当前位置:文档之家› 水电阻阻值的计算方法

水电阻阻值的计算方法

水电阻阻值的计算方法
水电阻阻值的计算方法

水电阻的调试方法

1、起动电阻的确定:

串入电机转子回路的每相电阻值R0,应按下式确定

R0=2U2e/√3I2e k*I1e/I1

注:U2e转子开路电压

I2e转子额定电流

I1e定子额定电流

I1定子运行电流

K常数(1.1至1.3之间)

简化公式: RO=0.7*U2e/I2e

2、液体的配制

A、将动极板移到起始位置,(转动皮带轮移动极板),加入清水至

水箱规定水位的四分之三处;

B、将电解粉与清水按3%的配比注入三个水箱,然后移动动极板数

次,使溶液浓度均匀后将动极板复位;

C、测量任两极之间的电阻值R,若R在R0范围内,配制即完成,

若R偏大,则适当增加电解粉。使液体浓度增加,若R偏小则加入适量清水。

3、液阻的测量

将液阻的动极板移到起始位置后,在任何两极间通入10A左右、50Hz 的电流I,测量两极的电压降U,按欧姆定律原则计算出来就行。

高压电动机液体电阻起动器调试[原创]

液体电阻起动器调试

(一) 、准备工作

1、检查液体起动柜内配线,液体起动器与一次柜、DCS系统的联锁控制线,确保无误。

2、转子线先不与液体电阻起动器连接,等测完电阻再连接。

3、确认端子间或各暴露的带电部位没有短路或对地短路情,确认端子连接、螺钉等均紧固无松动。

4、 PLC程序检查,调出PLC内部程序,检查程序是否合理,是否满足控制逻辑,如存在问题,就地修改。

(二)、液体起动器动作试验:

1、用手动盘车方法使动极板处于上、下限位的中间,检查控制电源三相电正常后,将“试验”钮子开关左旋于运行位置,合上柜内空气开关,此时若极板上行则为正常;

2、用手动作上限位行程开关应停止运行,若极板下行则相序错误。此时关掉电源交换两相电源线即可;

3、然后合上电源将“试验”钮子开关右旋于“试验”位置,极板向下运行直到下限位置停止,且短接接触器吸合。

(三)、液体电阻配制:

配制方案:根据电机转子回路内电阻配液;

1、配液用水:一般选用经过净置后去掉沉淀物的生活用水即可。

2、电阻溶剂即电阻粉,由生产厂商提供。

3、液体起动电阻RO的确定:

RO=0.577*U2e/I2e·KF·kt/kM

式中:U2e:电机转子回路的开路电压(V)

I2e:电机转子回路的额定电流(A)

KF:电机功率容裕倍数。(KF =1.1-1.3,取1.2)

kt:温度倍数。(kt =1.1-1.3,取1.2)

kM:起动转矩倍数。(kM =1.1-1.3,取1.2)

根据实际情况,我们将上述公式进行简化后:

RO=0.7*U2e/I2e

式中:U2e:电机转子回路的开路电压(V)

I2e:电机转子回路的额定电流(A)

4、电阻的配制:

①先将动极板置于起动位置,将准备好的水注入到水箱规定位置的2/3左右,注意三格液位要基本相等;

②将配制好的溶液注入水箱中;

③分别向液阻箱中加水至要求液位;

④扳动试验按钮,使极板上下运动二、三次,使箱内电阻液搅拌均匀;

⑤液体电阻的测量

将液体电阻的活动极板移到起动位置后,通过自耦变压器给每相动静极板之间通过50Hz电,电流从0开始逐渐正大至5A左右电流I(A),记下电流表A的读数,并测量两极之间压降V(V),测液体电阻值为:

R(Ω)= V(V)/ I(A)

测量电路如下:

⑥电阻的调整:如偏大应增大电阻液浓度,否则应降低其浓度,调节方法是用软管抽出部分溶液加水或电液粉。

(四)、通电试车

1、送起动柜控制电源,再次做起动柜动作试验,若正常将“试验”钮旋到工作位置;

2、模拟试车:

①主电机一次柜一次回路不上电,只送一次柜和起动柜的控制电源;

②当起动柜PLC发出允许起动信号后,按下一次柜合闸按钮此时一次柜开关合闸,起动柜极板自上而下运行至下限位置时,短接接触器吸合,PLC起动信号消失,并发出运行信号,表明起动及运行正常;

③按下一次柜分闸按钮,一次柜开关分闸,外接接触器断开,PLC运行信号消失,极板自下而上运行,同时发出复位信号,当运行到上限位后,复位信号消失,发出允许起动信号,为下次起动做准备;

3、联锁检测

按模拟试车顺序,检测联锁信号是否正常。检测至高压开关柜水阻驱动、分闸联锁信号、至DCS系统允许起动、备妥,起动完毕,故障报警信号是否正常。

4、负荷试车

①送上一次回路电源及一次柜、起动柜控制电源;

②按模拟试车的顺序起动,观察起动电流是否在规定的范围以内。若起动电流开始过大,说明电阻配小了,此时应降低电阻液浓度,方法是从水箱中抽出部分液体,同时加入等量的清水,搅匀后重新试车。若起动电流开始过小,接触器短接时又冲击过大,说明电阻配得过大了,应减小,此时应增加电阻液浓度,方法是抽出部分液体加入适量的电液粉,注意一次不要加得太多,充分溶解注入水箱,经过调节直到起动电流正常为止。

并联电容来提高功率因素时如何来确定电容值的大小

C=(P/2∏fU平方)*(tanφ1-tanφ2).

P:负载吸收的功率

w:电源的角频率

U:负载两端电压

φ1:原来的功率因数角

φ2:提高后的功率因数角

色环电阻计算方法

色环电阻计算 带有四个色环的其中第一、二环分别代表阻值的前两位数;第三环代表倍率;第四环代表误差。快速识别的关键在于根据第三环的颜色把阻值确定在某一数量级范围内,例如是几点几K、还是几十几K的,再将前两环读出的数"代"进去,这样就可很快读出数来。 下面介绍掌握此方法的几个要点: (1)熟记第一、二环每种颜色所代表的数。可这样记忆:棕1,红2,橙3,黄4,绿5,蓝6,紫7,灰8,白9,黑0。这样连起来读,多复诵几遍便可记住。 记准记牢第三环颜色所代表的阻值范围,这一点是快识的关键。具体是: 金色:几点几Ω 黑色:几十几Ω 棕色:几百几十Ω 红色:几点几kΩ 橙色:几十几kΩ 黄色:几百几十kΩ 绿色:几点几MΩ 蓝色:几十几MΩ 从数量级来看,在体上可把它们划分为三个大的等级,即:金、黑、棕色是欧姆级的;红橙\'、黄色是千欧级的;绿、蓝色则是兆欧级的。这样划分一下是为了便于记忆。 (3)当第二环是黑色时,第三环颜色所代表的则是整数,即几,几十,几百kΩ等,这是读数时的特殊情况,要注意。例如第三环是红色,则其阻值即是整几kΩ的。 (4)记住第四环颜色所代表的误差,即:金色为5%;银色为10%;无色为20%。 下面举例说明: 例1当四个色环依次是黄、橙、红、金色时,因第三环为红色、阻值范围是几点几kΩ的,按照黄、橙两色分别代表的数"4"和"3"代入,,则其读数为43 kΩ。第环是金色表示误差为5%。例2当四个色环依次是棕、黑、橙、金色时,因第三环为橙色,第二环又是黑色,阻值应是整几十kΩ的,按棕色代表的数"1"代入,读数为10 kΩ。第四环是金色,其误差为5%在某些不好区分的情况下,也可以对比两个起始端的色彩,因为计算的起始部分即第1色彩不会是金、银、黑3种颜色。如果靠近边缘的是这3种色彩,则需要倒过来计算。 色环电阻的色彩标识有两种方式,一种是采用4色环的标注方式,令一种采用5色环的标注方式。两者的区别在于:4色环的用前两位表示电阻的有效数字,而5色环电阻用前三位表示该电阻的有效数字,两者的倒数第2位表示了电阻的有效数字的乘数,最后一位表示了该电阻的误差。 对于4色环电阻,其阻值计算方法位: 阻值=(第1色环数值*10+第2色环数值)*第3位色环代表之所乘数 对于5色环电阻,其阻值计算方法位:

电缆隧道接地电阻计算书

接地电阻计算书 一、垂直接地体接地电阻计算: 1.单根接地体接地电阻计算: 计算公式:() (1) 式中:R v ——垂直接地极的接地电阻(Ω); ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); d ——接地极的直径(0.03m)。 数值代入公式计算得:R v=529.88(Ω) 2.间距为s的多根垂直接地极并联后的接地电阻计算: 计算公式: (2) 式中:R N——n根垂直接地极的并联接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m); ι——垂直接地极的长度(1.5m); s ——接地极的间距(5m); n ——接地极的总根数(920); d ——接地极的直径(0.03m); 数值代入公式计算得:R N=97.82(Ω) 二、水平接地体接地电阻计算: 计算公式:() 式中:R h——水平接地极的接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m);

L ——水平接地极的总长度(4600m); h ——水平接地极的埋设深度(0.2m); d ——水平接地极的等效直径(0.02m); A——水平接地极的形状系数(1)。 数值代入公式计算得:R h=0.81(Ω) 三、综合接地电阻计算: 计算公式: (3) 式中:——综合接地电阻(Ω); R N——垂直接地极的并联接地电阻(Ω); R h——水平接地极的接地电阻(Ω); R Nh——垂直接地极和水平接地极之间的互阻(Ω),可根据公式(4)计算; (4) 式中:ρ ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); ——水平接地极的总长度(4600m); 数值代入公式计算得: R Nh=0.60(Ω) Rz=0.81(Ω) 石墨基柔性接地体的接地电阻可用降阻效果系数带入进行计算:最终接地电阻为: =0.7×0.81=0.567(Ω)。

电阻阻值计算色环电阻识别及精度

电阻阻值计算色环电阻 识别及精度 Document number:PBGCG-0857-BTDO-0089-PTT1998

电阻阻值计算:色环电阻识别及精度 色环电阻是在电阻封装上(即电阻表面)涂上一定颜色的色环,来代表这个电阻的阻值。具体读法可参考下图: 黑,棕,红,橙,黄,绿,蓝,紫,灰,白 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 倒数第二环,表示零的个数。最后一位,表示误差。这个规律有一个巧记的口诀:棕一红二橙是三,四黄五绿六为蓝,七紫八灰九对白,黑是零,金五银十表误差。 例如,红,黄,棕,金表示240欧。 分四环和五环,通常用四环。倒数第二环,可以金色(代表×)和银色的(代表×),最后一环误差可以无色(20%)。五环电阻为精密电阻,前三环为数值,最后一环还是误差色环,通常也是金、银和棕三种颜色,金的误差为5%,银的误差为10%,棕色的误差为1%,无色的误差为20%,另外偶尔还有以绿色代笔误差的,绿色的误差为%。精密电阻通常用于军事,航天等方面。 电阻色环上看电阻的精度:

色环电阻分为四色环和五色环 四色环:前两位是有效数字;第三位是倍率;第四位是误差,就是它的精确度五色环:前三位是有效数字;第四位是倍率;第五位是误差 它们的误差色环相同时误差是一样的: 色环误差 棕 +/-1% 红 +/-2% 绿 +/% 蓝 +/% 紫 +/% 灰 +/% 金 +/-5% 银 +/-10% 无色 +/-20% 最常见的: 四色环电阻误差是+/-5%,为普通电阻 五色环电阻误差是+/-1%,为精密电阻。

色环电阻识别: 带有四个色环的其中第一、二环分别代表阻值的前两位数;第三环代表倍率;第四环代表误差。快速识别的关键在于根据第三环的颜色把阻值确定在某一数量级范围内,例如是几点几K、还是几十几K的,再将前两环读出的数"代"进去,这样就可很快读出数来。 下面介绍掌握此方法的几个要点: (1)熟记第一、二环每种颜色所代表的数。可这样记忆:棕1,红2,橙3,黄4,绿5,蓝6,紫7,灰8,白9,黑0。这样连起来读,多复诵几遍便可记住。 记准记牢第三环颜色所代表的阻值范围,这一点是快识的关键。具体是: 金色:几点几Ω 黑色:几十几Ω 棕色:几百几十Ω 红色:几点几 kΩ 橙色:几十几 kΩ 黄色:几百几十 kΩ 绿色:几点几 MΩ

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

接地网电阻计算公式

接地网电阻计算公式 三维方法设计变电站的接地电阻 陈光辉1 江建武2 (1 深圳市长科防雷技术有限公司,深圳) (2 深圳供电局变电部,深圳) 【摘要】用三维方法设计变电站的接地电阻,可使接地电阻比传统设计更加准确,结合现有国内外接地新材料.新技术,新 工艺,可使变电站接地网接地电阻达到最佳效果 【关键词】三维地网设计、新材料,新工艺施工。 前言 目前,由于征地等原因,变电所的占地面积越来越小,有的GIS 室内型110kV 变电站占地面积仅有1500m2, 且大部分建在山上,这些地方往往电阻率很高,欲在这样的地方不扩网、不外引,在原地使其工频接地电阻达到 规程要求标准,用常规方法很难实现。我公司在实践过程中,采用三维方法设计,即A-T-N 方案,成功解决了 土壤电阻率300Ωm,占地面积为5000m2 情况下的接地电阻R≤0.5Ω的国家规定标准。 1 A 方案 用常规的方法实现工频接接地电阻RA,主要是用于解决地网的电位分布均匀,均衡最大值下的冲击电压,以 及降低水平网的工频接地电阻,它可以利用工地的自然接地体,如建筑物、自来水管等来完成网格式接地网的接 地电阻,它是在不扩网、不外引、不使用任何降阻剂的情况下计算出的工频接地阻抗值,计算公式采用部颁《交流 电气装置的接地》[1]有关规定的公式进行。 a e R a R 1 = (1) 1 3ln 0 0.2 L S S L a ? ?? ? ? ?? ? = ?(2) ?? ? ??= + + ? ? B

hd S L B S Re 5 9 ln 2 0.213 (1 ) π ρρ (3) S h B 1 4.6 1 + = (4) 式中:Ra—任意形状边缘闭合接地网的接地电阻(Ω); Re—等值(即等面积、等水平接地极总长度)方形接地网的接地电阻(Ω); S—接地网的总面积(m2); d—水平接地极的直径或等效直径(m); h—水平接地极的埋设深度(m); LO—-接地网的外缘边线总长度(m); L—水平接地极的总长度(m)。 简化后的计算方法: S R a ′ = 0.5ρ(5) 式中:ρ—土壤电阻率(Ωm); S—地网面积(m2)。 上式公式中, a R 和土壤电阻率ρ成正比,和地网占地面积S 成反比。如果取p=300Ωm,欲达到R=0.5Ω面 积S 则必须达到90000m2。 在正方型接地网中,当网格数超过16 个时,基本(1)式=(5)式;当网格数少于16 个时,a R > R′a 。 日本川漱太朗公式为: ?? ? ?? ? + ? ′

色环电阻识别与计算.

色环电阻识别与计算 一、颜色代表的数字 棕1、红2、橙3、黄4、绿5、蓝6、紫7、灰8、白9、黑0 金色为5%的误差、银色为10%的误差、棕色为1%(一般是五色环电阻)银金黑棕红橙黄绿蓝紫灰白 有效数 字 0 1 2 3 4 5 6 7 8 9 数量级10-2 10-1 100 101 102 103 104 105 106 107 108 109 允许偏 差(%)±10 ±5 ±1 ±2 ±0.5 ±0.25 ±0.1 +50 -20 二、记忆顺口溜 1、2、3、4、5、6、7 ;棕、红、橙、黄、绿、蓝、紫;8灰9白0为黑;还有金银常作陪;心中牢记四句话,事故远离永不归。 三、色环表示的意义 四色环电阻: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:10的幂数; 第四条色环:误差表示 五色环电阻:

第一条色环:阻值的第一位数字;第二条色环:阻值的第二位数字;第三条色环:阻值的第三位数字;第四条色环:10的幂数;第五条色环:误差表示(常见为棕色) 有些五色环电阻两头金属帽上都有色环,远离相对集中的四道色环的那条色环表示误差,是第五条色环与之相对应的令一端金属帽上的是第一条色环,读数时从第一条开始之后的第二条、第三条色环是次高位、次次高位,第四条色环表示10的多少次方; 如果第三条倍数色环为金色,则将有效数乘以0.1; 如果第三条倍数色环为银色,则将有效数乘以0.01; 如果第五条误差色环为黑色,一般用来表示绕线电阻器; 如果第五条误差色环为白色,一般用来表示保险丝电阻器; 如果电阻体只有中间一条黑色的色环,则代表此电阻为零欧姆电阻; 四、阻值计算方法 四色环电阻阻值=(第一条色环读数*10+第二条色环读数)*10的第三条色环读数的幂数; 五色环电阻阻值=(第一条色环读数*100+第二条色环读数*10+第三条色环读数)*10的第四条色环的幂数; 五、识别技巧 1、先找标志误差的色环,从而排定色环顺序。最常用的表示电阻误差的颜色 是:金、银、棕,尤其是金环和银环,一般绝少用做电阻色环的第一环,所以,在电阻上,只要有金环和银环,就可以基本认定这是色环电阻的最末一环; 2、棕色环是否是误差标志的判别。棕色环既常用做误差环,又常作为有效数 字环,且常常在第一环和最末一环同时出现,使人很难识别谁是第一环。在实践中,可以按照色环之间的间隔加以判别:比如对于一个五道色环的电阻而言,第五环和第四环之间的间隔比第一环和第二环之间的间隔要宽一些,据此可判断色环电阻的排列顺序。 3、在仅靠色环间距还无法判断色环顺序的情况下,还可以利用电阻的生产序 列值来加以判别。比如有一个电阻的色环读序是:棕、黑、黑、黄、棕,其值为:100*104Ω=1MΩ,误差为1%,属于正常的电阻系列值;若是反顺序读,其

接地电阻降阻方法

接地电阻降阻方法(总8页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1 引言 变电站接地网对于电力系统的可靠运行和变电站工作人员的人身安全起着重要作用,其接地电阻、跨步电压与接触电压是变电站接地系统的重要技术指标,是衡量接地系统的有效性、安全性以及鉴定接地系统是否符合要求的重要参数。然而,有些变电站由于受地理条件的限制,不得不建在高土壤电阻率地区,导致这些变电站的接地电阻、跨步电压与接触电压的设计计算值偏高,无法满足现行标准的要求。近年来,随着电力系统短路容量的增加,由于接地不良引起的事故扩大问题屡有发生,因此接地问题越来越受到重视。在设计施工过程中如何合理确定接地装置的设计方案,降低接地电阻,这是变电站电气设计施工的重点之一。 2 变电站接地网电阻偏高的原因 变电站接地网电阻偏高的原因有多方面的,归纳起来有以下几个方面的原因。 2.1客观条件方面 一是土壤电阻率偏高。特别是山区,由于土壤电阻率偏高,对系统接地电阻影响较大;二是土壤干燥。干旱地区、沙卵石土层等相当干燥,而大地导电基本是靠离子导电,干燥的土壤电阻率偏高。 2.2勘探设计方面 在地处山区复杂地形地段的变电站,由于士壤不均匀,土壤电阻率变化较大,这就需要对每处地网进行认真的勘探、测量。根据地形、地势、地质情况,设计出切合实际的接地装置。如果不根据每处地网的地形、地势情况合理设计接地装置并计算其接地电阻,而是套用一些现成的图纸或典型设计,那么就从设计上就留下了先天性不足,造成地网接地电阻偏高。 2.3施工方面

对于不同地区变电站的接地来说,精心设计重要,但严格施工更重要。因为对于地形复杂,特别是位于山岩区的变电站,接地地网水平接地沟槽的开挖和垂直接地极的打入都十分困难,而接地工程又属于隐蔽工程,如施工过程中不能实行全过程的技术监督和必要的监理,就可能出现如下一些问题:一是不按图施工。尤其是在施工困难的山区,屡有发生水平接地体敷设长度不够,少打垂直接地极等;二是接地体埋深不够。山区、岩石地区,由于开挖困难,接地体的埋深往往不够,由于埋深不够会直接影响接地电阻值;三是回填土的问题,有关规范要求用细土回填,并分层夯实,在实际施工时往往很难做到,尤其是在岩石地段施工时,由于取土不便,往往采用开挖出的碎石及建筑垃圾回填,这样还会加快接地体的腐蚀速度;四是采用木炭或食盐降阻,这是最普遍的做法。采用木炭或食盐降阻,会在短期内收到降阻效果,但这是不稳定的。因为这些降阻剂会随雨水而流失,并加速接地体的腐蚀,缩短接地装置的使用寿命。 2.4运行方面 有些接地装置在建成初期是合格的,但经一定的运行周期后,接地电阻就会变大,除了前面介绍的由于施工时留下的隐患外,以下一些问题也值得注意:一是由于接地体的腐蚀,使接地体与周围土壤的接触电阻变大,特别足在山区酸性土壤中,接地体的腐蚀速度相当快,会造成一部分接地体脱离接地装置;二是在接地引下线与接地装置的连接部分因锈蚀而使电阻变大或形成开路:三是接地引下线接地极受外力破坏时误损坏等。 3 接地电阻降阻方法 为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。由公式(1)可以看出,降低接地电阻有以下两种途径,一是增大接地体几何尺寸,以增大接地体的电容;二是改善地质电学性质,减小地的电阻率和介电系数。 接地网是在接地系统的基础,由接地环(网)、接地极(体)和引下线组成,以往常有种误解,把接地环作为接地的主体,很少使用接地体,在接地要求不高或地质条件相当优越的情况下,接地环也能够起到接地的作用,但是通常的情况下,这是不可行的,接

电阻阻值计算色环电阻识别及精度

电阻阻值计算:色环电阻识别及精度 色环电阻是在电阻封装上(即电阻表面)涂上一定颜色的色环,来代表这个电阻的阻值。具体读法可参考下图: 黑,棕,红,橙,黄,绿,蓝,紫,灰,白 0,1,2,3,4,5,6,7,8,9 倒数第二环,表示零的个数。最后一位,表示误差。这个规律有一个巧记的口诀:棕一红二橙是三,四黄五绿六为蓝,七紫八灰九对白,黑是零,金五银十表误差。 例如,红,黄,棕,金表示240欧。 色环电阻分四环和五环,通常用四环。倒数第二环,可以金色(代表×0.1)和银色的(代表×0.01),最后一环误差可以无色(20%)。五环电阻为精密电阻,前三环为数值,最后一环还是误差色环,通常也是金、银和棕三种颜色,金的误差为5%,银的误差为10%,棕色的误差为1%,无色的误差为20%,另外偶尔还有以绿色代笔误差的,绿色的误差为0.5%。

精密电阻通常用于军事,航天等方面。 电阻色环上看电阻的精度: 色环电阻分为四色环和五色环 四色环:前两位是有效数字;第三位是倍率;第四位是误差,就是它的精确度五色环:前三位是有效数字;第四位是倍率;第五位是误差 它们的误差色环相同时误差是一样的: 色环误差 棕+/-1% 红+/-2% 绿+/-0.5% 蓝+/-0.25% 紫+/-0.1% 灰+/-0.05% 金+/-5% 银+/-10% 无色+/-20% 最常见的:

四色环电阻误差是+/-5%,为普通电阻 五色环电阻误差是+/-1%,为精密电阻。 色环电阻识别: 带有四个色环的其中第一、二环分别代表阻值的前两位数;第三环代表倍率;第四环代表误差。快速识别的关键在于根据第三环的颜色把阻值确定在某一数量级范围内,例如是几点几K、还是几十几K的,再将前两环读出的数"代"进去,这样就可很快读出数来。 下面介绍掌握此方法的几个要点: (1)熟记第一、二环每种颜色所代表的数。可这样记忆:棕1,红2,橙3,黄4,绿5,蓝6,紫7,灰8,白9,黑0。这样连起来读,多复诵几遍便可记住。 记准记牢第三环颜色所代表的阻值范围,这一点是快识的关键。具体是:金色:几点几Ω 黑色:几十几Ω

ETAP接地网计算

接地网计算培训讲稿 一、关于接地网的基本知识。 在电力系统中,为了保护设备和人身的安全,接地现象是非常常见的。将电气装置、设施该接地部分经接地装置与大地做良好的电气连接称为接地。接地根据用途可以分为工作接地、保护接地、防雷接地和防静电接地。接地装置由接地体和接地线两部分组成。 埋入地中并且与大地直接接触的金属导体称为接地体;把电气装设施该接地部分经接地体连接起来的金属导体称为接地线。接地体又分为人工接地体和自然接地体。兼作接地体用的直接与大地接触的各种金属构件、非可燃气体或液体的金属管道、建筑物中的钢筋、电缆外皮、电杆基础上的避雷线和中性线等都是自然接地体;为满足接地装置接地电阻要求而专门埋设的接地体称为人工接地体。我们所研究的接地网就是一种人工接地体,接地网由由水平接地体和垂直接地体,接地网的材料一般有钢管、角钢、圆钢、扁钢和铜带,接地网祈祷的作用有泻放电流和均压作用。 不同形状接地体周围土壤电位分布演示。 电流经接地体流入大地,在大地表面形成分布电位。接地体和大地零电位点间的电压称为接地装置的对地电压(或对地电位)。接地线电阻和接地体的对地电阻(电流自接地体向外散流所遇到的电阻,又称散流电阻或扩散电阻)之和成为接地装置的接地电阻。接地线电阻基本上很小,所以可以认为接地电阻就等于扩散电阻。接地电阻数值上等于对地电位与从接地体流入大地电流的比值。按流过接地体的电流是工频电流求得的电阻称为工频接地电阻;按流过接地体的电流是冲击电流求得的电阻称为冲击接地电阻。接地电阻和土壤电阻率、接地体规格有关。所以改变接触电阻的主要手段就是改变土壤电阻率和改变接地体敷设。土壤的电阻率大小主要取决于土壤中导电离子的浓度和水分含量。干燥的土壤是不导电的,有时候为了降低土壤电阻率还会采用降阻济。 评估接地网是否满足要求的指标除了接地电阻和对地电位外,还有接触电压和跨步电压。人站在地面上里设备水平距离0.8米处手触到设备外壳、构架离地面1.8米处,加于人手与脚之间的电压称为接触电压;人在分布电位区域中沿散流方向行走,步距为 0.8米时两脚间的电压称为跨步电压。在大接地短路电流系统中接触电压和跨步电压应 满足: ;

10K热敏电阻分度表

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:

温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B 值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通过式3~6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。T o=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

色环电阻识别方法

色环电阻识别方法 每种颜色代表不同的数字,如下: 棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9 黑0 ,金、银表示误差 色环电阻是应用于各种电子设备的最多的电阻类型,无论怎样安装,维修者都能方便的读出 其阻值,便于检测和更换。但在实践中发现,有些色环电阻的排列顺序不甚分明,往往容易读错,在识别时,可运用如下技巧加以判断: 技巧1: 先找标志误差的色环,从而排定色环顺序。最常用的表示电阻误差的颜色是:金、银、棕,尤其是金环和银环,一般绝少用做电阻色环的第一环,所以在电阻上只要有金环和银环, 就可以基本认定这是色环电阻的最末一环。 技巧2: 棕色环是否是误差标志的判别。棕色环既常用做误差环,又常作为有效数字环,且常常在第一环和最末一环中同时出现,使人很难识别谁是第一环。在实践中,可以按照色环之间的间隔加以判别:比如对于一个五道色环的电阻而言,第五环和第四环之间的间隔比第一环 和第二环之间的间隔要宽一些,据此可判定色环的排列顺序。 技巧3: 在仅靠色环间距还无法判定色环顺序的情况下,还可以利用电阻的生产序列值来加 以判别。比如有一个电阻的色环读序是:棕、黑、黑、黄、棕,其值为:100×104Ω=1MΩ误 差为1%,属于正常的电阻系列值,若是反顺序读:棕、黄、黑、黑、棕,其值为140×100Ω=140Ω,误差为1%。显然按照后一种排序所读出的电阻值,在电阻的生产系列中是没有的,故后一种 色环顺序是不对的。电阻按材料分一般有:碳膜电阻、金属膜电阻、水泥电阻、线饶电阻等。一般的家庭电器使用碳膜电阻较多,因为它成本低廉。金属膜电阻精度要高些,使用在要求较高的设备上。水泥电阻和线饶电阻都是能够承受比较大功率的,线饶电阻的精度也比较高, 常用在要求很高的测量仪器上。 小功率碳膜和金属膜电阻,一般都用色环表示电阻阻值的大小,这也是我们在学习电阻的很 重要的一步。电阻阻值的单位是欧姆。下面详细说明。 色环电阻分为四色环和五色环,先说四色环。顾名思义,就是用四条有颜色的环代表阻值大小。每种颜色代表不同的数字,如下: 棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9 黑0 金、银表示误差 各色环表示意义如下: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:10的幂数; 第四条色环:误差表示。 例如:电阻色环:棕绿红金, 第一位:1; 第二位:5;第三位:10的幂为2(即100); 误差为5%; 即阻值为:15×100=1500欧=1.5千欧=1.5K 还有精确度更高的“五色环”电阻,用五条色环表示电阻的阻值大小,具体如下: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:阻值的第三位数字; 第四条色环:阻值乘数的10的幂数; 第五条色环:误差(常见是棕色,误差为1%)

热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值R T(Ω) R T指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

五环电阻的识别方法

五环电阻的识别方法 色环颜色代表的数字:棕1、红2、橙3、黄4、绿5、蓝6、紫7、灰8、白9、黑0 色环颜色代表的倍率:棕*10、红*100、橙*1K、黄*10K、绿*100K、蓝*1M、紫*10M、灰*100M、白*1000M、黑*1、金*0.1、银*0.01 色环颜色代表的误差等级:金5%、银10%、棕1%、红2%、绿0.5%、蓝0.25%、紫0.1%、灰0.05%、无色20% 四环电阻的读法:前2位数字是有效数字,第3位是倍率,第四位是误差等级。 例如:棕红黑金12*1=12欧姆误差正负5% 红红橙银22*1K=22K 误差正负10% 黄紫黄金47*10K=470K 误差正负5% 五环电阻的读法:前3位数字是有效数字,第四位是倍率,第五位是误差等级。 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:阻值的第三位数字; 第四条色环:阻值乘数的10的幂数; 第五条色环:误差(常见是棕色,误差为1%) 有些五色环电阻两头金属帽上都有色环,远离相对集中的四道色环的那道色环表示误

差,是第五条色环,与之对应的另一头金属帽上的是第一道色环,读数时从它读起,之后的第二道、第三道色环是次高位、次次高位,第四道环表示10的多少次方。四色环电阻误差为5-10%,五色环常为1%,精度提高。 熟记第一、二环每种颜色所代表的数。可这样记忆:棕1,红2,橙3,黄4,绿5,蓝6,紫7,灰8,白9,黑0。这样连起来读,多复诵几遍便可记住。 记准记牢第三环颜色所代表的阻值范围,这一点是快识的关键。具体是: 金色:几点几Ω 黑色:几十几Ω 棕色:几百几十Ω 红色:几点几kΩ 橙色:几十几kΩ 黄色:几百几十kΩ 绿色:几点几MΩ 蓝色:几十几MΩ 从数量级来看,在体上可把它们划分为三个大的等级,即:金、黑、棕色是欧姆级的;红橙\'、黄色是千欧级的;绿、蓝色则是兆欧级的。这样划分一下是为了便于记忆。(3)当第二环是黑色时,第三环颜色所代表的则是整数,即几,几十,几百kΩ等,这是读数时的特殊情况,要注意。例如第三环是红色,则其阻值即是整几kΩ的。(4)记住第四环颜色所代表的误差,即:金色为5%;银色为10%;无色为20%。下面举例说明: 例1当四个色环依次是黄、橙、红、金色时,因第三环为红色、阻值范围是几点几kΩ的,按照黄、橙两色分别代表的数"4"和"3"代入,,则其读数为43 kΩ。第环是金色表示误差为5%。

接地电阻测量原理与方法

接地电阻测量原理与方 法 本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21year.March

接地电阻测量原理 梁子斌 对从事地电学工作,对接地电阻的概念并不陌生,然并非能完全理解。这里想跟大家聊聊其概念和测量原理。 1.接地电阻概念,接地装置在输变电工程中是个特殊的项目,属隐蔽工程。对新安装的接地装置,它包括埋入地中直接与大地接触的金属导体,或称接地体,以及连接接地体与电气设备接地部分的接地线。为了确保其是否符合设计或规程要求必须经过检验才能正式投入运行。接地电阻就是当有电流由接地体流入土壤中将呈现有电阻,这就是接地电阻。 接地电阻本质是由土壤产生的电阻,是接地装置泄放电流时表现出来的电阻。由高斯定理知道,在全空间中,一半径为R的导体球其接地电阻为 ,如在地表无限半空间中其接地电阻大一倍,埋在地下 某深度中,则在两者之间,对均匀介质,也可以解析得到。还有不同形状的接地体,圆盘形、棍形,环形等都有公式可以计算。 其等效电路如下图:其中U为接地体对大地零电位参考点的电位差,I为流过接地体的电流U/I即为接地电阻。 接地电阻测量原理 看视很简单,通过电压的电流的测量就可以得到电阻值,可实际上并不容易。试想想,在工作现场去哪能找到大地零电位的参考点那哎呀,有思路了,我们可以临时做一个啊,再做一个接地,可这临时的接地电阻值也不知道,我们可以知道这两个电阻之和,一个方程,两个位知数!好办,再加一个辅助接地电极,这样我们两两进行测量,三个方程,三个未知接地电阻,简单解方程就可以啦!呵呵,还不明白呀,看下面示意图。

CDEGS软件测算接地电阻

CDEGS软件测算接地电阻 准备内容:新建工程的文件都保存在SES/SESTest之中,包括模型选择、输入数据和计算结果。其中工程可以起统一的名称,比如DEM1,那么工程相关文件均会带有此名称,而同一模块所保存的文件名前缀都相同,如rs_DEM1或RS_DEM1(表示反演土壤电阻率模块下生成的文件,mz_DEM1和MZ_DEM1则表示接地电阻计算模块的),而文件类型的名称则代表了不同作用的文件,如.F09(此类型文件是用来记录计算过程和结果的,而F05是用来记录模块信息的文件)。

1.打开CDEGS软件,点击频域电阻按钮,进行接地电网建模: 2.弹出数据输入对话框,点击土壤类型,弹出对话框,进行土壤电阻率输入,然后点击计算,选择激励电流的频率: 根据实际情况建立土壤模型,选择均匀或者多层,然后填入土壤电阻率和厚度,注:infinite表示无穷大。

3.输入完成后点击确定,回到前一对话框,点击SesCAD,对接地装置进行建模: 4.接地装置模型建立,画出接地装置:

画一段简单的接地体,并引入激励,不同视角的情况如下图 4.设置接地体坐标和激励坐标,右键单击所画道题,弹出选项,选择编辑物体可以设置导体的三维坐标,单位为米(注:z最大为0,不能为负值,其值表示距离地表的深度)。

5.分别设置接地体参数和激励参数,右键单击导体选择特性:

择导体类型为接地材料特性,并输入参数,如图所示: 注:阻抗选择计算值表示相对于铜的参数,而自定义则表示实际参数,注意单位 再输入激励点导体的激励参数,在弹出对话框中选择电流激励,并确定大小,如图所示: 6.输入完毕后点击确定,回到建模界面,关闭该界面,弹出对话框选择“更新变化到Input Toolbox”,返回之前对话框,选择运行:

接地电阻计算要求

标准接地电阻规范要求 一、规范值; 1、独立的防雷保护接地电阻应小于等于(≤)10欧; 2、独立的安全保护接地电阻应小于等于(≤)4欧; 3、独立的交流工作接地电阻应小于等于(≤)4欧; 4、独立的直流工作接地电阻应小于等于(≤)4欧; 5、防静电接地电阻一般要求小于等于(≤)100欧。 6、共用接地体(联合接地)应不大于接地电阻1欧。 【避雷针的地线属于防雷保护接地,如果避雷针接地电阻和防静电接地电阻都是按要求设置的,那么就可以将防静电设备的地线与避雷针地线接在一起,因为避雷针的接地电阻比静电接地电阻小10倍,因此发生雷电事故时,大部分雷电将从避雷针地泄放,经过防静电地的电流则可以忽略不计。】 二、接地分三种 1、保护接地:电气设备的金属外壳,混凝土、电杆等,由于绝缘损坏有可能带电,为了防止这种情况危及人身安全而设的接地。1Ω以下。 2、防静电接地:防止静电危险影响而将易燃油、天然气贮藏罐和管道、电子设备等的接地。 3、防雷接地:为了将雷电引入地下,将防雷设备(避雷针等)的接地端与大地相连,以消除雷电过电压对电气设备、人身财产的危害的接地,也称过电压保护接地。

注意的是.三种接地要分离设置. 三、接地线的标识: 区分线别接地体规定 保护接地线黄绿双色线三种接地体间的距离必须大于20米 防静电接地线绿色线 防雷接地线镀锌圆钢 四、接地要求: 交流电气装置的接地应符合下列规定: 1 、当配电变压器高压侧工作于小电阻接地系统时,保护接地网的接地电阻应符合下式要求: R≤2000/I (12.4. 1-1) 式中 R――考虑到季节变化的最大接地电阻(Ω); I――计算用的流经接地网的人地短路电流(A)。 2、当配电变压器高压侧工作于不接地系统时,电气装置的接地电阻应符合下列要求: 1)高压与低压电气装置共用的接地网的接地电阻应符合下式要求,且不宜超过4Ω: R≤120/I (12.4.1-2) 2)仅用于高压电气装置的接地网的接地电阻应符合下 式要求,且不宜超过100,: 尺≤250/I (12.4.1-3) 式中 R――考虑到季节变化的最大接地电阻(Ω);

色环电阻读值方法及电阻色环表

色环电阻读值方法及电阻色环表 色环电阻读值方法及电阻色环表 在某些不好区分的情况下,也可以对比两个起始端的色彩,因为计算的起始部分即第1色彩不会是金、银、黑3种颜色。如果*近边缘的是这3种色彩,则需要倒过来计算。 色环电阻的色彩标识有两种方式,一种是采用4色环的标注方式,令一种采用5色环的标注方式。两者的区别在于:4色环的用前两位表示电阻的有效数字,而5色环电阻用前三位表示该电阻的有效数字,两者的倒数第2位表示了电阻的有效数字的乘数,最后一位表示了该电阻的误差。 对于4色环电阻,其阻值计算方法位: 阻值=(第1色环数值*10+第2色环数值)*第3位色环代表之所乘数 对于5色环电阻,其阻值计算方法位:阻值=(第1色环数值*100+第2色环数值*10+第3位色环数值)*第4位色环代表之所乘数 色标法色标法是指在电感器表面涂上不同的色环来代表电感量(与电阻器类似),通常用四色环表示,紧靠电感体一端的色环为第一环,露着电感体本色较多的另一端为末环。其第一色环是十位数,第二色环为个位数,第三色环为应乘的倍数(单位为11H),第四色环为误差率,各种颜色所代表的数值见表2。例如:色环颜色分别为棕、黑、金、金的电感器的电感量为1LIH,误差为5%。

常规贴片电阻(部分) 常规的贴片电阻的标准封装及额定功率如下表: 英制(mil) 公制(mm) 额定功率(W)@ 70°C 0201 0603 1/20 0402 1005 1/16 0603 1608 1/10 0805 2012 1/8 1206 3216 1/4 1210 3225 1/3 1812 4832 1/2 2010 5025 3/4 2512 6432 1 直插电阻 1/8W ----AXIAL-0.3 1/4W ----AXIAL-0.4或AXIAL-0.3(如果自己弯折的比较靠近电阻根部的话)1/2W ----AXIAL-0.5或AXIAL-0.4(如果自己弯折的比较靠近电阻根部的话) 1W ----AXIAL-0.6或AXIAL-0.5(如果自己弯折的比较靠近电阻根部的话) 2W ----AXIAL-0.8 3W ----AXIAL-1.0 5W ----AXIAL-1.2 附铜处的连接孔线宽 1.针对某块铜,选中SHAPE,右键Parameter 里Thermal Relief Conenct 设置即可。 2.针对全局设置,打开Global Shape Parameter 设置即可。 3.针对某些PTH PIN进行设置,在PIN上添加以下属性即可。 DYN_FIXED_THERM_WIDTH 连接线宽 DYN_THERMAL_CON_TYPE 连接类型

T2000钳形接地电阻测试原理、方法

钳形接地电阻测试仪的原理与方法 意大利HT测试仪器-中国 针对目前防雷设施检测工作中出现的问题,从接地电阻测量的原理入手,提出几种测试方法和注意事项,以指导检测人员正确测量接地电阻,提高防雷检测机构的检测能力,增强检测人员的技术水平。 HT-T2000钳形接地电阻测试仪,采用夹钳接地电阻测试技术,无辅助极测试方法,不需要接地棒,也不用查找适合放置辅助接地棒的位置。大大提高测试效率,使用户可以在无法使用其他技术的地点(如建筑物内部或电线塔上)执行接地回路电阻测试。 一.测量原理 1、电阻测量原理 HT-T2000系列钳形接地电阻仪测量接地电阻的基本原理是测量 回路电阻。见下图。钳表的钳口部分由电压线圈及电流线圈组成。电 压线圈提供激励信号,并在被测回路上感应一个电势E。在电势E的 作用下将在被测回路产生电流I。钳表对E及I进行测量,并通过下面 的公式即可得到被测电阻R。 R=E/I 2、电流测量原理 HT-T2000钳形接地电阻仪测量电流的基本原理与电流互感器的测量原理相同。见下图。被测量导线的交流电流I,通过钳口的电流磁环及电流线圈产生一个感应电流I1,钳表对

I1进行测量,通过下面的公式即可得到被测电流I。 I=n·I1 其中:n为副边与原边线圈的变比系数。 二.接地电阻测量方法 1、多点接地系统 对多点接地系统(例如输电系统杆塔接地、通信电缆接地系统、某些建筑物等),它们通过架空地线(通信电缆的屏蔽层)连接,组成了接地系统。见下图。当用钳表测量时,其等效电路如下: 其中:R1为预测的接地电阻。 R0为所有其它杆塔的接地电阻并联后的等效电阻。 虽然,从严格的接地理论来说,由于有所谓的“互电阻”的存在,R0并不是通常的电工学意义上的并联值(它会比电工学意义上的并联值稍大),但是,由于每一个杆塔的接地半球比起杆塔之间的距离要小得多,而且毕竟接地点数量很大,R0要比R1小得多。因此,可以从工程角度有理由地假设R0=0。这样,我们所测的电阻就应该是R1了。 多次不同环境、不同场合下与传统方法进行对比试验,证明上述假设是完全合理的。 2、有限点接地系统 这种情况也较普遍。例如有些杆塔是5个杆塔通过架空地线彼此相连;再如某些建筑物

接地电阻的计算与测量

接地电阻的计算与测量(转贴) 2003-2-28 路灯设施的接地保护事关国家财产和人民生命安全的大事。为做好接地保护并有效地设置接地电阻,必须正确计算和测量接地电阻。 理论上,接地电阻越小,接触电压和跨步电压就越低,对人身越安全。但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电阻率较高的地区不易做到。在实践中,可利用埋设在地下的各种金属管道(易燃体管道除外)和电缆金属外皮以及建筑物的地下金属结构等作为自然接地体。由于人工接地装置与自然接地体是并联关系,从而可减小人工接地装置的接地电阻,减少工程投资。 一、接地电阻值的规定 在1000V以下中性点直接接地系统中,接地电阻Rd应小于或等于4Ω,重复接地电阻应小于或等于10Ω。而电压1000V以下的中性点不接地系统中,一般规定接地电阻R为4Ω。因此,根据实际安装经验,在路灯照明系统中接地电阻Rd应小于或等于4Ω。 二、人工接地装置接地电阻的计算 人工接地装置常用的有垂直埋设的接地体、水平埋设的接地体以及复合接地体等。此外,接地电阻大小还与接地体形状有关,在路灯施工应用中,通常使用垂直、水平接地体,这里只简要介绍上述两种接地电阻的计算。 1、垂直埋设接地体的散流电阻 垂直埋设的接地体多用直径为50mm,长度2-2.5m的铁管或圆钢,其每根接地电阻可按下式求得:Rgo=[ρLn(4L/d)]/2πL 式中:ρ—土壤电阻率(Ω/cm) L—接地体长度(cm) d—接地铁管或圆钢的直径(cm) 为防止气候对接地电阻值的影响,一般将铁管顶端埋设在地下0.5-0.8m深处。若垂直接地体采用角钢或扁钢(见图1),其等效直径为: 等边角钢d=0.84b 扁钢d=0.5b 为达到所要求的接地电阻值,往往需埋设多根垂直接体,排列成行或成环形,而且相邻接地体之间距离一般取接地体长度的1-3倍,以便平坦分布接地体的电位和有利施工。这样,电流流入每根接地体时,由于相邻接地体之间的磁场作用而阻止电流扩散,即等效增加了每根接地体的电阻值,因而接地体的合成电阻值并不等于各个单根接地体流散电阻的并联值,而相差一个利用系数,于是接地体合成电阻为Rg=Rgo/(ηL*n) 式中,Rgo—单根垂直接地体的接地电阻(Ω); ηL—接地体的利用系数; n—垂直接地体的并联根数。 接地体的利用系数与相邻接地体之间的距离a和接地体的长度L的比值有关,a/L值越小,利用系数就越小,则散流电阻就越大。在实际施工中,接地体数量不超过10根,取a/L=3,那么接地体排列成行时,ηL在0.9-0.95之间;接地体排列成环形时,ηL约为0.8。 2、水平埋设接地体的散流电阻 一般水平埋设接地体采用扁钢、角钢或圆钢等制成,其人工接地电阻按下式求得: Rsp=(ρ/2πL)*[Ln(L2/dh)+A]

相关主题
文本预览
相关文档 最新文档