当前位置:文档之家› 泰勒公式及其应用典型例题.

泰勒公式及其应用典型例题.

泰勒公式及其应用典型例题.
泰勒公式及其应用典型例题.

泰勒公式及其应用

常用近似公式,将复杂函数用简单的一次多项式函数近似地表示,这是一个进步。当然这种近似表示式还较粗糙(尤其当较大时),从下图可看出。

上述近似表达式至少可在下述两个方面进行改进:

1、提高近似程度,其可能的途径是提高多项式的次数。

2、任何一种近似,应告诉它的误差,否则,使用者“心中不安”。

将上述两个想法作进一步地数学化:

对复杂函数,想找多项式来近似表示它。自然地,我们希望尽可能多地反映出函数所具有的性态——如:在某点处的值与导数值;我们还关心的形式如何确定;近似所产生的误差。

【问题一】

设在含的开区间内具有直到阶的导数,能否找出一个关于的次多项式

近似?

【问题二】

若问题一的解存在,其误差的表达式是什么?

一、【求解问题一】

问题一的求解就是确定多项式的系数。

……………

上述工整且有规律的求系数过程,不难归纳出:

于是,所求的多项式为:

(2)

二、【解决问题二】

泰勒(Tayler)中值定理

若函数在含有的某个开区间内具有直到阶导数,则当时,可以表示成

这里是与之间的某个值。

先用倒推分析法探索证明泰勒中值定理的思路:

这表明:

只要对函数及在与

之间反复使用次柯西中值定理就有可能完成该定理的证明工作。【证明】

以与为端点的区间或记为,。

函数在上具有直至阶的导数,

函数在上有直至阶的非零导数,

于是,对函数及在上反复使用次柯西中值

定理,有

三、几个概念

1、

此式称为函数按的幂次展开到阶的泰勒公式;

或者称之为函数在点处的阶泰勒展开式。

当时,泰勒公式变为

这正是拉格朗日中值定理的形式。因此,我们也称泰勒公式中的余项。

为拉格朗日余项。

2、对固定的,若

此式可用作误差界的估计。

表明:误差是当时较高阶无穷小,这一余项表达式称之为皮亚诺余项。

3、若,则在与之间,它表示成形

式,

泰勒公式有较简单的形式——麦克劳林公式

近似公式

误差估计式

【例1】求的麦克劳林公式。

解:

于是

有近似公式

其误差的界为

我们有函数的一些近似表达式。

(1)、(2)、(3)、

在matlab中再分别作出这些图象,观察到它们确实在逐渐逼近指数函数。

【例2】求的阶麦克劳林公式。

解:

它们的值依次取四个数值。

其中:

同样,我们也可给出曲线的近似曲线如下,并用matlab

作出它们的图象。

【例3】求的麦克劳林展开式的前四项,并给出皮亚诺余项。解:

于是:

利用泰勒展开式求函数的极限,可以说是求极限方法中的“终极武器”,使用这一方法可求许多其它方法难以处理的极限。

【例4】利用泰勒展开式再求极限。

解:,

【注解】

现在,我们可以彻底地说清楚下述解法的错误之处

因为,从而

当时,,应为

【例5】利用三阶泰勒公式求的近似值,并估计误差。

解:

故:

§6.3 泰勒公式 数学分析课件(华师大四版) 高教社ppt 华东师大教材配套课件

带有拉格朗日型余项的泰勒公式 在近似计算中的应用 )(x f 设 在 0x x =处可导, 0000()()()()().f x f x f x x x o x x '=+-+-当 ||0x x -充分小时, )(x f 可以由一次多项式 ) )(()(000x x x f x f -'+其误差为 0().o x x -带有佩亚诺型余项的泰勒公式 )(0x x o -是不够的, 而要考虑用较高次 误差仅为 的多项式来逼近 f , 使得误差更小, 0(()).n o x x -如由有限增量公式 近似地代替, 但在许多情况下, 后退 前进 目录 退出 §3 泰勒公式 带有佩亚诺型余项的泰勒公式

问题: 是否存在一个 n 次多项式 ),(x P n 使得 ? ))(()()(n o n x x o x P x f -=-答案: 当 f (x )在点 x 0 有n 阶导数时, 这样的 n 次多 设 0100()()(),n n n P x a a x x a x x =+-++-则 有什么关系? 现在来分析这样的多项式与 f (x ) 项式是存在的. ,!)(0) (n n n a n x P =,)(00a x P n =,)(10a x P n =',!2)(20a x P n ='',

即 () 0().! n n n P x a n =上式表明 P n (x ) 的各项系数是由其在点 x 0 的各阶 设 f (x ) 在 x 0 处 n 阶可导. 导数所确定的. ),(00x P a n =,!1)(01x P a n '=,! 2)(02x P a n ''=, 即 00()()lim 0,() n n x x f x P x x x →-=-), )(()()(0n n x x o x P x f -=-如果

完全平方公式经典习题

完全平方公式一 1.(a +2b )2=a 2+_______+4b 2;(3a -5)2=9a 2+25-_______. 2.(2x -_____)2=____-4xy +y 2;(3m 2+_____)2=______+12m 2n +______. 3.x 2-xy +______=(x -______)2;49a 2-______+81b 2=(______+9b )2. 4.(-2m -3n )2=_________;(41s +3 1t 2)2=_________. 5.4a 2+4a +3=(2a +1)2+_______. (a -b )2=(a +b )2-________. 6.a 2+b 2=(a +b )2-______=(a -b )2-__________. 7.(a -b +c )2=________________________. 8.(a 2-1)2-(a 2+1)2=[(a 2-1)+(a 2+1)][(a 2-1)-(______)]=__________. 9.代数式xy -x 2-41y 2等于……………………( ) (A )(x -21y )2(B )(-x -21y )2(C )(21y -x )2(D )-(x -21y )2 10.已知x 2(x 2-16)+a =(x 2-8)2,则a 的值是…………………………( ) (A )8(B )16(C )32(D )64 11.如果4a 2-N ·ab +81b 2是一个完全平方式,则N 等于……………………… ( ) (A )18(B )±18(C )±36(D )±64 12.若(a +b )2=5,(a -b )2=3,则a 2+b 2与ab 的值分别是………………( ) (A )8与21(B )4与21(C )1与4 (D )4与1 13.计算:(1)(-2a +5b )2; (2)(-21ab 2-3 2c )2; (3)(x -3y -2)(x +3y -2);(4)(x -2y )(x 2-4y 2)(x +2y ); (5)(2a +3)2+(3a -2)2; (6)(a -2b +3c -1)(a +2b -3c -1); (7)(s -2t )(-s -2t )-(s -2t )2; (8)(t -3)2(t +3)2(t 2+9)2. 14. 用简便方法计算:(1)972; (2)992-98×100; 15.求值:(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.

完全平方公式 典型应用

完全平方公式的典型应用 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y ); (2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________. 3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2. 5.代数式xy -x 2- 41y 2等于-( )2 题型四、配方思想 1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____. 2、已知0136422=+-++y x y x ,求y x =_______. 3、已知222450x y x y +--+=,求 21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= . 6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角

泰勒公式的应用精选

泰勒公式及其应用 摘要

文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()! 1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()! 1()(++-+n n x x n f ξ ξ在x 和0x 之间的一个数,该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 ! 2)(02x f a ''=n n a n x p !)(0)(=,所以有!)(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(200000-++-''+-'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0)(000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

泰勒公式及其在解题中的应用

本科生毕业设计(论文) ( 2014届) 设计(论文)题目泰勒公式及其在解题中应用 作者周立泉 分院理工分院用数学1001班 指导教师(职称)徐华(讲师) 专业班级数学与应用数学) 论文字数 8000 论文完成时间 2014年4月3日 杭州师范大学钱江学院教学部制

泰勒公式及其在解题中应用 数学与应用数学1001班周立泉指导教师徐华 摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用. 关键词:泰勒公式;数学分析;导数 Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHua Abstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications. Keyword:Taylor's formula;Mathematical analysis; derivative.

完全平方公式经典题型 (1)

完全平方(和、差)公式: 1. 公式:()2222a b a ab b ±=±+ 逆用:()2 222a ab b a b ±+=± 文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 口诀:首平方加尾平方,乘积二倍在中央。 其中,a b 可以是数字、单项式和多项式。其中22,a b 称为二次项,均为正项;2ab 为中间项,符号由括号里的符号确定。 扩展:()222222ax by a x abxy b y ±=±+ a,b 为x 、y 系数,那么展开式的中间项系数为2ab 。 例:1.229124a ab b -+= 2. 2244a ab b -+= 3. 2(23)x -= 4. 221()32x y -= 4. 2102= 6. 299= 题型解析: 一、添括号运用乘法公式计算: (1)2)(b a -- (2)2)(c b a ++ (4) ()()22 225x 4y 5x 4y --+ (5)2)12(-+b a (6)2)12(--y x 二、展开式系数的判断:公式逆用 1、要使k x x +-62是完全平方式,则k=________ 2、要使42++my y 成为完全平方式,那么m=________ 3、将多项式92+x 加上一个整式,使它成为完全平方式,这个整式可以是_______________ 4、多项式()2249a ab b -+是完全平方差公式,则括号里应填 。 5、将下列式子补充完整: (1)24x - xy +216y =( ) 2 (2)225a +10ab + =( )2 (3) -4ab + =(a - )2 (4)216a + + =( +)22b (5)2916x - + =( 223y ?-?? 三、利用公式加减变形 例.已知5=+b a 3ab =,求22b a +和 2)(b a -的值 1. 若a+b=0,ab=11,求a 2﹣ab+b 2的值。 2.已知 x + y = 8,xy = 12,求 x 2 + y 2 的值 3. 已知,(x+y )2=16,(x ﹣y )2=8,那么xy 的值是多少? 4. 如果,求和1a-a 的值。 5. 已知x 2+y 2=13,xy=6,则x+y 的值是多少?

《完全平方公式》典型例题

(1) (1) 《完全平方公式》典型例题利用完全平方公式计算: 2 (2 3X) ; (2) (2ab 4a)2 ; (3) (1am2b)2 . 计算: (3a 1)2 ; (2) ( 2x 用完全平方公式计算: (3y |X)2 ; (2) 3 运用乘法公式计算: (X a)(x (X 1)2(x 计算:(2x 3)2a)(X2 八2 / 2 1) (X 1 2 4X; 3y)2; (3) (a b)2 ; a2); (2) 1)2 . (2) (2a b 利用完全平方公式进行计算: 已知a b 3,ab a2 b2; (2) a2 若 3( a2b2c2) (3x y)2. (3) (3a (a b c)(a b (1) 2012 ; (2) 12,求下列各式的值. 2 2 ab b2; (3) (a b)2 . (a b c)2,求证:a b 2 4b 5c)2. c) ; ⑶(X y)2 (X y)2? 992 ; (3) (30-)2 3

参考答案 这几个题都符合完全平方公式的特征,可以直接应用该公式进 2 2 2 22 2 2 3x (3x)2 4 12x 9x 2 ; 1 (3) (-am 说明:(1)必须注意观察式子的特征,必须符合完全平方公式,才能应用该 公式;(2)在进行两数和或两数差的平方时,应注意将两数分别平方,避免出现 (2 3x)2 4 12x 3x 2 的错误. 例2分析:(2)题可看成[(2x ) 3y ]2 ,也可看成(3y 2x )2 ;( 3)题可看 成[(3x y )]2 ,也可以看成[(3x ) y ]2 ,变形后都符合完全平方公式. 解:(1) (3a 1) (3a) 2 3a 1 1 9 a 2 6a 1 (2)原式(2x)2 2 ( 2x) 3y (3y)2 2 2 4x 12xy 9y 或原式(3y 2x)2 2 2 9y 12xy 4x (3)原式[(3x y)]2 (3x y)2 (3x)2 2 3x 2 2 或原式(3x)2 2 ( 3x) y (2) (2ab 4a)2 (2ab)2 2 2ab 4a (4a)2 4a 2b 2 16a 2b 16a 2 ; 例1分析: 行计算. 解:( 1)(2 3x)2 卜荷 2amb 4b 2. 2b)2 (3y)2 2 3y 2x (2x)2

泰勒公式及其应用

泰勒公式及其应用 数学学院数学与应用数学专业 2009级杨立 指导教师吴春 摘要:泰勒公式以一种逼近的思想成为数学分析中的一个重要知识,在分析和研究数学问题中有着重要的作用。本文研究了利用泰勒公式证明微分中值定理,求函数的极限,进行近似计算,求函数的高阶导数和偏导数等方面的应用,恰当的运用泰勒公式能够给我们的解题带来极大的方便。 关键词:泰勒公式;微分中值定理;极限;高阶导数;偏导数 Abstract:Taylor formula is an important knowledge of mathematics analysis in an approximation of the thought, and it plays an important role in the analysis and study of mathematical problems. This paper studies the application of the Taylor formula in proving differential mean value theorem, the limit of function, approximate calculation, the application of high order derivative for function and partial derivative, and using Taylor formula appropriate can bring great convenience to our problem. Keywords:Taylor formula; approximate calculation; limit; higher derivative; partial derivative 引言 泰勒公式最早是以泰勒级数的形式出现在泰勒1715年出版的著作《增量及其逆》中,但在该书中却没有给出具体的证明,直到19世纪由柯西给出了现在的形式及其严格的证明。泰勒公式是一种逼近的思想,集中体现了逼近法的精髓,可以将有理分式函数﹑无理函数和初等超越函数等复杂函数用简单的多项

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

开题报告浅谈泰勒公式及其应用

附件 7 论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告 论文(设计)题目 浅谈泰勒公式及其应用 系(院) 数学系 专业班级 数学与应用数学 B1002 学科 理学 学生 姓名 马尚红 指导教师 姓名 马园媛 学号 1025809043 职称 讲师 一、选题的根据 ( 1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主 要参考文献等。 2、撰写要求: 宋体、小四号 。) 1. 选题的来源及意义 泰勒公式是数学分析中非常重要的内容, 是一个用函数在某点的信息描述其附近 取值的公式。如果函数足够光滑的话, 在已知函数在某一点的各阶导数值的情况之下, 泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中值。 泰勒公式还给出了这个多项式和实际的函数值之间的偏差。 泰勒公式的初 衷是用多项 式来近似表示函数在某点周围的情况。比如说,指数函数 e x 在x 0的 附近可以用以 2 3 n 下多项式来近似地表示: e x 1 x x x x 称为指数函数在 0处的 n 阶泰勒 2! 3! n! 展开公式。这个公式只对 0附近的 x 有用, x 离 0越远,这个公式就越不准确。实际 函数值和多项式的偏差称为泰勒公式的余项。对于一般的函数,泰勒公式的系数的选 择依赖于函数在一点的各阶导数值,这个想法的原由可以由微分的定义开始。微分是 函数在一点附近的最佳线性近似: f a h f a f ' a h o h ,其中 o h 是比 h 高 阶 的无穷小。 也就是说 f a h f a f ' a h,或 f x f a f ' a x a .注意到 f x 和 f ' a x a 在a 处的零阶导数和 一阶导数都相同。对足够光滑的函数,如果一个 多 项式在 a 处的前 n 次导数值都与函数在 a 处的前 n 次导数值重合,那么这个多项 式应 该能很好地近似描述函数在 a 附近的情况。对于多元函数,也有类似的泰勒公式。设 a,r 是欧几里得空间 RN 中的开球, f 是定义在 a,r 的闭包上的实值函数,并在 每一点都存在所有的 n 1次偏导数。这时的泰勒公式为:对所有, f x 1 f a x a x x a ,其中的 是多重指标 0 ! x n 1 泰勒公式也是大学数学中的一个重要知识, 由此本文将总结几种泰勒公式的证明 及其应用。其泰勒公式在近似计算,求极限,判断函数凸凹性等方面的应用,除此之 外,它还可应用于行列式,证明不等式,判断无穷级数、无穷积分的收敛性,求函数 导数的中值估计、求曲面的渐进线方程,高阶求导等等。 2. 国内外研究状况 其中的余项也满足不等式:对所有 n 1的 满足 x

泰勒公式及其应用典型例题

泰勒公式及其应用 常用近似公式,将复杂函数用简单的一次多项式函数近似地表示,这是一个进步。当然这种近似表示式还较粗糙(尤其当较大时),从下图可看出。 上述近似表达式至少可在下述两个方面进行改进: 1、提高近似程度,其可能的途径是提高多项式的次数。 2、任何一种近似,应告诉它的误差,否则,使用者“心中不安”。 将上述两个想法作进一步地数学化: 对复杂函数,想找多项式来近似表示它。自然地,我们希望尽可能多地反映出函数所具有的性态——如:在某点处的值与导数值;我们还关心的形式如何确定;近似所产生的误差。 【问题一】

设在含的开区间内具有直到阶的导数,能否找出一个关于的次多项式 近似 【问题二】 若问题一的解存在,其误差的表达式是什么一、【求解问题一】 问题一的求解就是确定多项式的系数。

…………… 上述工整且有规律的求系数过程,不难归纳出: 于是,所求的多项式为: (2) 二、【解决问题二】 泰勒(Tayler)中值定理

若函数在含有的某个开区间内具有直到阶导数,则当时,可以表示成 这里是与之间的某个值。 先用倒推分析法探索证明泰勒中值定理的思路: 这表明: 只要对函数及在与 之间反复使用次柯西中值定理就有可能完成该定理的证明工作。【证明】

以与为端点的区间或记为,。 函数在上具有直至阶的导数, 且 函数在上有直至阶的非零导数, 且 于是,对函数及在上反复使用次柯西中值定理,有

三、几个概念 1、 此式称为函数按的幂次展开到阶的泰勒公式; 或者称之为函数在点处的阶泰勒展开式。 当时,泰勒公式变为 这正是拉格朗日中值定理的形式。因此,我们也称泰勒公式中的余项。 为拉格朗日余项。 2、对固定的,若 有 此式可用作误差界的估计。 故

北大版高等数学第四章微分中值定理与泰勒公式答案习题

习题4.5 x (,3 2 )3 2 (3 2 ,0) 0(0, 3 2 ) 3 2 (3 2 ,+) f0+00+ f拐点拐 点 拐 点x(,0) -∞0(0,1)1(1,2)2(2,) +∞y'0++0 y''++ y 极小值拐点极大值 ()() ()() 2 22222 22 222 32 1.() ()212,()12(2)4 3 642320,0,. 2 x x x x x x x x f x xe f x e x e e x f x e x x xe e x x xe x x - ------- = ''' -=-=--- =-+=-+==± 求函数 的凸凹性区间及拐点. 解= 23 2 1 ,(,). 3 2(2)0,0,2. 220, 1. y x x x y x x x x x y x x =-∈-∞∞ '=-=-== ''=-== 作下列函数的图形: 2.

222223.,(,).2(2)(2)0,0,2;(2)(22)(42)0,2 2. x x x x x x x x y x e x y xe x e e x x e x x x y e x x e x e x x x --------'=∈-∞+∞=-=-=-==''=--+-=-+==± x (,0)-∞ (0,22)- 22- (22,2)- 2 (2,22)+ 22+ (22,)++∞ y ' - + + - - y '' + + - - 0 + y ? 极小值 ? 拐点 ? 极大值 ? 拐点 ? 22231 4.,0. 11 10, 2 1;. y x x x x y x x x y x =+≠-'=-==''=±=

完全平方公式练习50题

完全平方公式专项练习 知识点: 姓名: 完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。 1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)2 2、能否运用完全平方式的判定: ① 两数和(或差)的平方 即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2 ② 两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。 即:a 2+2ab+b 2或a 2-2ab+b 2 -a 2-2ab-b 2或 -a 2+2ab-b 2 专项练习: 1.(a +2b )2 2.(3a -5)2 3..(-2m -3n )2 4. (a 2-1)2-(a 2+1)2 5.(-2a +5b )2 6.(-21ab 2-3 2c )2 7.(x -2y )(x 2-4y 2)(x +2y ) 8.(2a +3)2+(3a -2)2 9.(a -2b +3c -1)(a +2b -3c -1); 10.(s -2t )(-s -2t )-(s -2t )2; 11.(t -3)2(t +3)2(t 2+9)2. 12. 972; 13. 20022; 14. 992-98×100; 15. 49×51-2499; 16.(x -2y )(x +2y )-(x +2y )2 17.(a +b +c )(a +b -c ) 18. (a+b+c+d)2 19.(2a +1)2-(1-2a )2 20.(3x -y )2-(2x +y )2+5x (y -x )

北大版高等数学第四章 微分中值定理与泰勒公式答案 习题4.1

习题 4.1 3 2 12121.()32[0,1][1,2]R o lle 0,(0)(1)(2)0,()[0,1][1,2]R o lle 620,6 3 (0,1),(1,2),()()0. 332.f x x x x f f f f f x x x x x x f x f x =-+==='-+== = ''====2 验证函数在区间及上满足定理的条件并分别求出导数为的点. 处处可导故在区间及上满足定理的条件.f (x )=3x 讨论下列 解11 1 1 ()[1,1]R o lle ,,(1,1),()0. (1)()(1)(1),,;(2)()1(1)()(1)(1)(1)(1) (1)(1)()0,(1,1),()0. 1 (2)(m n m n m n m n f x c f c f x x x m n f x f x m x x n x x m n x x m m x n n x c f c m f x -----∈-'==+-=- '=+--+--'=+----== ∈-=+'函数在区间上是否满足定理的条件若满足求使为正整数解1/3 2),(0). 33.()ln [1,],?11(),()(1)ln ln 11(1), 1. 4.L ag ran g e (1)|sin sin |||; (2)|tan tan |||,,(/2,/2);(3) ln x f f x x e c f x f e f e e c e x c y x x y x y y x x y b a b b b a ππ-'=- =='= -=-== -=--≤--≥-∈--<<不存在写出函数在区间上的微分中值公式并求出其中的应用中值定理,证明下列不等式:解2 2 2 (0). (1)|sin sin ||(sin )|()||co s |||||.(2)|tan tan ||(tan )|()|sec ||||.(3) ln ln ln (ln )|()((,)). 5.()(1)(4)x c x c x c a a b a x y x x y c x y x y y x x y x c y x y x b a b b a b a b a x b a c a b a a c a P x x x ===-<<'-=-=-≤-'-=-=-≥----'<=-=-= ∈< =--证明多项式的导函数的证1,212,. ()1,2,R o lle ,,,()(2,1),(1,1),(1,2). 6.,,,:()co s co s 2co s (0,). n n P x P x c c c f x c x c x c n x π±±---=+++ 三个根都是实根并指出它们的范围有四个实根根根据定理它的导函数有三个实根又作为四次多项式的导函数是三次多项式,最多三个实根,故的导函数的三个根都是实根,分别在区间设为任意实数证明函数在内必有根证

苏教版七年级下册数学[完全平方公式(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学 重难点突破 知识点梳理及重点题型巩固练习 完全平方公式(基础) 【学习目标】 1. 能运用完全平方公式把简单的多项式进行因式分解. 2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】 要点一、公式法——完全平方公式 两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2 222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式; (2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或 减)这两数之积的2倍. 右边是两数的和(或差)的平方. (3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以 是单项式或多项式. 【400108 因式分解之公式法 知识要点】 要点二、因式分解步骤 (1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法; (3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项 (1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式; (3)结果要彻底,即分解到不能再分解为止. 【典型例题】 类型一、公式法——完全平方公式 1、(2016?普宁市模拟)下列各式中,能利用完全平方公式分解因式的是( ). A .221x x -++ B .221x x -+- C .221x x -- D .2 24x x -+ 【思路点拨】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各项分析判断后利用排除法求解.

完全平方公式经典习题

完全平方公式练习题 一、点击公式 1、2 a b = ,2 a b = ,a b b a = . 2、222a b a b + =2a b + . 3、22a b a b = . 二、公式运用 1、计算化简 (1)2222x y x y x y (2)2)())((y x y x y x (3)2 )21(1x (4)z y x z y x 3232(5)2121 a b a b 2、简便计算: (1)(-69.9)2 (2)472-94×27+272 3、公式变形应用: 在公式(a ±b )2=a 2±2ab+b 2中,如果我们把a+b ,a-b ,a 2+b 2,ab 分别看做一个整体,那么只要知道其中两项的值,就可以求出第三项的值. (1)已知a+b =2,代数式a 2-b 2+2a+8b+5的值为,已知11 25 ,,7522x y 代数式 (x+y )2-(x-y )2的值为,已知2x-y-3=0,求代数式12x 2-12xy+3y 2的值是,已知x=y +4,求代数式2x 2-4xy+2y 2-25的值是. (2)已知3b a ,1ab ,则22b a =,44a b = ;若5a b ,4ab ,则2 2b a 的值为______;28a b ,2 2a b ,则ab=_______. (3)已知:x+y =-6,xy=2,求代数式(x-y )2的值.

(4)已知x+y =-4,x-y=8,求代数式x 2-y 2的值.(5已知a+b =3,a 2+b 2 =5,求ab 的值. (6)若222315x x ,求23x x 的值. (7)已知x-y=8,xy=-15,求的值. (8)已知:a 2+b 2=2,ab=-2,求:(a-b )2 的值.4、配方法(整式乘法的完全平方公式的反用) (1)如果 522x x y ,当x 为任意的有理数,则y 的值为()A 、有理数 B 、可能是正数,也可能是负数 C 、正数 D 、负数(2)多项式192x 加上一个单项式后成为一个整式的完全平方,那么加上的这个单项式是 .(填上所有你认为是正确的答案)(3)试证明:不论 x 取何值,代数x 2+4x+92的值总大于0.(4)若2x 2-8x+14=k ,求k 的最小值.

证明泰勒公式

泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2,+f'''(x.)/3!?(x-x.)^3+……+f(n) (x.)/n!?(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以 A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n) (x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得: P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有 Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n) (x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n- 0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但 Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项 Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。 麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。 证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)

平方差和完全平方公式经典例题

典例剖析 专题一:平方差公式 例1:计算下列各整式乘法。 ①位置变化(73)(37)x y y x +- ②符号变化(27)(27)m n m n --- ③数字变化98102? ④系数变化(4)(2)24n n m m +- 》 ⑤项数变化(32)(32)x y z x y z ++-+ ⑥公式变化2(2)(2)(4)m m m +-+ ◆变式拓展训练◆ … 【变式1】2244()()()()y x x y x y x y ---+++ 【变式2】22 (2)(4)33b b a a --- 【变式3】22222210099989721-+-++-…

、 专题二:平方差公式的应用 例2:计算 22004200420052003-?的值为多少 , ◆变式拓展训练◆ 【变式1】22()()x y z x y z -+-+- 【变式2】2301(3021)(3021)?+?+ 【变式3】(25)(25)x y z x y z +-+-++ 【变式4】已知a 、b 为自然数,且40a b +=, (1)求22 a b +的最大值;(2)求ab 的最大值。 ( 专题三:完全平方公式

例3:计算下列各整式乘法。 ①位置变化:22()()x y y x --+ ②符号变化:2 (32)a b -- & ③数字变化:2197 ④方向变化:2(32)a -+ ⑤项数变化:2(1)x y +- ⑥公式变化22 (23)(46)(23)(23)x y x y x y x y -+-+++ \ ◆变式拓展训练◆ 【变式1】224,2a b a ab b +=++则的值为( ) 【变式2】已知221() 4.,()_____2 a b ab a b -==+=则 【变式3】已知225.6,x y xy x y +=-=+则的值为( ) 【变式4】已知222(1)()32x x x y x y xy ---=-+-,求的值 / 专题四:完全平方公式的运用

《泰勒公式及其应用》的开题报告

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的开题报告 关键词:泰勒公式的验证数学开题报告范文中国论文开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:20XX年12月—20XX年4月

相关主题
文本预览
相关文档 最新文档