当前位置:文档之家› 【数学】数学锐角三角函数的专项培优练习题(含答案)及答案

【数学】数学锐角三角函数的专项培优练习题(含答案)及答案

【数学】数学锐角三角函数的专项培优练习题(含答案)及答案
【数学】数学锐角三角函数的专项培优练习题(含答案)及答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.

(1)求∠CAO'的度数.

(2)显示屏的顶部B'比原来升高了多少?

(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?

【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.

【解析】

试题分析:(1)通过解直角三角形即可得到结果;

(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得

BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;

(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.

试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,

∴sin∠CAO′=,

∴∠CAO′=30°;

(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,

∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,

∠CAO′=30°,

∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,

∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,

∴显示屏的顶部B′比原来升高了(36﹣12)cm;

(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,

理由:∵显示屏O′B与水平线的夹角仍保持120°,

∴∠EO′F=120°,

∴∠FO′A=∠CAO′=30°,

∵∠AO′B′=120°,

∴∠EO′B′=∠FO′A=30°,

∴显示屏O′B′应绕点O′按顺时针方向旋转30°.

考点:解直角三角形的应用;旋转的性质.

2.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=1

2

∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;

(2)通过观察、测量、猜想:BF

PE

=,并结合图2证明你的猜想;

(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE

值.(用含α的式子表示)

【答案】(1)证明见解析(2)

1

2

BF

PE

=(3)

1

tan

2

BF

PE

α

=

【解析】

解:(1)证明:∵四边形ABCD是正方形,P与C重合,

∴OB="OP" ,∠BOC=∠BOG=90°.

∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.

∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).

(2)BF1

PE2

=.证明如下:

如图,过P作PM//AC交BG于M,交BO于N,

∴∠PNE=∠BOC=900,∠BPN=∠OCB.

∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.

∴NB=NP.

∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.∴△BMN≌△PEN(ASA).∴BM=PE.

∵∠BPE=1

2

∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.

∵PF⊥BM,∴∠BFP=∠MFP=900.

又∵PF=PF,∴△BPF≌△MPF(ASA).∴BF="MF" ,即BF=1

2 BM.

∴BF=1

2PE,即

BF1

PE2

=.

(3)如图,过P作PM//AC交BG于点M,交BO于点N,

∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.

由(2)同理可得BF=1

2

BM,∠MBN=∠EPN.

∵∠BNM=∠PNE=900,∴△BMN∽△PEN.∴BM BN

PE PN

=.

在Rt△BNP中,

BN

tan=

PN

α,∴

BM

=tan

PE

α,即

2BF

=tan

PE

α.

BF 1

=tan PE 2

α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .

(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出

BF 1

PE 2

=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=1

2

BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BN

tan =PN

α即可求得

BF 1

=tan PE 2

α.

3.如图,在△ABC 中,AB=7.5,AC=9,S △ABC =

81

4

.动点P 从A 点出发,沿AB 方向以每秒5个单位长度的速度向B 点匀速运动,动点Q 从C 点同时出发,以相同的速度沿CA 方向向A 点匀速运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,以PQ 为边作正△PQM (P 、Q 、M 按逆时针排序),以QC 为边在AC 上方作正△QCN ,设点P 运动时间为t 秒. (1)求cosA 的值;

(2)当△PQM 与△QCN 的面积满足S △PQM =

9

5

S △QCN 时,求t 的值; (3)当t 为何值时,△PQM 的某个顶点(Q 点除外)落在△QCN 的边上.

【答案】(1)coaA=

45;(2)当t=35时,满足S △PQM =9

5

S △QCN ;(3)当2733-或

2733+时,△PQM 的某个顶点(Q 点除外)落在△QCN 的边上.

【解析】

分析:(1)如图1中,作BE ⊥AC 于E .利用三角形的面积公式求出BE ,利用勾股定理求出AE 即可解决问题;

(2)如图2中,作PH ⊥AC 于H .利用S △PQM =

9

5

S △QCN 构建方程即可解决问题; (3)分两种情形①如图3中,当点M 落在QN 上时,作PH ⊥AC 于H .②如图4中,当点M 在CQ 上时,作PH ⊥AC 于H .分别构建方程求解即可; 详解:(1)如图1中,作BE ⊥AC 于E .

∵S △ABC =12

?AC?BE=814,

∴BE=

9

2

, 在Rt △ABE 中,AE=22=6AB BE -,

∴coaA=

64

7.55

AE AB ==. (2)如图2中,作PH ⊥AC 于H .

∵PA=5t ,PH=3t ,AH=4t ,HQ=AC-AH-CQ=9-9t , ∴PQ 2=PH 2+HQ 2=9t 2+(9-9t )2, ∵S △PQM =9

5

S △QCN , ∴

32=9352, ∴9t 2+(9-9t )2=9

5

×(5t )2, 整理得:5t 2-18t+9=0,

解得t=3(舍弃)或35

. ∴当t=

35时,满足S △PQM =9

5

S △QCN . (3)①如图3中,当点M 落在QN 上时,作PH ⊥AC 于H .

易知:PM∥AC,

∴∠MPQ=∠PQH=60°,

∴PH=3HQ,

∴3t=3(9-9t),

-.

∴t=2733

②如图4中,当点M在CQ上时,作PH⊥AC于H.

同法可得3,

∴39t-9),

∴27+33

-s27+33时,△PQM的某个顶点(Q点除外)落在△QCN 综上所述,当2733

的边上.

点睛:本题考查三角形综合题、等边三角形的性质、勾股定理锐角三角函数、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.

4.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高

度.(3≈1.73,结果精确到0.1米)

【答案】22.4m 【解析】 【分析】

首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解. 【详解】

解:在Rt △AFG 中,tan ∠AFG =3, ∴FG =

tan 3

AG AFG =∠,

在Rt △ACG 中,tan ∠ACG =AG

CG

, ∴CG =

tan AG

ACG ∠=3AG .

又∵CG ﹣FG =24m ,

即3AG ﹣

3

=24m , ∴AG =123m , ∴AB =123+1.6≈22.4m .

5.某条道路上通行车辆限速60千米/时,道路的AB 段为监测区,监测点P 到AB 的距离PH 为50米(如图).已知点P 在点A 的北偏东45°方向上,且在点B 的北偏西60°方向上,点B 在点A 的北偏东75°方向上,那么车辆通过AB 段的时间在多少秒以内,可认定为32≈1.4).

【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速

【解析】

分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.

详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,

∴∠PAH=∠CAB–∠CAP=30°,

∵∠PHA=∠PHB=90°,PH=50,∴AH=

tan PH PAH

33,

∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴3,

∵60千米/时=50

3米/秒,∴时间t=

50350

50

3

3≈8.1(秒),

即车辆通过AB段的时间在8.1秒以内,可认定为超速.

点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

6.如图,在平面直角坐标系xOy中,点P是⊙C外一点,连接CP交⊙C于点Q,点P关于点Q的对称点为P′,当点P′在线段CQ上时,称点P为⊙C“友好点”.已知A(1,0),

B(0,2),C(3,3)

(1)当⊙O的半径为1时,

①点A,B,C中是⊙O“友好点”的是;

②已知点M在直线y 3

+2 上,且点M是⊙O“友好点”,求点M的横坐标m的取值

范围;

(2)已知点D(23,0),连接BC,BD,CD,⊙T的圆心为T(t,﹣1),半径为1,若在△BCD 上存在一点N,使点N是⊙T“友好点”,求圆心T的横坐标t的取值范围.

【答案】(1)①B;②0≤m3(2)﹣3t<3

【解析】

【分析】

(1))①根据“友好点”的定义,OB=<2r=2,所以点B是⊙O“友好点”;

②设M(m 3

+2 ),根据“友好点”的定义,OM

2

2

3

22

2

m m

??

+-+≤

?

?

??

,由此

求解即可;

(2)B(0,2),C(3,3),D30),⊙T的圆心为T(t,﹣1),点N是⊙T“友好点”,NT≤2r=2,所以点N只能在线段BD上运动,过点T作TN⊥BD于N,作TH∥y轴,与BD交于点

H.易知∠BDO=30°,∠OBD=60°,NT 3

,直线BD:y

3

x+2,可知H(t,﹣

3 3t+2),继而可得NT=﹣

1

2

t+

33

2

,由此可得关于t的不等式,解出t的范围即可.

【详解】

(1)①∵r=1,

∴根据“友好点”的定义,OB=<2r=2,

∴点B是⊙O“友好点”,

∵OC22

33

+2>2r=2,∴点C不是⊙O“友好点”,A(1,0)在⊙O上,不是⊙O“友好点”,

故答案为B;

②如图,

设M (m ,﹣

3

m +2 ),根据“友好点”的定义, ∴OM =2

23

22

2m m ??+-+≤ ? ???

, 整理,得2m 2﹣23m ≤0, 解得0≤m ≤3;

∴点M 的横坐标m 的取值范围:0≤m ≤3;

(2)∵B (0,2),C (3,3),D (23,0),⊙T 的圆心为T (t ,﹣1),点N 是⊙T “友好点”, ∴NT ≤2r =2,

∴点N 只能在线段BD 上运动,过点T 作TN ⊥BD 于N ,作TH ∥y 轴,与BD 交于点H .

∵tan ∠BDO =

3

3

23OB OD ==

∴∠BDO=30°, ∴∠OBD =60°, ∴∠THN=∠OBD=60°, ∴NT =HT?sin ∠3

∵B(0,2),D(23,0),∴直线BD:y=﹣3

3

x+2,∵H点BD上,

∵H(t,﹣3t+2),

∴HT=﹣3

3t+2﹣(﹣1)=﹣

3

3

t+3,

∴NT=3HT=3(﹣3t+3)=﹣1

2t+

33

∴﹣1

2t+

33

≤2,

∴t≥﹣4+33,

当H与点D重合时,点T的横坐标等于点D的横坐标,即t=33,

此时点N不是“友好点”,

∴t<33,

故圆心T的横坐标t的取值范围:﹣4+33≤t<33.

【点睛】

本题是圆的综合题,正确理解“友好点”的意义,熟练运用相似三角形的性质与特殊三角函数是解题的关键.

7.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.

(1)求证:CD是⊙O的切线;

(2)若AB=6,∠ABE=60°,求AD的长.

【答案】(1)详见解析;(2)9 2

【解析】

【分析】

(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=

AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.【详解】

证明:如图,连接OE,

∵AE平分∠DAC,

∴∠OAE=∠DAE.

∵OA=OE,

∴∠AEO=∠OAE.

∴∠AEO=∠DAE.

∴OE∥AD.

∵DC⊥AC,

∴OE⊥DC.

∴CD是⊙O的切线.

(2)解:∵AB是直径,

∴∠AEB=90°,∠ABE=60°.

∴∠EAB=30°,

在Rt△ABE中,AE=AB·cos30°3

33

在Rt△ADE中,∠DAE=∠BAE=30°,

∴AD=cos30°3339 2 .

【点睛】

本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.

8.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;

(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;

(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.

【答案】(1)45

2

;(2)详见解析;(3)使得△AA ′B ′成为等腰三角形的x 的值有:0秒、

32 669-. 【解析】 【分析】

(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′=

'''''

=A B CE

A D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤

115时和当11

5

<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】

解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,

根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′=

'''''

=A B CE A D CD ∴

682

=CE ∴CE =3

2

cm ,

∴S ABCE =S ABD ′﹣S CED ′=86345

22222

?-?÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =3

2

(x +1), ∴S △CD ′E =32x 2+3x +32

, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当

115≤x ≤4时,B ′C =8﹣2x ,CE =4

3

(8﹣2x )

∴()2

14y 8223x =

?-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;

②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245

, ∵AN 2+A ′N 2=36, ∴(6﹣

245)2+(2x +18

5

)2=36, 解得:x =

669-,x =669

--(舍去); ③如图2,当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =24

5

, ∵AB 2+BB ′2=AN 2+A ′N 2 ∴36+4x 2=(6﹣245)2+(2x +18

5

)2 解得:x =

32

. 综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:0秒、

32秒、6695

-.

【点睛】

本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.

9.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.

(1)试求抛物线的解析式;

(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;

(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233

384

y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为3

34

y x =

+或3

34

y x =--.

【解析】 【分析】

(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=4

5

PC ,所以5PA+4PC =5(PA+

4

5

PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=

18

5

,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】

解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣

38

∴抛物线解析式为y =﹣

38(x+2)(x ﹣4)=﹣38x 2+34

x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90°

∵∠DCP =∠OCB ∴△CDP ∽△COB ∴

PC PD

BC OB

= ∵B (4,0),C (0,3)

∴OB

=4,OC =3,BC ∴PD =

45

PC ∴5PA+4PC =5(PA+

4

5

PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB?OC =1

2

BC?AE ∴AE =

6318

55

AB OC BC ?== ∴5AE =18

∴5PA+4PC 的最小值为18.

(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,

∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q

∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°

∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =

3

5

FQ TF = ∵Rt △FGQ 中,cos ∠QFT =

3

5

FG FQ = ∴FG =

35FQ =95

∴x Q =1﹣9455=-,QG 125==

①若点Q 在x 轴上方,则Q (412

55

-,)

设直线l解析式为:y=kx+b

40 412 55 k b

k b

-+=

?

?

?

-+=

??

解得:

3

4

3

k

b

?

=

?

?

?=

?

∴直线l:33

4

y x

=+

②若点Q在x轴下方,则Q(

412

55

--,)

∴直线l:33

4

y x

=--

综上所述,直线l的解析式为

3

3

4

y x

=+或

3

3

4

y x

=--

【点睛】

本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论

10.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.

(1)求证:四边形AGDH为菱形;

(2)若EF=y,求y关于x的函数关系式;

(3)连结OF,CG.

①若△AOF为等腰三角形,求⊙O的面积;

②若BC=330=______.(直接写出答案).

【答案】(1)证明见解析;(2)y=1

8

x2(x>0);(3)①

16

3

π或8π或(17+2)

π;21.

【解析】

【分析】

(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;

(2)只要证明△AEF∽△ACB,可得AE EF

AC BC

=解决问题;

(3)①分三种情形分别求解即可解决问题;

②只要证明△CFG∽△HFA,可得GF

AF

=

CG

AH

,求出相应的线段即可解决问题;

【详解】

(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,

∵AB是直径,AB⊥GH,

∴EG=EH,

∴DG=DH,

∴AG=DG=DH=AH,

∴四边形AGDH是菱形.

(2)解:∵AB是直径,

∴∠ACB=90°,

∵AE⊥EF,

∴∠AEF=∠ACB=90°,

∵∠EAF=∠CAB,

∴△AEF∽△ACB,

∴AE EF

AC BC

=,

∴1

2

4

x y

x

=,

∴y=1

8

x2(x>0).

(3)①解:如图1中,连接DF.

∵GH 垂直平分线段AD , ∴FA =FD ,

∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°, ∴AB =

83

, ∴⊙O 的面积为

163

π. 如图2中,当AF =AO 时,

∵AB 22AC BC +216x +

∴OA =2

162

x +, ∵AF 22EF AE +22

21182x ????+ ? ?????

216x +22

21182x ????+ ? ?????

解得x =4(负根已经舍弃), ∴AB =2 ∴⊙O 的面积为8π.

如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2

164x

+,

∵△ACE∽△ABC,

∴AC2=AE?AB,

∴16=x?2

164x

+,

解得x2=217﹣2(负根已经舍弃),

∴AB2=16+4x2=817+8,

∴⊙O的面积=π?1

4

?AB2=(217+2)π

综上所述,满足条件的⊙O的面积为16

3

π或8π或(217+2)π;

②如图3中,连接CG.

∵AC=4,BC=3,∠ACB=90°,∴AB=5,

∴OH=OA=5

2

∴AE=3

2

∴OE=OA﹣AE=1,

∴EG=EH

2

5

1

2

??

-

?

??

21

2

相关主题
文本预览
相关文档 最新文档