢量也连续地沿磁链圆的切线方向运动π2弧度,其轨迹与磁链圆重合,如图5.2所示。这样,电机旋转磁场的形状问题就可以转化为电压空间矢量运动轨迹的形状问题。

基于 MATLAB 的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于MATLAB 的QPSK系统仿真设计与实现 学生学号: 学生姓名: 所在班级: 任课教师: 2016年10月25日

目录 1.1QPSK系统的应用背景简介 (3) 1.2 QPSK实验仿真的意义 (3) 1.3 实验平台和实验内容 (3) 1.3.1实验平台 (3) 1.3.2实验内容 (3) 二、系统实现框图和分析 (4) 2.1、QPSK调制部分, (4) 2.2、QPSK解调部分 (5) 三、实验结果及分析 (6) 3.1、理想信道下的仿真 (6) 3.2、高斯信道下的仿真 (7) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8) 总结: (10) 参考文献: (11) 附录 (12)

1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验内容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验内容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱

基于MATLAB的OQPSK调制解调实现

基于MATLAB的OQPSK调制解调实现学生姓名:周翌指导老师:吴志敏 摘要本课程设计的目标在于深切理解OQPSK调制与解调的基本原理,学会使用MATALB软件中的M文件来实现OQPSK的调制与解调以及分析加入不同噪声时对信号的影响程度。首先产生一个数字基带信号,接下来调用MATLAB中的相应函数对这个基带信号进行调制,然后分析调制后的波形:,记录结果后对调制后的信号进行解调,观察解调结果并做好记录,最后在信号中加入噪声并观察其时频图的变化,分析信噪比的噪声对调制结果的影响。本课程设计的实验开发/运行平台为windowsXP/windows7,程序设计使用MATLAB语言。通过调试运行,基本完成设计目标,达到调制与解调的目的。 关键词:MATLAB;M文件;OQPSK;调制与解调;噪声 1 引言 数字调制与解调技术在数字通信中占有非常重要的地位,数字通信技术与MATLAB 的结合是现代通信系统发展的一个必然趋势。在数字信号通信过程中,噪声的影响往往比较大,同时我们都希望有较高的频带利用率和功率利用率,而OQPSK也是一种恒包络调制技术,其频谱特性好,既保留着2PSK的高抗噪声性能、高频带利用率和高功率利用率,又有效地减弱了2PSK的“反相工作”缺陷,在通信研究中有着非常重要的意义,特别是在卫星通信和移动通信的领域有着广泛的应用。MATLAB作为当前国际控制界最流行的面向工程与科学计算的高级语言,在控制系统的分析、仿真与设计方面得到了非常广泛的应用,随着其信号处理专业函数和专业工具箱的成熟,越来

越受到通信领域人士的欢迎,其在通信领域的应用也将更加广泛。 1.1课程设计目的 熟悉OQPSK的基本原理,掌握MATLAB中M文件的使用及相关函数的调用方法,在此基础上通过编程实现OQPSK的调制与解调,并通过加入的噪声来判断所设计的系统性能。这次课程设计不仅让我对OQPSK有了更加深入的了解,而且学会了如何利用MATLAB中的M文件来实现通信系统方面的应用,最重要的是,自己能够独立完成一个小项目了,有了这方面的经验,我在以后的学习中就会有更充足的信心和动力。 1.2课程设计要求 熟悉MATLAB中M文件的使用方法,并在深切理解OQPSK调制解调原理的基础上,编写出OQPSK调制解调程序。绘制出OQPSK信号解调前后在时域和频域中的波形,并观察解调前后频谱有何变化以加深对OQPSK信号解调原理的理解。分别对信号叠加不同噪声,并进行解调,绘制出解调前后信号的时频波形,分析不同噪声对信号传输造成的影响大小。 1.3课程设计步骤 先产生随机信号,然后对信号进行调制和解调,在调制和解调过程中加入高斯白噪声,观察现象。 1、产生四进制数字作为数字基带信号,对其进行调制; 2、将函数调制信号改为相应的时域波形调制信号; 3、在函数调制信号中加入高斯白噪声,生成加入噪声后的时域波形调制信号; 4、分别生成没加或加了噪声的调制信号波形图和频谱图; 5、分别对没加或加了噪声的调制信号进行解调; 6、计算误码率。

基于MATLAB的QPSK通信系统仿真设计毕业设计论文

基于MATLAB的QPSK通信系统仿真设计 摘要 随着移动通信技术的发展,以前在数字通信系统中采用FSK、ASK、PSK 等调制方式,逐渐被许多优秀的调制技术所替代。本文主要介绍了QPSK调制与解调的实现原理框图,用MATLAB软件中的SIMULINK仿真功能对QPSK调制与解调这一过程如何建立仿真模型,通过对仿真模型的运行,得到信号在QPSK 调制与解调过程中的信号时域变化图。通过该软件实现方式,可以大大提高设计的灵活性,节约设计时间,提高设计效率,从而缩小硬件电路设计的工作量,缩短开发周期。 关键词 QPSK,数字通信,调制,解调,SIMULINK -I-

Abstract As mobile communications technology, and previously in the adoption of digital cellular system, ASK, FSK PSK modulation, etc. Gradually been many excellent mod ulation technology substitution, where four phase-shift keying QPSK technology is a wireless communications technology in a binary modulation method. This article prim arily describes QPSK modulation and demodulation of the implementation of the prin ciple of block diagrams, focuses on the MATLAB SIMULINK software emulation in on QPSK modulation and demodulation the process how to build a simulation model, through the operation of simulation model, I get signal in QPSK modulation and dem odulation adjustment process domain change figure. The software implementation, ca n dramatically improve the design flexibility, saving design time, increase efficiency, design to reduce the workload of hardware circuit design, and shorten the developmen t cycle. Keywords QPSK, Digital Communication,modulation,demodulation,SIMULINK -II-

基于matlab的QPSK与BPSK信号性能比较仿真

┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 第一章概述 (1) 第二章QPSK通信系统原理与仿真 (1) 2.1 QPSK系统框图介绍 (1) 2.2QPSK信号的调制原理 (2) 2.2.1QPSK信号产生方法 (2) 2.2.2QPSK星座图 (2) 2.3QPSK解调原理及误码率分析 (3) 2.3.1QPSK解调方法 (3) 2.3.2QPSK系统误码率 (3) 2.4QPSK信号在AWGN信道下仿真 (4) 第三章BPSK通信系统原理与仿真 (4) 3.1BPSK信号的调制原理 (4) 3.2BPSK解调原理及误码率分析 (4) 第四章QPSK与BPSK性能比较 (5) 4.1QPSK与BPSK在多信道下比较仿真 (5) 4.1.1纵向比较分析 (5) 4.1.2横向比较分析 (7) 4.2仿真结果分析 (7) 4.2.1误码率分析 (7) 4.2.2频带利用率比较 (7) 附录 (8) 代码1 (8) 代码2 (8) 代码3 (10) 代码4 (12)

┊ ┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 第一章概述 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。它以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接人、移动通信及有线电视系统之中。 BPSK是英文Binary Phase Shift Keying的缩略语简称,意为二相相移键控,是利用偏离相位的复数波浪组合来表现信息键控移相方式的一种。它使用了基准的正弦波和相位反转的波浪,使一方为0,另一方为1,从而可以同时传送接受2值(1比特)的信息。 本文所研究的QPSK系统与二进制的BPSK系统相比,具有以下特点: 1.在传码率相同的情况下,四进制数字调制系统的信息速率是二进制系统的2倍。 2.在相同信息速率条件下,四进制数字调制系统的传码率是二进制系统的1/4倍,这一特 点使得四进制码元宽度是二进制码元宽度的2倍,码元宽度的加大,可增加每个码元的 能量,也可减小码间串扰的影响。 3.由于四进制码元速率比二进制的降低,所需信道带宽减小。 4.在接收系统输入信噪比相同的条件下,四进制数字调制系统的误码率要高于二进制系 统。 5.四进制数字调制系统较二进制系统复杂,常在信息速率要求较高的场合。 基于以上优点,在数字信号的调制方式中QPSK(Quadrature Phase Shift Keying)四相移键控是目前最常用的一种卫星数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性,在电路上实现也较为简单,因而被WCDMA和CDMA2000等第三代移动通信系统采用。 第二章QPSK通信系统原理与仿真 2.1 QPSK系统框图介绍 在图2.1的系统中,发送方,QPSK数据源采用随机生成,信源编码采用差分编码,编码后的信号经QPSK调制器,经由发送滤波器进入传输信道。 接收方,信号首先经过相位旋转,再经匹配滤波器解调,经阈值比较得到未解码的接收信号,差分译码后得到接收信号,与信源发送信号相比较,由此得到系统误码率,同时计算系统误码率的理论值,将系统值与理论值进行比较。 对于信道,这里选取的是加性高斯白噪声(Additive White Gaussian Noise)以及多径Rayleigh

基于Matlab 的QPSK调制解调仿真设计与研究

天津理工大学计算机与通信工程学院通信工程专业设计说明书 基于Matlab/Simulink 的QPSK调制解调仿真设计与研究 姓名韩双年 学号 20092226 班级 09通信3班 指导老师白媛 日期 2012-12-16

目录 摘要 (2) 第一章前言 (2) 1.1 专业设计任务及要求 (2) 1.2 Matlab简介 (2) 1.3 Matlab下的simulink简介 (3) 1.4 通信系统模型 (3) 第二章QPSK调制 (4) 2.1 QPSK介绍 (4) 2.2 QPSK调制原理 (4) 2.2.1 相乘法 (4) 2.2.2 选择法 (5) 2.3 QPSK调制原理框图 (6) 2.4 QPSK调制方式的Matlab仿真 (6) 2.5 QPSK调制方式Matlab-simulink仿真 (7) 2.5.1 simulink调制建模 (7) 2.5.2 simulink调制仿真结果 (8) 第三章QPSK解调 (13) 3.1 QPSK解调原理 (13) 3.2 QPSK解调原理框图 (13) 3.3 QPSK解调方式Matlab仿真 (13) 3.4 QPSK解调方式的Matlab-simulink仿真 (14) 3.4.1 QPSK解调建模 (14) 3.4.2 传输信道 (16) 3.4.3仿真结果 (16) 3.5 仿真结果分析 (18) 第四章QPSK通信系统性能分析 (19) 第五章结论 (19) 参考文献 (20) 附录 (20)

摘要 正交相移键控(QPSK),是一种数字调制方式。QPSK技术具有抗干扰能力好、误码率低、频谱利用效率高等一系列优点。论文主要介绍了正交相移键控(QPSK)的概况,以及正交相移键控QPSK的调制解调概念和原理,利用Matlab中M文件和Simulink模块对QPSK的调制解调系统进行了仿真,对QPSK在高斯白噪声信道中的性能进行了,分析了解Simulink中涉及到QPSK的各种模块的功能。 【关键词】Matlab QPSK Simulnk 仿真 第一章前言 1.1专业设计任务及要求 1了解并掌握QPSK调制与解调的基本原理; 2在通信原理课程的基础上设计与分析简单的通信系统; 3学会利用MATLAB7.0编写程序进行仿真,根据实验结果能分析所设计系统的性能。 4学习MATLAB的基本知识,熟悉MATLAB集成环境下的Simulink的仿真平台。 5利用通信原理相关知识在仿真平台中设计QPSK调制与解调仿真系统并用示波器观察解调后的波形 6在指导老师的指导下,独立完成课程设计的全部内容,能正确的阐述和分析设计和实验结果。 1.2 Matlab简介 MATLAB是MATrix LABoratory的缩写,是一款由美国Math Works公司出品的商业数学软件。MATLAB 是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C,C++和FORTRAN)编写的程序。尽管MATLAB主要用于数值计算,但是因为大量的额外

QPSK通信系统性能分析与MATLAB仿真报告

淮海工学院课程设计报告书 课程名称:通信系统的计算机仿真设计 题目:QPSK通信系统性能分析 与MATLAB仿真 学院:电子工程学院 学期:2013-2014-2 专业班级: 姓名: 学号: 评语: 成绩: 签名: 日期:

QPSK通信系统性能分析与MATLAB仿真 1 绪论 1.1 研究背景与研究意义 数字信号传输系统分为基带传输系统和频带传输系统,频带传输系统也叫数字调制系统,该系统对基带信号进行调制,使其频谱搬移到适合在信道(一般为带通信道)上传输的频带上。数字调制和模拟调制一样都是正弦波调制,即被调制信号都为高频正弦波。数字调制信号又称为键控信号,数字调制过程中处理的是数字信号,而载波有振幅、频率和相位3个变量,且二进制的信号只有高低电平两个逻辑量即1和0,所以调制的过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM) 、频移键控( FSK) 、相移键控( PSK) 。根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制) 。 本实验采用QPSK。QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 课程设计的目的和任务 目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 课程设计的任务是: (1)掌握一般通信系统设计的过程,步骤,要求,工作内容及设计方法,掌握用计算机仿真通信系统的方法。 (2)训练学生网络设计能力。 (3)训练学生综合运用专业知识的能力,提高学生进行通信工程设计的能力。1.3 可行性分析 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,

利用MATLAB实现QPSK调制及解调

郑州轻工业学院 课程设计说明书题目:利用MATLAB实现QPSK调制及解调 姓名: 院系:电气信息工程学院 专业班级:电子信息工程09-1 学号: 540901030154 指导教师:赵红梅 成绩: 时间: 2012 年 6 月 18 日至 2012 年 6 月 22 日

郑州轻工业学院 课程设计任务书 题目利用MATLAB实现QPSK调制及解调 专业班级电子信息工程09级 1班学号 54 姓名 主要内容、基本要求、主要参考资料等: 主要内容: 已知数字信号1011000101101011,码元速率为2400波特,载波频率为1200Hz,利用MATLAB画出QPSK调制波形,并画出调制信号经过高斯信道传输后解调波形及接收误码率,将其与理论值进行比较。 基本要求: 1、通过本课程设计,巩固通信原理QPSK调制的有关知识; 2、熟悉QPSK产生原理; 3、熟悉高斯信道的建模及QPSK解调原理; 4、熟悉误码率的蒙特卡罗仿真; 5、学会用MATLAB来进行通信系统仿真。 主要参考资料: 主要参考资料: 1、王秉钧等. 通信原理[M].北京:清华大学出版社,2006.11 2、陈怀琛.数字信号处理教程----MATLAB释义与实现[M].北京:电子工业出版社,2004. 完成期限:2012.6.18—2012.6.23 指导教师签名: 课程负责人签名: 2012年6月16日

目录 一前言 (4) 1.1QPSK系统的应用背景简介 (4) 1.2 QPSK实验仿真的意义 (4) 1.3 实验平台和实验内容 (5) 1.3.1实验平台 (5) 1.3.2实验内容 (5) 二、系统实现框图和分析 (5) 2.1、QPSK调制部分, (5) 2.2、QPSK解调部分 (7) 三、实验结果及分析 (7) 3.1、理想信道下的仿真 (7) 3.2、高斯信道下的仿真 (8) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (9) 参考文献: (11) 附录 (12)

基于MATLAB的QPSK系统仿真设计与实现

通信系统仿真设计实训报告1.课题名称:基于 MATLAB 的QPSK系统仿真设计与实现 学生学号: 学生: 所在班级: 任课教师: 2016年 10月25日

目录 1.1QPSK系统的应用背景简介 (3) 1.2 QPSK实验仿真的意义 (3) 1.3 实验平台和实验容 (3) 1.3.1实验平台 (3) 1.3.2实验容 (3) 二、系统实现框图和分析 (4) 2.1、QPSK调制部分, (4) 2.2、QPSK解调部分 (5) 三、实验结果及分析 (6) 3.1、理想信道下的仿真 (6) 3.2、高斯信道下的仿真 (7) 3.3、先通过瑞利衰落信道再通过高斯信道的仿真 (8) 总结: (10) 参考文献: (11) 附录 (12)

1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱

MATLAB QPSK调制与解调

实验名称:QPSK调制与解调 一、实验目的: 1、学会QPSK调制与解调系统的构成 2、学会QPSK调制与解调系统的各模块的构建 3、学会误码率与误符号率的统计方法以及Matlab算法 二、实验原理: 1、QPSK:四进制绝对相移键控,也称为多进制数字相位调制,利用载波的四种不同相位状态来表征数字信息的调制方式。 2、QPSK的调制方法有正交调制方式(双路二相调制合成法或直接调相法)、相位选择法、插入脉冲法。 调制与解调系统的构成: 3、各模块的实现方法:

(1)、信源的产生:使用randint(m,n,2) 函数产生一个m 行n 列的随机二进制数列 (2)、QPSK 符号映射 :将产生的0,1比特流按照QPSK 调制方式进行映射,本实验采用π/4 QPSK 的调制方式,图为: (3)、AWGN 信号产生:AWGN 产生器就是产生满足均值为0,方差为1的高斯白噪声。实验中使用randn(m,n)函数产生一个m 行n 列的高斯噪声序列。 (4)、信号幅度控制:根据AWGN 信道模型,接收信号可以分别表示为 α就是当噪声功率归一化为1(0均值,方差为1)时,根据信噪比关系而计算出来的信号平均幅度 I I I r s n α=+Q Q Q r s n α=+22210log 10^10s s n n v SNR SNR v sqrt v v ??????=?=* ? ? ???????

(5)、QPSK 反映射及判决 :对接收到的信号在4种可能的四种信号向量[(1,0), (0,1), (-1,0), (0,-1)]上投影(即进行点积)。投影最大的值所对应的信号向量就是所发送信号的符号值,然后恢复出比特流 (6)、误码率及误符号率统计: 误码率:将检测出来的比特流和发送的原始比特流进行比较,统计出出现错误的比特数 误符号率:将检测出来的比特流变成两组,构成符号,和发送端符号映射后的符号流进行比较,只要符号中任错一bit ,就算该符号出错。统计出现错误的符号数 三、 实验内容: 1、建立QPSK 的Matlab 仿真模型 2、对仿真模型中各个组成部分进行函数设计和功能仿真 randn('seed',10);mark=randn(1,LENGTH); subplot(2,2,1);plot(mark);title('watermarc:Gaussian noise'); 3、成型滤波器的设计 4、带限信道中的QPSK 调制解调 四、实验步骤: 1、开机,设置好本次仿真目录 2、进入matlab 环境,设置工作路径和目录 3、按照实验方法,一步步进行QPSK 各个模块的设计 s v α=

(完整版)QPSK调制原理及matlab程序实现

QPSK已调信号生成 一、QPSK介绍 QPSK是英文Quadrature Phase Shift Keying 的缩写,意为正交相移键控,是一种数字调制方式。其有抗干扰性强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 二、实验平台和实验内容 1、实验平台 本实验是MATLAB环境中生成基本QPSK已调信号,只需要MATLAB12.0。2、实验内容 1.基带信号为周期127bits伪随机序列,信息比特速率:20kbps,载波频率: 20kHz(速率及频率参数现场可调整); 2.在MATLAB环境中编写M代码搭建QPSK调制系统模型; 3.观测基带时域波形、已调信号时域波形; 4.观测基带发射星座图; 5.观测已调信号的功率谱(优先)或频谱; 三、实现框图及其原理分析 1、原理分析及其结构 QPSK与二进制PSK一样,传输信号包含的信息都存在于相位中。载波相位取四个等间隔值之一,如л/4, 3л/4,5л/4,和7л/4。相应的E为发射信号的每个符号的能量,T为符号持续时间,载波频率f等于nc/T,nc为固定整数。每一个可能的相位值对应于一个特定的二位组。例如,可用前述的一组相位值来表示格雷码的一组二位组:10,00,01,11。 Sin(t)=2E/tcos[2]4/ + ∏i]0<=t<=T )1 - ft∏ 2( 其中,i=1,2,3,4。 2、框图

四、实验结果与分析 图一基带信号为周期为127bits的伪随机序列。

图二:已调信号时域波形 带宽为7104 Hz

毕业设计基于matlab的QPSK系统仿真

基于MATLAB的QPSK仿真设计与实现 一.前言 1.1QPSK系统的应用背景简介 QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。 1.2 QPSK实验仿真的意义 通过完成设计内容,复习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。 通过本次实验,除了和队友培养了默契学到了知识之外,还可以将次实验作为一种推广,让更多的学生来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便学生进行测试和对比。足不出户便可以做实验。 1.3 实验平台和实验内容 1.3.1实验平台 本实验是基于Matlab的软件仿真,只需PC机上安装MATLAB 6.0或者以上版本即可。 (本实验附带基于Matlab Simulink (模块化)仿真,如需使用必须安装simulink 模块) 1.3.2实验内容 1.构建一个理想信道基本QPSK仿真系统,要求仿真结果有 a.基带输入波形及其功率谱 b.QPSK信号及其功率谱 c.QPSK信号星座图 2.构建一个在AWGN(高斯白噪声)信道条件下的QPSK仿真系统,要求仿真结果有

MATLAB对QPSK通信系统的仿真

QPSK通信系统的性能分析与matlab仿真 1 绪论 在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。在新技术革命的高速推动和信息高速公路的建设,全球网络化发展浪潮的推动下,通信技术得到迅猛的发展,载波通信、卫星通信和移动通信技术正在向数字化、智能化、宽带化发展。Simulink具有适应面广、结构和流程清晰及仿真精细、效率高、贴近实际、等优点,基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件应用于Simulink。本文设计出一个QPSK仿真模型,以分析QPSK在高斯信道中的性能,通过此次课程设计,更好地了解QPSK系统的工作原理,传输比特错误率和符号错误率的计算。 1.1 研究背景与研究意义 1.1.1 研究背景 在当今高度信息化的社会,信息和通信已成为现代社会的“命脉”。信息作为一种资源,只有通过广泛地传播与交流,才能促进社会成员之间的合作,推动生产力的发展,创造出巨大的经济效益。信息的数字转换处理技术走向成熟,为大规模、多领域的信息产品制造和信息服务创造了条件。高新技术层出不穷。随着通信技术的发展,通信系统方面的设计也会越来越复杂,利用计算机软件的仿真,可以大大地降低通信过程中的实验成本。Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中只

要通过简单的鼠标操作,就可以构造出复杂的系统。Simulink提供了一个建立模型方块图的图形用户接口,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。 1.1.2研究意义 通过完成实验的设计内容,加深对通信原理理论的理解,熟悉通信系统的基本概念,复习正交相位偏移键控(QPSK)调制解调的基本原理和误比特率的计算方法,了解调制解调方式中最基础的方法。包括模拟调制中的幅度调制(AM)如双边带幅度调制(DSB)、单边带幅度调制(SSB)、常规幅度调制;角度调制中的相位调制(FM)和频率调制(PM)。以及数字调制中的幅度调制,相位调制,频率调制等方式,了解QPSK的实现方法及数学原理,掌握通信系统Simulink仿真建模方法。数字通信之所以取得迅速的发展不是偶然的现象, 有其理论上、技术上和客观需求上的基础从理论分析开始, 人们早就认识到数字通信在理论上比模拟通信具有一系列优点。除上述各点外, 在频带和功率的有效利用方面也更为有利计算技术和微电子学的进展为通信的数字化提供了坚实的技术基础人们在社会生活中对多种功能综合服务的需要是数字通信发展的强大动力。 1.2 课程设计的目的和任务 1.2.1 课程设计的目的 本次课程设计是根据“通信工程专业培养计划”要求而制定的。通信系统的计算机仿真设计课程设计是通信工程专业的学生在学完通信工程专业基础课、通信工程专业主干课及科学计算与仿真专业课后进行的综合性课程设计。其目的在于使学生在课程设计过程中能够理论联系实际,在实践中充分利用所学理论知识分析和研究设计过程中出现的各类技术问题,巩固和扩大所学知识面,为以后走向工作岗位进行设计打下一定的基础。 1.2.2课程设计的任务 (1)掌握一般通信系统设计的过程、步骤、要求、工作内容及设计方法;掌握

基于MATLAB的OQPSK调制解调实现课程设计

基于MATLAB的OQPSK调制解调实现 摘要本课程设计的目标在于深切理解OQPSK调制与解调的基本原理,学会使用MATALB软件中的M文件来实现OQPSK的调制与解调以及分析加入不同噪声时对信号的影响程度。首先产生一个数字基带信号,接下来调用MATLAB中的相应函数对这个基带信号进行调制,然后分析调制后的波形:,记录结果后对调制后的信号进行解调,观察解调结果并做好记录,最后在信号中加入噪声并观察其时频图的变化,分析信噪比的噪声对调制结果的影响。本课程设计的实验开发/运行平台为windowsXP/windows7,程序设计使用MATLAB语言。通过调试运行,基本完成设计目标,达到调制与解调的目的。 关键词:MATLAB;M文件;OQPSK;调制与解调;噪声 1 引言 数字调制与解调技术在数字通信中占有非常重要的地位,数字通信技术与MATLAB 的结合是现代通信系统发展的一个必然趋势。在数字信号通信过程中,噪声的影响往往比较大,同时我们都希望有较高的频带利用率和功率利用率,而OQPSK也是一种恒包络调制技术,其频谱特性好,既保留着2PSK的高抗噪声性能、高频带利用率和高功率利用率,又有效地减弱了2PSK的“反相工作”缺陷,在通信研究中有着非常重要的意义,特别是在卫星通信和移动通信的领域有着广泛的应用。MATLAB作为当前国际控制界最流行的面向工程与科学计算的高级语言,在控制系统的分析、仿真与设计方面得到了非常广泛的应用,随着其信号处理专业函数和专业工具箱的成熟,越来越受到通信领域人士的欢迎,其在通信领域的应用也将更加广泛。

1.1课程设计目的 熟悉OQPSK的基本原理,掌握MATLAB中M文件的使用及相关函数的调用方法,在此基础上通过编程实现OQPSK的调制与解调,并通过加入的噪声来判断所设计的系统性能。这次课程设计不仅让我对OQPSK有了更加深入的了解,而且学会了如何利用MATLAB中的M文件来实现通信系统方面的应用,最重要的是,自己能够独立完成一个小项目了,有了这方面的经验,我在以后的学习中就会有更充足的信心和动力。 1.2课程设计要求 熟悉MATLAB中M文件的使用方法,并在深切理解OQPSK调制解调原理的基础上,编写出OQPSK调制解调程序。绘制出OQPSK信号解调前后在时域和频域中的波形,并观察解调前后频谱有何变化以加深对OQPSK信号解调原理的理解。分别对信号叠加不同噪声,并进行解调,绘制出解调前后信号的时频波形,分析不同噪声对信号传输造成的影响大小。 1.3课程设计步骤 先产生随机信号,然后对信号进行调制和解调,在调制和解调过程中加入高斯白噪声,观察现象。 1、产生四进制数字作为数字基带信号,对其进行调制; 2、将函数调制信号改为相应的时域波形调制信号; 3、在函数调制信号中加入高斯白噪声,生成加入噪声后的时域波形调制信号; 4、分别生成没加或加了噪声的调制信号波形图和频谱图; 5、分别对没加或加了噪声的调制信号进行解调; 6、计算误码率。

基于MATLAB的OQPSK调制解调实现课程设计

翼蹴g调制解调

基于MATLAB的OQPSK调制解调实现 摘要本课程设计的目标在于深切理解OQPSK调制与解调的基本原理,学会使用MATALB软件中的M文件来实现OQPSK的调制与解调以及分析加入不同噪声时对信号的影响程度。首先产生一个数字基带信号,接下来调用MATLAB中的相应函数对这个基带信号进行调制,然后分析调制后的波形:,记录结果后对调制后的信号进行解调, 观察解调结果并做好记录,最后在信号中加入噪声并观察其时频图的变化,分析信噪比的噪声对调制结果的影响。本课程设计的实验开发/运行平台为windowsXP/windows7, 程序设计使用MATLAB语言。通过调试运行,基本完成设计目标,达到调制与解调的目的。 关键词:MATLAB; M文件;OQPSK;调制与解调;噪声 1引言 数字调制与解调技术在数字通信中占有非常重要的地位,数字通信技术与MATLAB的结合是现代通信系统发展的一个必然趋势。在数字信号通信过程中,噪声的影响往往比较大,同时我们都希望有较高的频带利用率和功率利用率,而OQPSK也是一种恒包络调制技术,其频谱特性好,既保留着2PSK的高抗噪声性能、高频带利用率和高功率利用率,又有效地减弱了2PSK的“反相工作”缺陷,在通信研究中有着非常重要的意义,特别是在卫星通信和移动通信的领域有着广泛的应用。MATLAB作为当前国际控制界最流行的面向工程与科学计算的高级语言,在控制系统的分析、仿真与

设计方面得到了非常广泛的应用,随着其信号处理专业函数和专业工具箱的成熟,越来越受到通信领域人士的欢迎,其在通信领域的应用也将更加广泛。 i?i课程设计目的 熟悉OQPSK的基本原理,掌握MATLAB中M文件的使用及相关函数的调用方法,在此基础上通过编程实现OQPSK的调制与解调,并通过加入的噪声来判断所设计的系统性能。这次课程设计不仅让我对OQPSK有了更加深入的了解,而且学会了如何利用MATLAB中的M文件来实现通信系统方面的应用,最重要的是,自己能够独立 完成一个小项目了,有了这方面的经验,我在以后的学习中就会有更充足的信心和动力。 1.2课程设计要求 熟悉MATLAB中M文件的使用方法,并在深切理解OQPSK调制解调原理的基础上,编写出OQPSK调制解调程序。绘制出OQPSK信号解调前后在时域和频域中的波形,并观察解调前后频谱有何变化以加深对OQPSK信号解调原理的理解。分别对信号叠加不同噪声,并进行解调,绘制出解调前后信号的时频波形,分析不同噪声对信号传输造成的影响大小。 1.3课程设计步骤 先产生随机信号,然后对信号进行调制和解调,在调制和解调过程中加入高斯白噪声,观察现象。 1、产生四进制数字作为数字基带信号,对其进行调制;

(完整版)QPSK调制与解调在MATLAB平台上的实现

QPSK 调制与解调在MATLAB 平台上的实现 李悦 QPSK 即四进制移向键控( Quaternary Phase Shift Keying),它利用载波的四种不同相位来表示数字信息,由于每一种载波相位代表两个比特信息,因此每个四进制码元可以用两个二进制码元的组合来表示。两个二进制码元中的前一个码元用a表示,后一个码元用b 表示。 QPSK信号可以看作两个载波正交2PSK信号的合成,下图表示QPSK 正交调制器。 由QPSK 信号的调制可知,对它的解调可以采用与2PSK 信号类似的解调方法进行解调。解调原理图如下所示,同相支路和正交支路分别采用相干解调方式解调,得到 I(t)和Q(t) ,经过抽样判决和并/串交换器,将上下支路得到的并行 数据恢复成串行数据 % 调相法clear all close all t=[-1:0.01:7-0.01]; tt=length(t); x1=ones(1,800); for i=1:tt

if (t(i)>=-1 & t(i)<=1) | (t(i)>=5& t(i)<=7); x1(i)=1; else x1(i)=-1; end end t1=[0:0.01:8-0.01]; t2=0:0.01:7-0.01; t3=-1:0.01:7.1-0.01; t4=0:0.01:8.1-0.01; tt1=length(t1); x2=ones(1,800); for i=1:tt1 if (t1(i)>=0 & t1(i)<=2) | (t1(i)>=4& t1(i)<=8); x2(i)=1; else x2(i)=-1; end end f=0:0.1:1; xrc=0.5+0.5*cos(pi*f); y1=conv(x1,xrc)/5.5; y2=conv(x2,xrc)/5.5; n0=randn(size(t2)); f1=1; i=x1.*cos(2*pi*f1*t); q=x2.*sin(2*pi*f1*t1); I=i(101:800); Q=q(1:700); QPSK=sqrt(1/2).*I+sqrt(1/2).*Q; QPSK_n=(sqrt(1/2).*I+sqrt(1/2).*Q)+n0; n1=randn(size(t2)); i_rc=y1.*cos(2*pi*f1*t3); q_rc=y2.*sin(2*pi*f1*t4); I_rc=i_rc(101:800); Q_rc=q_rc(1:700); QPSK_rc=(sqrt(1/2).*I_rc+sqrt(1/2).*Q_rc); QPSK_rc_n1=QPSK_rc+n1; figure(1) subplot(4,1,1);plot(t3,i_rc);axis([-1 8 -1 1]);ylabel('a 序列'); subplot(4,1,2);plot(t4,q_rc);axis([-1 8 -1 1]);ylabel('b 序列'); subplot(4,1,3);plot(t2,QPSK_rc);axis([-1 8 -1 1]);ylabel(' 合成序列'); subplot(4,1,4);plot(t2,QPSK_rc_n1);axis([-1 8 -1 1]);ylabel(' 加入噪声');

相关主题
文本预览
相关文档 最新文档