当前位置:文档之家› 量子统计复习题

量子统计复习题

量子统计复习题
量子统计复习题

1. 证明量子正则系综的“等几率分布”是最可几分布。

2. 证明正则分布???()

H H

e

Tr e ββρ

--=的熵最大。

3. 证明巨正则系综分布??()??()?()

H

N H

N e

Tr e βμβμρ

----=的熵最大。

4. 证明等温等压系综??()??()?()

H

pV H

pV e

Tr e ββρ

-+-+=的熵最大。

5. 证明:1)箱中自由粒子到达箱中任一位置的几率相等;2)箱中自由粒子波包的空间范围量级

为3)箱中自由粒子的平均能量为

32

B k T 。@P52

6. 利用量子正则系综理论,求磁场B 中自由电子的平均自旋。@P57

7. 证明正则系综的密度矩阵满足微分方程???H

ρρβ

?-

=? @P58 8. 证明相对于谐振子,非谐振子对外做功的能力变小了。

9. 对一线性谐振子 222?1H 22

p m q m ω=-+,利用量子正则系综理论证明:@P52

(1)

12

V T

H ==

(维里定理)

已知:

2

2

[()tanh

()coth(

)]

42

2

q m q q q q H

e

q ωωβωββ''-++--'=

(2) 高温极限

1

2

ωβ<< ,

112

2

B V

T

H k T

==

=

(已知:1x

e x =++ )

(3) 低温极限

1

2

ωβ>> ,2

1

()

2

2(,)(

)m q q m q q e

ωω

ρπ'-

+'=

,对应n=0的基态极限情况。

10. 对正则系综,证明下列关系 (1) ,,()[

()]V N B V N F S k T lnQ T

T

??=-=??

(2) ,,(

)(

)T N B N T

F S k T T lnQ V

V

??

=-=??

(3) ,,()(

)V T B V T F k T lnQ N

N

μ??=-=-??

(4) ,?[

]N V

U H

lnQ β

?=

=-?

(5) 22

,,2

()(

)[

]V

N V B N V

S lnQ C T k T

ββ

??==??

(6) S =(E -F)β

11. 证明体积为0V 的孤立系中的压强涨落为

2

2

1P P

N

?=

12. 证明正则系综中能量的涨落为22B V U k T C ?=,

对理想气体,设263=10N m -?

=

13. 证明正则系综中压强的相对涨落为,

2

22

2

2

?[

]B p

k T p H

p

p

V

V

δ??=+

??

14. 何为能斯特定理(热力学第三定律),试证明之。 15. 证明经典刘维方程{,}0H t

ρρ?+=?

16. 证明量子刘维方程

???[,]0H t ρ

ρ?+=?,其中:1??????[,]()H H H i ρρρ=-

17. 证明密度矩阵定义的平均值在表象变换下不变,即, r()r()T b T b ρ

ρ''= 18. 证明系综的熵可写为i i S ln ρρ=-∑ 19.算符n n ψψ的平均值是什么?

20. 写出沿Z 方向传播的线偏振单色光的混合态密度矩阵。

21. 设体积为V 的立方箱中有N 个不可分辨的自由粒子,其在坐标表象中的正则系综密度矩阵对角

元为

111131,...,,...,[()...()]!H N N P N N N

P

r r e r r f pr r f pr r N βδλ

-=

--∑

其中()

22

r

f r e πλ

-= ,λ

=

22. 已知玻色和费米气体的巨配分函数为

1

=(1-z )

e

βε

ε

--Ξ∏ (B.E), 1

=(1+z )

e

βε

ε

--Ξ∏ (F.D),

其中z e

βμ

=,求两种气体的单粒子态的平均占据数。

23. 证明体积为V 的箱中自由粒子的能级密度是32()(2V

m h

πρε=;在低温极限,电子

气的磁化率与温度无关。

24. 以直角坐标系的定轴转动为例,证明坐标系的旋转是幺正变换1A A +-=。证明在坐标系做定轴转动时,对矢量R =(x, y )有: ; ''≠=R R R R ,即证明:

2222

x x x A x y x y y y y '??????''=≠+=+ ? ? ?'??????

,但, 25.解释德哈斯-范阿尔芬效应的物理图像

26.证明外磁场中带电粒子轨道运动的量子化导致抗磁性(朗道抗磁性)

27.证明在低温极限下,电子气的磁化率与温度无关。

28.什么是统计系综,什么是正则系综,微正则系综,巨正则系综?还有何种常见系综?

29.何为纯态?何为混合态?写出密度算符? 的定义及其矩阵的表达式。混合态主要性质有那些?

量子力学泛函计算简介

量子力学泛函计算 纪岚森 (青岛大学物理科学学院材料物理一班) 摘要:文章叙述了密度泛函理论的发展,密度泛函理论以“寻找合适的交换相关为主线,从 最初的局域密度近似,,从最初的局域密度近似、广义梯度近似到现在的非局域泛函、自相 互作用修正,多种泛函形式的出现,是的密度泛函在大分子领域的计算越来越精确。近年来 密度泛函理论在含时理论与相对论方面发展也很迅速。计算体系日臻成熟,而我所参加的创 新实验小组就是以密度泛函研究大分子体系。在量子力学泛函计算的产生,发展,理论,分 支,前景等方面予以介绍,本着科学普及的态度希望大家能够更加进一步的理解泛函计算。 关键字:量子力学泛函计算,发展,理论分支,前景,科普 1引言:随着量子理论的建立和计算机技术的发展,人们希望能够借助计算机对微观体系的量子力学方程进行数值求解【3】,然而量子力学的基本方程———Schirdinger 方程的求解是极其复杂的。克服这种复杂性的一个理论飞跃是电子密度泛函理论(DFT)的确立电子密度泛函理论是上个世纪60 年代在Thomas-Fermi 理论的基础上发展起来的量子理论。与传统的量子理论向悖,密度泛函理论通过离子密度衡量体系的状态,由于离子密度只是空间的函数,这样是就使得解决三维波函数方程转化为解决三维密度问题,使得在数学计算上简单了很多,对于定态Schirdinger 方程,我们只能解决三维氢原子,对于更加复杂的问题,我们便无法进行更为精确的计算,而且近似方法也无法是我们得到更为精确的结果。但是密度泛函却在这方面比较先进,是的大分子计算成为可能。【2】 2.过程:第一性原理,密度泛函是一宗量子力学重头计算的计算方法,热播呢V啊基于密度泛函的理论计算成为第一性原理——first-principles。经过几十年的发展密度泛函理论被广泛的应用于材料,物理,化学和生物等科学中,Kohn也由于其对密度泛函理论的不可磨灭的先驱性贡献获得了诺贝尔化学奖。密度泛函理论体系包括交换相关能量近似,含时密度泛函。 3.密度泛函理论的发展: 1交换相关能,在密度泛函理论中我们把所有近似都归结到交换相关能量一项上,所以密度泛函的精确度也就是由交换相关能一项上。寻求更好的更加合适的相关近似,即用相同密度的均匀电子气交换相关泛函作为非均匀系统的近似值,或许这也出乎人们的意料,这样一个简单的近似却得到了一个极好的结论。直接导致了后来的泛函理论的广泛应用。由此获

经典和量子统计物理学的初步认识(高工大作业,第三部分)

西安交通大学 高等工程热力学 报告 学号:XXXXXXXXXX 姓名:XXXXX 专业:工程热物理 班级:XXXXXX 能源与动力工程学院 2015/12/26

经典和量子统计物理学的初步认识 经典统计物理学是建立在经典力学基础上的学科,而量子统计物理学是建立在量子力学基础上的学科,从经典统计到量子统计,它们之间存在着一定的区别和联系,并在一定的条件下可以相互转换。利用经典统计方法推证热力学中的能量均分定理,并结合热容量的定义求解某些系统内能及热容量时,发现其理论值与实际值存在差异,这是经典统计物理难以解决的问题,本文采用量子统计理论做出了合理的解释,从而使理论值和实际值吻合的很好。因此,可以看出经典统计的局限性是量子统计理论建立的基础,量子统计理论很好的补充了经典统计理论的不足。 1. 理想气体物态方程的经典统计推导 在普通物理的热学中,从气体的实验定律(如:玻意耳—马略特定律、查理定律及盖吕萨克定律)出发推导理想气体物态方程,而在理论物理中热力学统计利用经典统计方法仍能给出相应的理论,它是经典统计物理应用的一个典型的实例。对自由粒子而言,其自由度r=3,其坐标表示为(x ,y ,z),与之相对应的动量为(p x ,p y ,p z ),那么它的能量为: 2222x y z p 1==(p +p +p )2m 2m ε()1 将(1)式代入玻耳兹曼系统下的配分函数: 1222x y z l (p +p +p )2m l l z e e β βεωω--==∑∑()2 由于玻耳兹曼系统的特点是每个粒子可以分辨,可看成经典系统,则系统看成连续分布的,即配分函数中的求和变为积分,则有: 131...222(p +p +p )x y z 2m x y z z e dxdydzdp dp dp h β -=??()3 求解积分可得: 3 2122()z V h β =πm ()4 其中V dxdydz =???是气体的体积,根据玻耳兹曼系统广义力的统计表达式类比压强的统计表达式为: 1lnz N P V β?=?()5 将(4)式带入(5)式,求导可得理想气体的压强: NkT P V = ()6

热力学统计物理期末复习试题 (2)

一.填空题 1.设一多元复相系有个?相,每相有个k 组元,组元之间不起化学反应。此系统平衡时必同时满足条件: T T T αβ ? == =、 P P P αβ ? == =、 (, )i i i 1,2i k α β ? μμμ== == 2.热力学第三定律的两种表述分别叫做:能特斯定律和绝对零度不能达到定律。 3.假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。则系统可能的微观态数为:10。 4.均匀系的平衡条件是0 T T =且 P P =;平衡稳定性条件是 V C >且() T P V ?

量子力学与统计力学各章习题Word版

《量子力学与统计力学》各章习题 习题一 1.1、一颗质量为20克的子弹以仰角30o初速率500米/秒从60米的高度处射出。求在重力 作用下该子弹着地前的轨道以及射出50秒后对射出点的位矢、速度、动量、角动量、动 能和机械能。(不考虑空气阻力,重力加速度取10米/秒2 ,地面为零重力势能面)。 1.2、在极坐标平面中任取两点P 1和P 2,但它们和极点三者不共线。试分别画出在P 1和P 2处 的极坐标单位矢。 1.3、在球坐标系中任取一点P ,试画出P 点的球坐标单位矢。 1.4、对于做斜上抛运动的子弹,以抛出点为坐标系原点建立直角坐标系。试分别选取两组不 同的广义坐标,并用之表示子弹在任一时刻的直角坐标。 1.5、氢原子由一个质子和一个电子组成。试说明一个孤立氢原子体系是基本形式的Lagrange 方程适用的体系。 1.6、证明: Lagrange 方程的基本形式(1.59)式可写为如下的Nielsen 形式: αα αQ q T q T =??-??2 ,s ,,2,1 =α 1.7、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α。试证明存在一个任意可微函 数),,,,(21t q q q F s ,由它与该体系的Lagrange 函数构成的如下函数 dt t q q q dF s ) ,,,,(L L 21 + =' 满足Langrange 方程(1.67)式。 1.8、设一个s 自由度的体系的广义坐标为αq ),,2,1(s =α,满足Langrange 方程(1.67) 式的Lagrange 函数为),,,,,,,,(L 2121t q q q q q q s s 。设存在另一组广义坐标αξ,),,2,1(s =α,且有变换方程 ),,,,(21t q q s ξξξαα =,s ,,2,1 =α 此变换叫做点变换。证明: 若通过上述点变换将),,,,,,,,(L 2121t q q q q q q s s 变 换为),,,,,,,,(L L 2121t s s ξξξ ξξξ =,则有 s dt d , ,2 ,1 ,0L )L ( ==??-??αξξα α 这就是说,Lagrange 方程的形式与所选用的广义坐标无关。 1.9、一个质量为m 的物体在地球(质量为M )引力场中做周期运动。以地心为极点在轨道平面 上建立极坐标系),(?r ,并选极坐标为广义坐标。 1)、写出该物体的Lagrange 函数,广义动量,所受的广义力,并由Lagrange 方程导出 该物体的径向和横向运动方程; 2)、写出该物体的Hamilton 函数, 并由Hamilton 正则方程导出该物体的径向和横向运动方程。

最新量子力学期末考试题解答题

最新量子力学期末考试题解答题 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件.首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质. 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子.爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的.(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比.(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子. 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态.这就是量子力学中的态叠加原理.态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ.它反映了微观粒子的波粒二象性矛盾的统一.量子力学中这种态的叠加导致在叠加态下观测结果的不确定性. 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值.这种状态称为定态.定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化. 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号.量子力学中采用算符来表示微观粒子的力学量.如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

量子力学思考题及解答

量子力学思考题 1、以下说法就是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学就是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而就是量子力学实际上已经 过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义就是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其她力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论与经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ与2ψ就是分别打开左边与右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ与2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不就是概率相加,而就是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ 中出现有1ψ与2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 与2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ与2ψ就是体系的可能态,则它们的线性叠加 2211ψψψc c +=也就是体系的一个可能态”。 (1)就是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 就是任意与r ? 无关的复数,但可能就是时间t 的函数。这种理解正确不? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

第三章量子统计理论 从经典统计到量子统计 量子力学对经典力学的改正

第三章 量子统计理论 第一节 从经典统计到量子统计 量子力学对经典力学的改正 波函数代表状态 (来自实验观测) 能量和其他物理量的不连续性 (来自Schroedinger 方程的特征) 测不准关系 (来自物理量的算符表示和对易关系) 全同粒子不可区分 (来自状态的波函数描述) 泡利不相容原理 (来自对易关系) 正则系综 ρ不是系统处在某个()q p ,的概率,而是处于某个量子 态的概率,例如能量的本征态。 配分函数 1E n n Z e k T ββ-== ∑ n E 为第n 个量子态的能量,对所有量子态求和 (不是对能级求和)。 平均值 1 E n n e Z β-O = O ∑ O 量子力学的平均值

第二节 密度矩阵 量子力学 波函数 ∑ψΦ=ψn n n C , 归一化 平均值 ∑ΦO Φ=ψO ψ=O *m n m n m n C C ,?? 统计物理 系综理论:存在多个遵从正则分布的体系 ∴ ∑ΦO Φ= O *m n m n m n C C ,? 假设系综的各个体系独立,m n C C m n ≠=* ,0 理解:m n C C * 是对所有状态平均,假设每个状态出现的概率为 ...)(...m C ρ,对固定m ,-m C 和m C 以相同概率出现,所以 ∑ΦO Φ=O *n n n n n C C ? 如果选取能量表象,假设n n C C *按正则分布,重新记n n C C * 为n n C C * 1E n n n C C e Z β-*= 这里 n n n E H Φ=Φ? 引入密度矩阵算符ρ ? [ ]n n n C H Φ=Φ=2 ?0?,?ρ ρ 显然 ∑ΦΦ=n n n n C 2 ?ρ , ??,0H ρ??=??

量子统计力学

量子统计力学 一、课程编码: 课内学时:48 学分:3 二、适用学科专业:理论物理、凝聚态物理、光学 三、先修课程:量子力学、热力学与统计力学 四、教学目标 通过本课程的学习,掌握量子统计力学的基本概念,包括系综、配分函数、近独立粒子体系统计分布规律以及相变的分类及其基本规律;提升运用量子统计力学基本方法来分析解决和体系的热力学性质有关的问题的能力。 五、教学方式 课堂教学 六、主要内容及学时分配 1 量子统计物理学基础8学时 1.1 引言 1.2 存粹系综与混合系综 1.3 统计算符 1.4 刘维尔定理 1.5 统计物理的基本假设微正则系综 1.6 正则系综巨正则系综 1.7 计算密度矩阵举例 1.8 从统计物理出发推导三种独立粒子系统的统计分布 1.9 熵增加定律微观可逆性与宏观不可逆性 2 系综的配分函数3学时 2.1 配分函数与统计热力学 2.2 配分函数的经典极限 2.3 由巨正则系综出发推导理想气体的统计分布及物态方程 3 玻色系统8学时 3.1 理想玻色气体性质与BEC 3.2 非理想玻色气体中的BEC 3.3 多普勒致冷和磁--光陷阱 3.4 简谐势阱中理想玻色气体的BEC 4 超流性5学时 4.1 液氦He4中的超流相变 4.2液氦He4 II相的特征 4.3 超流体的涡旋运动 4.4 朗道超流理论 4.5 简并性近理想玻色气体 5 费米系统12学时 5.1 理想费米气体 5.2 朗道抗磁性 5.3 量子霍尔效应 5.4 泡利顺磁性 5.5 正常费米液体I:元激发 5.6 正常费米液体II:准粒子相互作用

6 相变与临界现象基本概念12学时 6.1 相变及其分类 6.2 序参量 6.3 热力学函数的临界指数 6.4 关联函数标度率 6.5 响应函数及其与关联函数的联系 6.6 涨落—耗散 6.7 平均场 6.8 平均场的失效 6.9 标度假设 6.10 普适性 6.11 自发对称破缺 6.12 Goldstone定理 6.13 空间维数与涨落 七、考核与成绩评定 平时成绩(作业):30分 期终考试卷面分:70分 八、参考书及学生必读参考资料 1 必读书(教材)。作者:杨展如。书名:《量子统计物理学》。 出版地:北京。出版社:高等教育出版社。出版年:2010年 2 参考书。作者:张先蔚。书名:《量子统计力学》[第二版]。 出版地:北京。出版社:科学出版社。出版年:2008年。 九、大纲撰写人:杨帆

经典物理与量子物理的区别和联系

经典物理与量子物理的区别和联系 作者:阿布都哈力克--201211141946 单位:北京师范大学物理系师范班 摘要: 经典物理和量子之间存在很多联系与区别。它们的适用范围、适用对象、物理理论、数学表达都有很大的区别,但同时也有很大的联系,本文主要述说经典物理和量子物理的相关思想和各自的发展,阐明经典物理学和量子物理学之间的区别和联系。 关键词:经典物理、量子物理、区别、联系 引言: 经典物理发展了很多年,有了很深厚的基础,量子物理是经典物理独立于经典物理而存在,两者之间既有很多联系,也有很多区别。自从16世纪以来物理学飞速发展,进过伽利略、胡克、牛顿等人的变革,物理学的很多领域都得到了很大的提高和充实,物理学逐渐成为一门独立的学科展现给世人。牛顿的经典力学体系是物理学的基础,对物理学领域具有举足轻重的地位,其对前期物理学的影响非常深厚。近代随着光电效应、黑体辐射、以太假说等实验和黑体辐射理论的困难,牛顿力学显得越来越局限,在这种条件下普朗克提出了量子假说,认为能量是分立的,一份一份存在的。爱因斯坦很好地解释了光电效应,并提出了波粒二象性,后来德布罗意又提出了物质波的概念。认为自然界的任何物体都具有粒子性和波动性,奠定了量子物理学的基础。后来经过玻恩、海森堡、薛定谔、狄拉克等人的发展,量子力学日趋完善,与经典力学同位物理学的两大理论。 一、经典理论的发展 经典物理学的建立和发展时期是17世纪初至19世纪末,形成了比较完整的经典物理学体系。系统的观察实验和严密的数学推导相结合的方法,被引进物理学中,导致了17世纪主要在天文学和力学领域中的“科学革命”。牛顿力学体系的建立,标志着近代物理学的诞生。经过18世纪的准备,物理学在19世纪获得了迅速和重要的发展。终于在19世纪末以经典力学、热力学和统计物理学、经典电磁场理论为支柱,使经典物理学的发展达到了它的顶峰。在爱因斯坦的相对论提出后,经典物理的绝对时间和绝对空间被彻底打破,经典宏观物理就进入了宇宙空间阶段。随着经典物理学的不断发展,在十九世纪末、二十世纪初,经典物理学的理论遇到了困难。有一些新的物理现象,如黑体辐射、康普顿效应、光电效应、原子的光谱线系以及固体在低温下的比热等等,都是经典物理理论所无法解释的。此时,量子理论的提出对这些现象都有了比较满意的解释。

量子力学试题

量子力学试题 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

河南工程学院至学年第学期 量子力学试卷2 考试方式: 闭卷 本试卷考试分数占学生总评成绩的 70 % 题 号 一 二 三 四 五 六 七 八 九 十 总分 核分人 得分 复查总分总复查人 <本题10分)一、填空题 2.按照玻恩的观点,和微观粒子相联系的物质波是一种,描 述的是大量粒子的统计行为。 3.称等固有性质的微观粒子为全同粒子。 4.能量和时间的测不准关系为。 5.如果全同粒子体系的波函数是反对称的,则组成该体系的全同粒子一定 是。 6.厄密算符的本征值必为。 7.泡利算符满足这样的关系式:。 8.算符在自身表象中的矩阵是一个矩阵。 9.变分法的实质是。 <本题10分)二、选择题 1. 下列波函数中与的几率密度不相同的是(为任意实数>: < )b5E2RGbCAP A. B. C. D. 2.量子力学理论的创立可以认为是物理学研究工作方式的转变,标志着物理学研究工作第一次集体的胜利,那么这一批物理 学 家 中 公 认 的 领 袖 是 : < ) p1EanqFDPw A. 玻恩 B. 爱因斯坦 C. 玻尔 D. 薛定谔 3.定态微扰理论只适用于求解的能量和对波函数修正。 < ) A. 分立能级 B. 连续能级 系部名称 专业班级: 姓名: 学号: 试卷份数 密 封 线 内 不 得 答 题 线 封 密 得分 评卷人 得分 评卷人

C. 分立能级和连续能级 D. 以上三个皆不对 4.下列没有显示电子自旋属性的实验或现象是: < ) A. Stern(斯特恩>和Gerlach(革拉赫>实验 B. 夫兰克-赫兹实验 C. 碱金属原子光谱的双线结构 D. 反常塞曼效应 5.在散射问题中人们感兴趣的不是问题。( > A. 能量本征值 B. 散射粒子的角分布 C. 散射粒子的角关联 D. 散射粒子的极化 <本题 10分)三、判断题 1.在量子力学中,粒子在某一点的能量等于动能与势能之和。 < ) 2.对于低能散射,分波法是一种方便、有效的方法。< ) 3.波函数归一化与否影响粒子的几率分布。< ) 4.如果 ,则的几率密度 。< ) 5.量子力学势垒贯穿模型中粒子的能量是已知的,且连续取值。 < ) 6.量子力学中厄密算符的本征值都是实数。< ) 7.泡利算符满足这样的关系式 :。 < ) 8.算符在自身表象中的矩阵是一个对角矩阵。 < ) 9.在国际单位制下,电子自旋的回转磁比率为 ,其中为电子 质 量。 < ) 10.变分法的实质是求平均能量的最小值。 < ) <本题20分)四、问答题 1.为什么可观察量要用线性厄密算符描写? 2.写出单个电子的自旋算符 和的矩阵形式。 3.何谓微观粒子的波粒两象性? 4. 波函数是用来描述什么的?它应该满足什么样的自然条件?它的 物 理 含 义 是 什 么 ? 5.写出两个算符有组成完全系的共同本征函数的条件。 得分 评卷人 得分 评卷 人

量子力学与统计物理习题解答(理论物理导论)北理工_李卫_修订版

量子力学与统计物理习题解答 第一章 1. 一维运动粒子处于?? ?≤>=-) 0(0 )0()(x x Axe x x λψ 的状态,式中λ>0,求 (1)归一化因子A ; (2)粒子的几率密度; (3)粒子出现在何处的几率最大? 解:(1)? ?∞ -∞ ∞-* =0 222 )()(dx e x A dx x x x λψψ 令 x λξ2=,则 3 23 23 2 2320 222 4! 28) 3(88λ λλξ ξλ ξ λA A A d e A dx e x A x = ?=Γ= = -∞ ∞ -? ? 由归一化的定义 1)()(=?∞ ∞-* dx x x ψψ 得 2/32λ=A (2)粒子的几率密度 x e x x x x P λλψψ22 3 4)()()(-* == (3)在极值点,由一阶导数 0)(=dx x dP 可得方程 0)1(2=--x e x x λλ 而方程的根 0=x ;∞=x ;λ/1=x 即为极值点。几率密度在极值点的值 0)0(=P ;0)(lim =∞ →x P x ;2 4)/1(-=e P λλ 由于P(x)在区间(0,1/λ)的一阶导数大于零,是升函数;在区间(1/λ,∞)的一阶导数小 于零,是减函数,故几率密度的最大值为2 4-e λ,出现在λ/1=x 处。 2. 一维线性谐振子处于状态 t i x Ae t x ωαψ2 12122),(--= (1)求归一化因子A ; (2)求谐振子坐标小x 的平均值;

(3)求谐振子势能的平均值。 解:(1)? ?∞ ∞ --∞ ∞-* =dx e A dx x 2 22 αψψ ?∞ -=0 22 2 2dx e A x α ? ∞ -=0 2 2 2ξα ξ d e A α π 2 A = 由归一化的定义 1=?∞ ∞ -*dx ψψ 得 π α=A (2) ?? ∞ ∞ -∞ ∞ --== dx xe A dx x xP x x 2 22 )(α 因被积函数是奇函数,在对称区间上积分应为0,故 0=x (3)? ∞∞-= dx x P x U U )()( ? ∞ ∞ --=dx e kx x 2 22 21απ α ? ∞ -=0 2 2 2 dx e x k x απα ? ∞ -=0 22 2 ξξπα ξ d e k ?? ? ? ??+ -=? ∞ -∞ -0 2 2 221ξ ξπαξ ξ d e e k ? ∞ -= 2 2 21 ξπ αξ d e k 2 212 π πα k = 2 4αk = 将2μω=k 、 μω α =2 代入,可得 0214 1E U = =ω 是总能量的一半,由能量守恒定律 U T E +=0 可知动能平均值 U E U E T == -=002 1 和势能平均值相等,也是总能量的一半。 3.设把宽为a 的一维无限深势阱的坐标原点取在势阱中点,有

量子信息与量子计算

关于量子信息与量子计算 量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。 量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出,对于普通计算机运行时芯片会发热,极大地影响了芯片的集成度,科学家们想找到能有更高运算速度的计算机。 到了1994年,贝尔实验室的应用数学家P. Shor指出,相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法确实有其实用性,绝非科学家口袋中的戏法。自此之后,新的量子算法陆续的被提出来,而物理学家接下来所面临的重要的课题之一,就是如何去建造一部真正的量子计算器,来执行这些量子算法。许多量子系统都曾被点名作为量子计算器的基础架构,例如光子的偏振(photon polarization)、空腔量子电动力学、离子阱以及核磁共振(nuclear magnetic resonance, NMR)等等。以目前的技术来看,这其中以离子阱与核磁共振最具可行性。事实上,核磁共振已经在这场竞赛中先驰得点:以I. Chuang为首的IBM研究团队在2002年的春天,成功地在一个人工合成的分子中(内含7个量子位)利用NMR完成N =15的因子分解。 到底是什么导致量子如此高的计算能力呢?答案是量子的重叠与牵连原理的巨大作用。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数。量子位是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示, 它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中, 信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态, “ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或“ 1” 态.任何两态的量子系统都可用来实现量子位, 例如氢原子中的电子的基态( ground state)和第 1 激发态( first excited state)、质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。 一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态.态空间由多个本征态( eigenstate ) ( 即基本的量子态)构成基本态空间可用Hilbert 空间( 线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算, Dirac提出用符号x〉来表示量子态, x〉是一个列向量,称为ket ;它的共轭转置( conjugate transpose) 用〈x 表示,〈x 是一个行向量, 称为bra.一个量子位的叠加态可用二维Hilbert 空间( 即二维复向量空间)的单位向量〉来描述 无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相

中山大学 热力学统计思考题答案汇总

热力学思考题答案汇总 第一章热力学的基本规律 ?什么是热力学平衡态(弛豫时间、热动平衡) 热力学平衡态:孤立系经过足够长的时间后,各种宏观性质在长时间内不发生变化 弛豫时间:系统由初始状态达到热力学平衡态的时间,决定于趋向平衡的过程的性质。热动平衡:虽然平衡态下的宏观性质不随时间变化,但系统的微观粒子仍在不断运动 涨落:平衡态下的宏观物理量在平均值附近的变化 非孤立系的平衡态:将系统与外界看作复合的孤立系 ?什么是热力学第零、一、二定律(及其表达式) 热力学第零定律:如果两个系统A和B各自与第三个系统达到热平衡,那么A和B之间也处于热平衡 热力学第一定律:系统在终态B 和初态 A 的内能之差U B- U A等于过程中外界对系统所作的功与系统从外界吸收的热量之和 热力学第一定律就是能量守恒定律:自然界的一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化的过程中能量的数量不变 热力学第一定律的另外一种表述:第一类永动机是不可能造成的 Q +W S= U B- U A热力学第一定律的数学表达式 热力学第二定律的两种表述 克氏表述:不可能把热量从低温物体传到高温物体而不引起其它变化 开氏表述:不可能从单一热源吸热使之完全变成有用的功而不引起其它变化 热力学第二定律开氏表述的另外一种说法:第二类永动机是不可能造成的 ?什么是物质的物态方程(理想气体、范氏方程) 物态方程的一般形式和相关物理量 物态方程的一般形式 由热平衡定律,平衡态下的热力学系统存在状态函数(温度),物态方程就是温度与状态参量之间的函数关系f(p,V,T )=0 相关物理量 体胀系数α:压强不变,温度升高1K的体积相对变化 压强系数β:体积不变,温度升高1K的压强相对变化 等温压缩系数k T:温度不变,增加压强的体积相对变化 体胀系数α、压强系数β和等温压缩系数的关系 加热固体或液体时很难实现体积不变,即压强系数β很难直接测量,通常是通过α和间

量子统计复习题

1. 证明量子正则系综的“等几率分布”是最可几分布。 2. 证明正则分布???() H H e Tr e ββρ --=的熵最大。 3. 证明巨正则系综分布??()??()?() H N H N e Tr e βμβμρ ----=的熵最大。 4. 证明等温等压系综??()??()?() H pV H pV e Tr e ββρ -+-+=的熵最大。 5. 证明:1)箱中自由粒子到达箱中任一位置的几率相等;2)箱中自由粒子波包的空间范围量级 为3)箱中自由粒子的平均能量为 32 B k T 。@P52 6. 利用量子正则系综理论,求磁场B 中自由电子的平均自旋。@P57 7. 证明正则系综的密度矩阵满足微分方程???H ρρβ ?- =? @P58 8. 证明相对于谐振子,非谐振子对外做功的能力变小了。 9. 对一线性谐振子 222?1H 22 p m q m ω=-+,利用量子正则系综理论证明:@P52 (1) 12 V T H == (维里定理) 已知: 2 2 [()tanh ()coth( )] 42 2 q m q q q q H e q ωωβωββ''-++--'= (2) 高温极限 1 2 ωβ<< , 112 2 B V T H k T == = (已知:1x e x =++ ) (3) 低温极限 1 2 ωβ>> ,2 1 () 2 2(,)( )m q q m q q e ωω ρπ'- +'= ,对应n=0的基态极限情况。 10. 对正则系综,证明下列关系 (1) ,,()[ ()]V N B V N F S k T lnQ T T ??=-=?? (2) ,,( )( )T N B N T F S k T T lnQ V V ?? =-=?? (3) ,,()( )V T B V T F k T lnQ N N μ??=-=-?? (4) ,?[ ]N V U H lnQ β ?= =-? (5) 22 ,,2 ()( )[ ]V N V B N V S lnQ C T k T ββ ??==?? (6) S =(E -F)β

量子力学2012复习题

量子力学2012复习题 一、 简答题: 1. 试简述Bohr 的量子理论。 2. 试给出测不准关系的数学表达式,并说明其意义。 3. 简述量子力学的态叠加原理及其与测量概率的关系。 4. 写出在任意态|ψ?下测量力学量F 所得平均值的一般表达式。 5. 设粒子在势场V (r )中运动,写出相应的含时薛定谔方程和定态薛定谔方程;或给定态函 数求势能表达式。 6. 简述束缚态、非束缚态及相应能级的特点。 7. 在坐标表象中写出自由粒子哈密顿量的表达式及其本征波函数,指出其本征值及其特征。 8. 下列函数哪些函数是算符 2 2dx d 的本征函数,其本征值是什么? ①2x , ② x e , ③x sin , ④x cos 3, ⑤x x cos sin + 9. 简述一维谐振子粒子数表象的意义,并在该表象中写出谐振子的哈密顿量表达式和相应 的本征态、本征值和本征方程。对三维谐振子,情况又怎样? 10. 力学量F 的平均值随时间变化满足 d 1[,]d F F F H t i t ?= + ? ,由此可得出力学量F 为守恒量 的条件,试写出相应条件。 11. 简述量子力学表象变换的意义、幺正变换矩阵满足的条件及幺正变换的特征。 12. 全同粒子有何特点?对波函数有什么要求? 13. 中心力场中粒子处于定态,试讨论轨道角动量是否有确定值。 14. 写出中心力场中粒子的所有守恒量。 15. 力学量完全集2(,)z L L 的共同本征函数是什么?写出相应的本征值及本征方程。 16. 写出氢原子哈密顿算符的本征值(能级)和本证态,简要描述各量子数的意义。 17. 简要描述自旋算符与泡利矩阵的关系以及泡利矩阵的对应关系;在z σ表象中写出泡利矩 阵,,z x y σσσ的具体表示。 18. 简述微扰论的基本思想,写出非简并微扰论的能量公式(至二级修正)及波函数(至一 级修正),并能计算相关问题。 19. 简述变分法的基本思想及选取试探波函数的一般原则。

125本物理学名著 精编版

125本物理学名著 1 爱因斯坦文集 2 费曼物理学讲义(原声录音) 出国留学必备书之一! 3 费曼物理学讲义_卷一 4 费曼物理学讲义_卷二 5 费曼物理学讲义_卷三 6 费曼物理学讲义习题集 7 别闹了,费曼先生! 8 泡利物理学讲义(共六卷) 出国留学必备书之一! 9 Faraday(法拉第)_Lectures on the Forces of Matter 10 Faraday(法拉第)_The Chemical History of A Candle 11 从抛物线谈起—混沌动力学引论 12 多粒子系统的量子理论 13 量子力学与路径积分(费曼)出国留学必备书之一! 14 物理力学讲义(钱学森) 15 物理学家用微分几何出国留学必备书之一! 16 相对论(索末菲) 17 相对论的意义 18 算法大全 19 相对论量子场 20 相对论量子力学 21 引力论与宇宙论 22 自然哲学之数学原理宇宙体系 23 物理学进展2001 24 History of Modern Physics 25 nobel lectures(1998--2001) 26 Numerical Recipes in C 27 phy Question 28 physics review letter(Vol74-Vol86) 29 thermal physics 30 Topics Appl. Phys Vol 80 Carbon Nanotubes 31 Trends in Colloid and Interface Science XIV 32 relativity the special and general theory 33 interact(斯坦福直线加速器实验室) 34 Introduction to Tensor Calculus and Continuum Mechanics 35 lect statistic 36 mathematicalhandbook 37 relativity the special and general theory -by albert einstei

2002级量子力学期末考试试题和答案

2002级量子力学期末考试试题和答案 A 卷 一、简答与证明:(共25分) 1、什么是德布罗意波?并写出德布罗意波的表达式。 (4分) 2、什么样的状态是定态,其性质是什么?(6分) 3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。(4分) 4、证明 )??(2 2x x p x x p i -是厄密算符 (5分) 5、简述测不准关系的主要内容,并写出坐标x 和动量 x p ?之间的测不准关系。(6分) 一、1、描写自由粒子的平面波称为德布罗意波;其表达式:)(Et r p i Ae -?= ψ 2、定态:定态是能量取确定值的状态。性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。 3、全同费米子的波函数是反对称波函数。两个费米子组成的全同粒子体系的波函数为: [])()()()(21 12212211q q q q A ????φ-= 。 4、)??(2 2x x p x x p i -=x x x x x x p p x p i x p p i x p i ?2?],?[],?[?],?[2 =+=,因为 x p ?是厄密算符,所以 )??(2 2x x p x x p i -是厄密算符。 5、设F ? 和G ?的对易关系k ?i F ?G ?G ? F ?=-,k 是一个算符或普通的数。以F 、G 和k 依次表示F ? 、G ? 和k 在态 ψ 中的平均值,令 F F ?F ?-=?,G G ?G ?-=?, 则有 42 2 2 k )G ?()F ?(≥???,这个关系式称为测不准关系。 坐标x 和动量x p ?之间的测不准关系为:2? ≥???x p x B 卷 一、(共25分) 1、厄密算符的本征值和本征矢有什么特点?(4分) 2、什么样的状态是束缚态、简并态和偶宇称态?(6分) 3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数。(4分) 4、在一维情况下,求宇称算符P ? 和坐标x 的共同本征函数。(6分) 5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系。(5分) 一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的。 2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称。 3、全同玻色子的波函数是对称波函数。两个玻色子组成的全同粒子体系的波函数为: [])()()()(21 12212211q q q q S ????φ+= 4、宇称算符 P ?和坐标 x 的对易关系是: P x x P ?2],?[-=,将其代入测不准关系知,只有当0?=P x 时的 状态才可能使P ? 和x 同时具有确定值,由 )()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是

相关主题
文本预览
相关文档 最新文档