当前位置:文档之家› 傅里叶变换分析信号的缺点

傅里叶变换分析信号的缺点

傅里叶变换分析信号的缺点
傅里叶变换分析信号的缺点

傅里叶变换分析信号的缺点

基于傅里叶(Fourier)变换的信号频域表示,揭示了时间函数和频谱函数之间的内在联系,在传统的平稳信号分析和处理中发挥了极其重要的作用,很多理论研究和应用研究都把傅里叶变换当作最基本的经典工具来使用.但是傅里叶变换存在着严重的缺点:用傅里叶变换的方法提取信号频谱时,需要利用信号的全部时域信息,这是一种整体变换,缺少时域定位功能,因此必须对其加以改进.

傅里叶变换的特点及其局限性

设函数f(t)在(-∞,+∞)内有定义,且使广义积分

F ω = f t e ?jωt +∞?∞dt (1) f t =12π F ω e jωt dω+∞

?∞ (2) 都收敛,则称(1)式定义的广义积分为函数f(t)的傅里叶变换,记为F{f(t)},(2)式定义的广义积分为逆傅里叶变换,记为F ?1{F(ω)}。傅里叶变换可以完成从时域到频域的转换(正变换),也可以完成从频域到时域的转换(逆变换),但不能同时具有时域和频域信息。其核函数是e jωt ,由于三角函数具有填满整个空间的特性,其在物理空间中是双向无限延伸的正弦波,在积分变换中体现为积分范围从+∞到-∞。因此,傅里叶变换是先天的非局限性,它对信号f(t)中体现任何局部信息处理都是相同的。而事实上,工程技术中的许多信号,如:语音信号、地震信号、心电图和各种电脉冲,他们的信号值只出现在一个短暂的时间间隔?t 内,以后快速减为零,?t 以外是未知的,可能为零,也可能是背景噪音,如果

用(1)式从信号中提取谱信号F(ω),就要取无限的时间量,使用过去的及将来的信号只为计算单个频谱,不能反映出随时间变化的频率,实际上我们需要的是确定的某个时间间隔内的频谱。这就使人们想到改进傅里叶变换使其能用来处理某个确定时间范围内的信号。Gabor提出的窗口傅里叶变换就是一个有效的方法。

另外,傅里叶变换之所得到广泛应用与透镜能实现傅里叶变换是分不开的。由公式

U f x f,y f=Ae?i

r

f

1?d0

f x f2+y f2

f

t0(x0,y0)e?i

f

(x0+y0)

dx0dy0

其中物平面为(x0,y0),焦平面为(x f,y f),d0为物距,d1为象平面。要使U f x f,y f=F{t0(x0,y0)},即准确实现傅里叶光学变换,只有在,d1=,d0=f 时才能实现,否则将出现位相弯曲。并且,只有正透镜才能实现傅里叶变换,这些限制给工程技术中无疑增加了困难。这使得人们不得不寻求新得的方法,分数傅立叶变换不要求严频谱面,可根据需要在既包含空域信息也包括空频域信息的平面上进行处理,这使光学信息处理更具灵活性。

1傅里叶变换缺乏时间和频率的定位功能

傅里叶变换及其逆变换表示如下

Sω=f s t=s t e?jωt

+∞

?∞

dt

S t=1

sωe?jωt dω+∞

?∞

由以上两式可知,傅里叶变换是一种整体变换,对信号的表征要么完全在时域内,要么完全在频域内,ω和t是互相排斥的两个变量.用傅里叶变换的方法得到某一个频率ω0的频谱分量S(ω0),必须从-∞~+∞的整个时间轴上进行积分.如果要从频谱得到信号在某一时刻t0的值s(t0),则需要对S(X)在整个频率轴上进行积分.因此,傅里叶变换得到的是信号s(t)在整个时间范围内的频率特性,它不能告诉人们在某段时间里信号发生了什么变化,也无法获得某一频率出现的时刻信息,因此,它不具有时间和频率的定位功能.

2傅里叶变换对于非平稳信号的局限性

信号的瞬时频率,表示了信号的谱峰在时间-频率平面上的位置及其随时间的变化情况,一般平稳信号的瞬时频率为常数,而非平稳信号的瞬时频率是时间t的函数.从傅里叶变换变换的表达式可以看出,S(X)是单变量X的函数,信号的傅里叶变换不随时间的变化而变化,因此,傅里叶变换仅仅适用于平稳信号.但是,在实际工作中,我们分析和处理的往往是时变的或非平稳的信号,它们的频率随时间变化而变化,其相关函数、功率谱等也是时变信号,用傅里叶变换进行分析,得到的信号频谱反映的是整体信号中包含的某一频率分量的平均值.所以傅里叶变换不能反映信号瞬时频率随时间的变化情况,仅仅适用于分析平稳信号.对频率随时间变化的非平稳信号,傅里叶变换只能给出其总体效果,不能完整地把握信号在某一时刻的本质特征.

3傅里叶变换在时间和频率分辨率上的局限性

分辨率是信号处理的基本概念之一,包括频率分辨率和时间分辨率.在时域分析中,信号处理的目标是尽可能地同时获得高的时间分辨率和频率分辨率.然而,可以证明时域窗和频域窗乘积恒定且大于等于1/2,也即不可能同时获得高的时频分辨率,这就是著名的不确定性原理.傅里叶变换在这方面的表现尤其不尽如人意.傅里叶变换可以改写成内积的形式,即

+∞

Sω=s t e?jωt dt

=

?∞

由于傅里叶变换等效于s(t)和基函数e jωt做内积,而e jωt对不同的ω构成一族正交基,因此S(ω)精确地反映了s(t)在该频率点的分量大小.基函数e jωt在频域是位于ω处的δ函数,因此,当用傅里叶变换来分析信号的频域特性时,具有最好的频率分辨率.但是,e jωt在时域对应的是正弦函数,其在时域的持续时间是-∞~+∞因此,其时域分辨率最差.对于傅里叶逆变换,分辨率的情况正好相反.这一结果既体现了信号的时频不确定性原理,也反映了傅里叶变换在时域和频域分辨率方面所固有的矛盾.显然,傅里叶变换本身不可能根据信号的特性来自动调节时域和频域的分辨率.

时频分析

时频分析(JTFA)即时频联合域分析(Joint Time-Frequency Analysis)

的简称,作为分析时变非平稳信号的有力工具,成为现代信号处理研究的一个热点,它作为一种新兴的信号处理方法,近年来受到越来越多的重视。时频分析方法提供了时间域与频率域的联合分布信息,清楚地描述了信号频率随时间变化的关系。

时频分析的基本思想是:设计时间和频率的联合函数,用它同时描述信号在不同时间和频率的能量密度或强度。时间和频率的这种联合函数简称为时频分布。利用时频分布来分析信号,能给出各个时刻的瞬时频率及其幅值,并且能够进行时频滤波和时变信号研究。信号时频分析具有重要的意义。我们很有必要对信号的时频进行研究分析。

常用的时频分析方法

时间和频率是描述信号的两个最重要的物理量,信号的时域和频域之间具有紧密的联系。根据时间和频率之间的关系,信号的时频分析的主要方法有:窗口傅立叶变换(Gabor变换);小波变换;希尔伯特黄变(Hilbert-Huang Transform,HHT )。

窗口傅里叶变换

窗口傅里叶变换亦称短时傅里叶变换,它是由Gabor首先系统地使用

的。其基本想法为:傅里叶变换是频域分析的基本工具,为了达到时间域上局部化,在傅里叶分析中的基本变换函数之前乘上一个时间上有限的时限函数,即窗口函数)(tg,然后再用它们来作傅里叶分析,这样tjeω?起频限作用,)(tg起到时限作用,合起来,就可起到时频双限制作用。其中)(tg是有紧支集(即窗口外数据为零)的函数。)(tx 为被分析的信号。随着τ的位置变动,)(tg所确定的“时间窗”在t 轴上移动,使)(tx逐步进入被分析的状态。窗口函数)(tg,一般为实的偶函数,窗口外数据为零(紧支集)或很快趋于零。这时傅里叶变换结果不再为)(ωX,而是)(*)(ωωGX,这里),(τωxG大致反映了)(tx在时刻τ时频率为ω的“信号成分”的相对含量。时频局部化就是希望找一种信号的表示方法,它能同时提供时域和频域的局部化信息。而这种变换确实能反映函数在窗口内部(τ附近)的频谱特征。窗口傅里叶变换可使信号达到局部平稳,更好地研究局部范围的特性。窗口函数)(tg的傅里叶变换,它在有限区间之外数据恒等于零。用)(τ?tg乘)(tx,即在τ附近开窗口,为窗口傅里叶变换。

Gabor只做了高斯窗的傅里叶变换,它是窗口傅里变换的一种。尽管窗口傅里叶变换是一种时频分析,是信号处理的重要工具,并得到广泛的应用,但是窗口傅里叶变换的一个主要缺点是时域和频域的采样间隔都是常数,即这种窗口大小和形态与频率无关,是固定不变的,不能使变换窗口大小随频率而变化。但在处理实际问题,我们希望时域的采样间隔随着频率的增高而减小,同时窗口傅里叶变换不管如何离散化均不能使它成为一组正交基。为此,J.Morlet等人对窗口傅里

叶变换进行了改造,引入了小波变换。

连续小波变换

小波变换时今年来在图像处理中受到十分重视的新技术,面向图像压缩、特征测以及纹理分析等许多方法在时频分析中有重要的应用。线性系统理论中的傅立叶变换是以在两个方向上都无限伸展的正弦曲线波作为正交基函数的。对于瞬态信号或高度局部化的信号(例如边缘),由于这些成分并不类似于任何一个傅立叶基函数,它们的变换系数(频谱)不是紧凑的,频谱上呈现出一幅相当混乱的构成。这种情况下,傅立叶变换是通过复杂的安排,以抵消一些正弦波的方式构造出在大部分区间都为零的函数而实现的。为了克服上述缺陷,使用有限宽度基函数的变换方法逐步发展起来了。这些基函数不仅在频率上而且在位置上是变化的,它们是有限宽度的波并被称为小波(wavelet )。基于它们的变换就是小波变换。所有小波是通过对基本小波进行尺度伸缩和位移得到的。基本小波是一具有特殊性质的实值函数,它是震荡衰减的,而且通常衰减得很快,在数学上满足积分为零的条件:

ψ t dt =0+∞?∞

而且其频谱满足条件:

C ψ= |ψ(s )|2s +∞?∞ds <∞ 即基本小波在频域也具有好的衰减性质。有些基本小波实际上在某个区间外是零,这是一类衰减最快的小波。一组小波基函数是通过尺度

因子和位移因子由本小波来产生。

连续小波变换定义为:

ψ

a,b x=

a

ψ(x?b

a

)

小波分析的应用是与小波分析的理论研究紧密地结合在一起地。现在,它已经在科技资讯产业领域取得了令人瞩目的成就。电子资讯技术是六大高新技术中重要的一个领域,它的重要方面是影像和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学的角度来看,信号与影像处理可以统一看作是信号处理(影像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析。

希尔伯特黄变换

希尔伯特特换变换的方法主要由2个部分组成::经验模态分解(empirical mode decomposition,简称EMD)和Hilbert谱分析。经验模态分解方法是一种自适应的、高效的数据分解方法。由于这种分解是以局部时间尺度为基础,因此,它适应于非线性、非平稳过程。通

过经验模型分解,任何复杂的数据集都可以被分解为个数有限的、而且常常是为数不多的几个固有模函数(intrinsic mode functions,简称IMF)的线性叠加。一个固有模态函数是满足以下两个条件的函数[1]:(1)在整个数据区间内,极值点的数目与过零点的数目相等或至多相差1个;(2)在任意一点处,由局部极大值点定义的包络以及由局部极小值点定义的包络的均值为零。

EMD方法通过不断的剔出极大值和极小值连接上下包络的均值将原信号分解为

n

(1)

x t=c j t+r n(t)

j=1

其中c j t为一个IMF分量,r n(t)为残余分量,一般为信号的平均趋势,为常数序列或单调序列。从基函数理论的角度来看,EMD 对不同信号分解出的基函数c j k是不同的,它不同傅里叶分解的基(一系列恒定幅度与频率的正余弦函数),也不同于小波分解的基函数(预先给定基函数的形式)。因此,EMD分解不仅改进了信号分解的效率,而且使这种分解方法更有利于非平稳数据处理。通过分解得到IMF后,就可以对每一个分量做希尔伯特变换,得到其瞬时频率和幅度。设IMF分量为c t,则它的复解析信号为

H c t=c t+j c t=a t e jφ(t)

其中a(t) 为幅值函数,表达式为

φ(t)为相位函数,表达式为

φt=tan?1(c (t)/c(t))

其中幅值函数表示信号每个采样点的瞬时幅度能量;相位函数表示信号每个采样点的瞬时相位,对其求导就得到瞬时频率。对每个IMF分量做Hilbert变换并忽略分解余项,数据可以表示为:

n

X t=ai(t)exp?(jωi t dt)

i=1

根据式(1)可以将幅度和瞬时相位作为时间的函数表示在三维平面中,幅度的这种时一频分布被称为希尔伯特幅度谱,简称为希尔伯特谱。习惯上用幅度的平方来表示能量密度,这里如果用幅度平方代替希尔伯特幅度谱中的幅度,将得到希尔伯特能量谱。对于希尔伯特能量谱,如果EMD分解得到的IMF分量彼此完全正交,那么信号的平方:

式中的第二项为0,这对于时频能量表示是十分有利的。虽然对于某些特殊的数据,相邻的分量在不同的时间段内可能含有相同的频率成分,但从局部意义上说,任何两个分量都是正交的。泄漏的大小通常与数据长度以及分解结果有着直接的关系,对于有限的数据长度,即使用频率不同的纯正弦波形分解也会有严重泄漏。黄已经例证了的泄漏一般小于1%,对于极短的数据为5%,与正弦型傅立叶分解在同

一数量级上。在二次型时频表示中,WVD的时频分辨率乘积达到了Heisenberg不确定性原理的下界,具有很好的时频聚焦性。但是当对多分量信号进行分析时,Wigner-Ville分布会产生交叉项问题,而且从数学角度去克服交叉项已经被论证为行不通的。

傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用 姓名董柱班级电气工程及其自动化学号1109141013 摘要: 傅里叶变换是一种特殊的积分变换。通过傅里叶变换把信号的从时域变换到频域研究,采用频域法较之经典时域的方法有很多突出的优点,虽然傅里叶分析不是信息科学与技术领域中唯一的变换域方法,但是不得不承认,在此领域中,傅里叶变换分析始终有着广泛的应用,通过傅里叶变换实现信号的滤波,调制,抽样是傅里叶变换在信号处理中最主要的作用。通过对信号的调制可以将信号的低频成分调制到高频,实现频谱搬移,减少马间串扰,提高抗噪声新能,有利于信号的远距离传输,另外,对信号采样可以使连续信号离散化,有利于用计算机对信号进行处理,总之,傅里叶变换在信号处理中有着非常重要的作用。傅里叶变换是学习其他频域变换的基础。 关键词: 傅里叶变换,时域,频域,信号处理,信息科学与技术,滤波,调制,抽样。 一傅里叶变换 1.定义 f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 傅里叶逆变换 2.分类 连续傅立叶变换:一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅立叶变换”。“连续傅立叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = \mathcal^[F(ω)] = \frac{\sqrt{2π}} \int\limits_{-\infty}^\infty F(ω)e^{iωt}\,dω.

Chirp信号的傅里叶变换的特征比较.

Chirp信号的傅里叶变换的特征比较 Chirp信号即线性调频信号是瞬时频率在某个范围内随时间变化的正弦波,因其良好的频带利用率,具有较强的抗干扰、抗多途效应和抗多普勒衰减以及良好的频带利用率等优点,因此在通信、声呐、雷达等领域具有广泛的应用。本文就瞬时频率范围(信号的调频宽度)和信号的持续时间(信号的周期)对傅里叶变换后的chirp函数的频谱函数的影响做出讨论,运用MATLAB仿真分析比较。 一.信号的调频宽度上下限对频谱函数的影响 1)高频宽度300情况下的频谱函数。信号的采样频率为43000,扫描时间为0.05,初始频率设为19700,结束频率位置为20000。 2)低频宽度300情况下的频谱函数。信号的采样频率为2000,信号的持续时间为0.05,初始频率设为40,结束频率设置为340。 由上面两幅图可以看出,当它们满足,幅度谱的大小基本都在 0.01和0.015之间,这是因为它们的调频上下限之差相同都是300,且时间周 期都为0.05。由公式可知,幅度与信号的调频宽度(表示傅里叶变换后的频带宽度)和时间周期有关。 二.信号的调频宽度对频谱函数的影响 1)高频宽度10000情况下的频谱函数。信号的采样频率为48000,扫描时间为0.05,初始频率设为10000,结束频率位置为20000。

2)低频宽度80情况下的频谱函数。信号的采样频率为1000,信号的持续时间为0.05,初始频率设为40,结束频率设置为120。 上面两图在频带宽度内的幅度谱差异很明显,这是因为只有当时,近似程度才更高。 三.信号的持续时间对频谱函数的影响 1)低频宽度80情况下的频谱函数。信号的采样频率为1000,chirp 脉冲为0.05,信号的持续时间为2,初始频率设为40,结束频率设置为120。 上图的信号周期是2,发射脉冲长度为0.05与之前其它参数相同的图4比较可知,频带宽度基本相同,在频带宽度内的幅度谱没有太大变化,只是频点上的曲线多了些波动。

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

信号处理中傅里叶变换简介

傅里叶变换 一、傅里叶变换的表述 在数学上,对任意函数f(x),可按某一点进行展开,常见的有泰勒展开和傅里叶展开。泰勒展开为各阶次幂函数的线性组合形式,本质上自变量未改变,仍为x,而傅里叶展开则为三角函数的线性组合形式,同时将自变量由x变成ω,且由于三角函数处理比较简单,具有良好的性质,故被广泛地应用在信号分析与处理中,可将时域分析变换到频域进行分析。 信号分析与处理中常见的有CFS(连续时间傅里叶级数)、CFT (连续时间傅里叶变换)、DTFT(离散时间傅里叶变换)、DFS(离散傅里叶级数)、DFT(离散傅里叶变换)。通过对连续非周期信号x c(t)在时域和频域进行各种处理变换,可推导出以上几种变换,同时可得出这些变换之间的关系。以下将对上述变换进行简述,同时分析它们之间的关系。 1、CFS(连续时间傅里叶级数) 在数学中,周期函数f(x)可展开为 由此类比,已知连续周期信号x(t),周期为T0,则其傅里叶级数为 其中,

为了简写,有 其中, 为了与复数形式联系,先由欧拉公式e j z=cos z+jsin z得 故有

令 则 对于D n,有 n≤0时同理。 故 CFS图示如下:

Figure 1 理论上,CFS对于周期性信号x(t)在任意处展开都可以做到无误差,只要保证n从-∞取到+∞就可以。在实践中,只要n取值范围足够大,就可以保证在某一点附近对x(t)展开都有很高的精度。 2、CFT(连续时间傅里叶变换) 连续非周期信号x(t),可以将其看成一连续周期信号的周期T0→∞。当然,从时域上也可以反过来看成x(t)的周期延拓。将x(t)进行CFS展开,有 若令 则 有

常用傅里叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 | 线性 2时域平移 3频域平移, 变换2的频域对应 \ 4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当| a | 趋向无 穷时,成为Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 / 傅里叶变换的微分性质 7变换6的频域对应

8 表示和的卷积—这 就是卷积定理 - 9 矩形脉冲和归一化的sinc函数 10变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。 11- tri是三角形函数 12变换12的频域对应 13高斯函数exp( ? αt2) 的傅里叶变换是他本身. 只有当Re(α) > 0时,这是可积的。 ¥14 15 16》 a>0

18δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换 【 19 变换23的频域对应20由变换3和24得到. 21` 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22由变换1和25得到 23这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 / 24此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 25变换29的推广. 17变换本身就是一个公式

26【 变换29的频域对应. 27此处u(t)是单位阶跃函数; 此变换根据变换1和31得到. 28u(t)是单位阶跃函数,且a > 0. 34狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.

傅里叶变换_百度文库.

傅里叶变换,拉普拉斯变换和Z 变换的意义来源:于理扬的日志 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中, 傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数或者它们的积分的线性组合。在不同的研究领域, 傅里叶变换具有多种不同的变体形式, 如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加, 从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割, 每一部分只是一个时间点对应一个信号值, 一个信号是一组这样的分量的叠加。傅里叶变换后, 其实还是个叠加问题, 只不过是从频率的角度去叠加, 只不过每个小信号是一个时间域上覆盖整个区间的信号, 但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值,我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小, 那么相位呢, 它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域与后一段的相位的变化是否与信号的频率成正比关系。

(完整版)傅里叶变换分析

第一章 信号与系统的基本概念 1.信号、信息与消息的差别? 信号:随时间变化的物理量; 消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等 信息:所接收到的未知内容的消息,即传输的信号是带有信息的。 2.什么是奇异信号? 函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。例如: 单边指数信号 (在t =0点时,不连续), 单边正弦信号 (在t =0时的一阶导函数不连续)。 较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。 3.单位冲激信号的物理意义及其取样性质? 冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。 它表达的是一类幅度很强,但作用时间很短的物理现象。其重要特性是筛选性,即: ()()()(0)(0)t x t dt t x dt x δδ∞ ∞ -∞ -∞ ==? ? 4.什么是单位阶跃信号? 单位阶跃信号也是一类奇异信号,定义为: 10()00t u t t >?=?

12()()()x t ax t bx t =+,其中a 和b 是任意常数时, 输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+; 且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。 其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性; 如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。 线性时不变系统是最基本的一类系统,是研究复杂系统,如非线性、时变系统的基础。 6.线性时不变系统的意义与应用? 线性时不变系统是我们本课程分析和研究的主要对象,对线性时不变性进行推广,可以得到线性时不变系统具有微分与积分性质,假设系统的输入与输出信号分别为()x t 和()y t ,则 当输入信号为 ()dx t dt 时,输出信号则为() dy t dt ; 或者当输入信号为()t x d ττ-∞ ?时,输出信号则为()t y d ττ-∞ ?。 另外,线性时不变系统对信号的处理作用可以用冲激响应(或单位脉冲响应)、系统函数或频率响应进行描述。而且多个系统可以以不同的方式进行连接,基本的连接方式为:级联和并联。 假设两个线性时不变系统的冲激响应分别为:1()h t 和2()h t , 当两个系统级联后,整个系统的冲激响应为:12()()*()h t h t h t =; 当两个系统并联后,整个系统的冲激响应为:12()()()h t h t h t =+; 当0t <时,若()0h t =, 则此系统为因果系统; 若|()|h t dt ∞ -∞<∞?, 则此系统为稳定系统。 第二章 连续时间系统的时域分析 1.如何获得系统的数学模型? 数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。 不同的系统,其数学模型可能具有不同的形式和特点。对于线性时不变系统,其数学模型

用Matlab对信号进行傅里叶变换实例

目录 用Matlab对信号进行傅里叶变换 (2) Matlab的傅里叶变换实例 (5) Matlab方波傅立叶变换画出频谱图 (7)

用Matlab对信号进行傅里叶变换 1.离散序列的傅里叶变换DTFT(Discrete Time Fourier Transform) 代码: 1 N=8; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 5 w=[-800:1:800]*4*pi/800; %频域共-800----+800 的长度(本应是无穷,高频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); %求dtft变换,采用原始定义的方法,对复指数分量求和而得 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号)'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT变换') 结果: 分析:可见,离散序列的dtft变换是周期的,这也符合Nyquist采样定理的描述,连续时间信号经周期采样之后,所得的离散信号的频谱是原连续信号频谱的周期延拓。 2.离散傅里叶变换DFT(Discrete Fourier Transform)

与1中DTFT不一样的是,DTFT的求和区间是整个频域,这对 结果图:

分析:DFT只是DTFT的现实版本,因为DTFT要求求和区间无穷,而DFT只在有限点内求和。 3.快速傅里叶变换FFT(Fast Fourier Transform) 虽然DFT相比DTFT缩减了很大的复杂度,但是任然有相当大的计算量,不利于信息的实时有效处理,1965年发现的DFT解决了这一问题。 实现代码: 1 N=64; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 Xk=fft(xn,N); 5 subplot(221); 6 stem(n,xn); 7 title('原信号'); 8 subplot(212); 9 stem(n,abs(Xk)); 10 title('FFT变换') 效果图: 分析:由图可见,fft变换的频率中心不在0点,这是fft算法造成的,把fft改为fftshift可以将频率中心移到0点。

常用傅里叶变换

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大,则 会收缩到原 点附近,而 会扩 散并变得扁平.当 | a | 趋向无穷 时,成为狄拉克δ 函数。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质

7 变换6的频域对应8 表示和 的卷积—这就是卷 积定理 9 变换8的频域对应。[编辑]平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 矩形脉冲和归一 化的sinc函数 11 变换10的频域对 应。矩形函数是理 想的低通滤波器, sinc函数是这类 滤波器对反因果 冲击的响应。

12 tri是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式

20 J0(t)是0阶第一 类贝塞尔函数。 21 上一个变换的推 广形式; T n(t)是第 一类切比雪夫多 项式。 22 U n (t)是第二类切 比雪夫多项式。[编辑]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表狄拉克δ函数 分布.这个变换展示了狄 拉克δ函数的重要性:该 函数是常函数的傅立叶 变换 24 变换23的频域对应

25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e?iat) / 2. 27 由变换1和25得到 28 这里, n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多項式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.

常用傅里叶变换

常用傅里叶变换 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大, 则会收缩 到原点附近,而 会扩 散并变得扁平.当 |?a?|?趋向无穷 时,成为。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质 7 变换6的频域对应

8 表示和 的卷积—这就是9 变换8的频域对 应。 []平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 和归一化的 11 变换10的频域对 应。矩形函数是 理想的低通滤波 器,是这类滤波 器对冲击的响 应。 12 tri?是 13 变换12的频域对 应

14 exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 领域应用较多 16 17 18 a>0 19 变换本身就是一个公式 20 J0(t)?是。 21 上一个变换的推广形式;?T n(t)?是。 22 ???? U n?(t)是。

[]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表分布.这个变换 展示了狄拉克δ函数的 重要性:该函数是常函 数的傅立叶变换 24 变换23的频域对应 25 由变换3和24得到. 26 由变换1和25得到,应 用了:?cos(at) = (e iat?+?e???iat) / 2. 27 由变换1和25得到 28 这里,?n是一个.δ(n)(ω)是 狄拉克δ函数分布的n 阶微分。这个变换是根 据变换7和24得到的。 将此变换与1结合使 用,我们可以变换所 有。

常用函数傅里叶变换

常用函数傅里叶变换 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在 i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数

常用傅里叶变换表

弧频率表示的时域信号注释傅里叶变换 线性1 时域平移2 频域平移3 , 变换2的频域对应 会收缩值较大,则如果 4 会扩而到原点附近,a趋向 | | . 散并变得扁平当无穷时,成为函数。 Delta 通过傅里叶变换的二元性性质。

5 交换时域变量和频域变量 . 得到 6 傅里叶变换的微分性质 变换7 6的频域对应 表示和的卷积—这 8就卷积定 9 矩形脉冲和归一化的sinc函数 变换10的频域对应。矩形函数是理

想的低通滤波器,sinc函数是这类10 滤波器对反因果冲击的响应。 tri是三角形函数 11 12 变换12的频域对应 2t) ?α的傅里叶变 exp( 高斯函数 换是他本身. 只有当 Re(α) 13 > 0时,这是可积的。 14 15

a>0 16 17 变换本身就是一个公式 δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克18 δ函数的重要性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 由变换1和25得到,应用了欧拉公 21 iat?iat eeat) / 2. 式: cos() = ( +

22 由变换1和25得到 n)(n(ω) . δ这里, 自然数是一个n阶微分。函数分布的是狄拉克δ 这个变换是根据变换23 7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 此处sgn(ω)为符号函数;注意此变 24 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. ut)是单位阶跃函数此处(; 此变换 27

根据变换1和31得到. uta > 0. ,且()是单位阶跃函数28 狄拉克梳状函数——有助于解释或34 理解从连续到离散时间的转变.

典型信号的傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

故有 4044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω?? = -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 22 81,5,9,83,7,11km A k k B A k k ππ?=??=? ?-=? ? 于是所欲求的傅里叶级数 ()2222 8111 sin sin 3sin 5sin 7357 A f t t t t t ωωωωπ?? = -+-+ ??? 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图 解 此信号对原点对称,是奇函数,且又是半波横轴对称,所以其傅里叶级数仅是正弦奇次谐波分量组成。由于 ()022 T A t f t T A t T ?

傅里叶变换基本性质

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若 则 其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。 解因 由式(3-55)得 二、对称性 若则 证明因为 有 将上式中变量换为x,积分结果不变,即

再将t用代之,上述关系依然成立,即 最后再将x用t代替,则得 所以 证毕 若是一个偶函数,即,相应有,则式(3-56) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。式中的表示频谱函数坐标轴必须正负对调。例如: 例3-7若信号的傅里叶变换为 试求。 解将中的换成t,并考虑为的实函数,有 该信号的傅里叶变换由式(3-54)可知为

根据对称性 故 再将中的换成t,则得 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 若 则 证明因a>0,由

令,则,代入前式,可得 函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示 沿频率轴扩展(或频率尺度压缩) a倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8已知,求频谱函数。 解前面已讨论了的频谱函数,且 根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数 两种信号的波形及频谱函数如图3-21所示。

傅里叶变换常用公式

(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 简介 Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。 傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。 傅里叶变换定义 f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,

②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的象函数,f(t)叫做 F(ω)的象原函数。F(ω)是f(t)的象。f(t)是F(ω)原象。 ①傅立叶变换 ②傅立叶逆变换 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。傅里叶变换相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.doczj.com/doc/9717680305.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

常见信号傅里叶变化论文-精品

常见信号傅里叶变化论文-精品 2020-12-12 【关键字】情况、方法、领域、运行、地方、系统、平稳、良好、快速、掌握、了解、研究、规律、位置、关键、思想、成果、地位、精神、需要、环境、工程、能力、制度、主导、方式、作用、反映、分析、丰富、指导、帮助、支持、实现、中心、热心 本科生毕业论文 题目:用MATLAB对常见信号的Fourier变换分析 姓名:王聪 学号: 2036 专业:电子信息科学与技术 年级: 2006级 院系:物理与电子工程学院 完成日期: 2010年5月 指导教师:潘孟美 本科生毕业论文(设计)独创性声明 本人声明所呈交的毕业论文(设计)是本人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注和致谢的地方外,本论文中没有抄袭他人研究成果和伪造数据等行为。与我一同工作的同志对本研究所做的任何贡献均 已在论文中作了明确的说明并表示谢意。 论文(设计)作者签名:日期: 本科生毕业论文(设计)使用授权声明海南师范大学有权保留并向国家有关部门或机构送交毕业论文(设计)的复印件和磁盘,允许毕业论文(设计)被查阅和借阅。本人授权海南师范大学可以将本毕业论文(设计)的全部或部分内容编入有关数据库进行检索,可以采用影 印、缩印或其他复印手段保存、汇编毕业论文(设计)。 论文(设计)作者签名:日期: 指导教师签名:日期: 1文档收集于互联网,如有不妥请联系删除.

目录 1. 引言 (4) 2. Fourier变换 (5) 2.1周期信号的Fourier变换 (5) 2.2离散信号的Fourier变换 (5) 2.3 Fourier变换的意义 (5) 3.用MATLAB对常见信号的Fourier变换分析 (6) 3.1 冲激信号 (6) 3.2 余弦信号 (7) 3.3 频率突变信号 (8) 3.4 高斯信号 (9) 3.5 随机序列 (10) 3.6利用窗函数对信号消燥 (12) 3.7 对太阳黑子数据的分析 (14) 3.8对非平稳信号的时频分析 (15) 3.9 男女声音的辨别和分析 (16) 4.结束语 (17) 4.1 结论 (17) 4.2 感言 (18) 5.参考文献 (18) 2文档收集于互联网,如有不妥请联系删除.

常用傅里叶变换

时域 信号 角频率 表示的 傅里叶 变换 弧频率 表示的 傅里叶 变换 注释 1 线性 2 时域平移 3 频域平移,变换2的频域对应 4 如果值较大,则会收缩到原点附近,而会扩散并变得扁平. 当|?a?|?趋向无穷时,成为狄拉克δ函数。 5 傅里叶变换的二元性性质。通过交换时域变量和频域变量得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这就是卷积定理 9 变换8的频域对应。 [编辑]平方可积函数

换换 10 矩形脉冲和归一化的sinc函数 11 变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。 12 tri?是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式 20 J0(t)?是0阶第一类贝塞尔函数。 21 上一个变换的推广形式;?T n(t)?是第一类切比雪夫多项式。 22 U n?(t)是第二类切比雪夫多项式。 [编辑]分布

时域信号角频率 表示的 傅里叶 变换 弧频率 表示的 傅里叶 变换 注释 23 δ(ω)代表狄拉克δ函数分布.这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换 24 变换23的频域对应 25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式:?cos(at) = (e iat?+?e???iat) / 2. 27 由变换1和25得到 28 这里,?n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到. 33 u(t)是单位阶跃函数,且a?> 0. 34 狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.

常见信号的傅里叶变化

题目:用MATLAB对常见信号的Fourier变换分析 姓名:王聪 学号: 200606302036 专业:电子信息科学与技术 年级: 2006级 院系:物理与电子工程学院 完成日期: 2010年5月 指导教师:潘孟美

本科生毕业论文(设计)独创性声明 本人声明所呈交的毕业论文(设计)是本人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注和致谢的地方外,本论文中没有抄袭他人研究成果和伪造数据等行为。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 论文(设计)作者签名:日期: 本科生毕业论文(设计)使用授权声明 海南师范大学有权保留并向国家有关部门或机构送交毕业论文(设计)的复印件和磁盘,允许毕业论文(设计)被查阅和借阅。本人授权海南师范大学可以将本毕业论文(设计)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其他复印手段保存、汇编毕业论文(设计)。 论文(设计)作者签名:日期: 指导教师签名:日期:

目录 1. 引言 (4) 2. Fourier变换 (5) 2.1周期信号的Fourier变 换 (5) 2.2离散信号的Fourier变 换 (5) 2.3 Fourier变换的意 义 (5) 3.用MATLAB对常见信号的Fourier变换分 析 (6) 3.1 冲激信号 (6) 3.2 余弦信

号 (7) 3.3 频率突变信号 (8) 3.4 高斯信号 (9) 3.5 随机序列 (10) 3.6利用窗函数对信号消燥 (12) 3.7 对太阳黑子数据的分析 (14) 3.8对非平稳信号的时频分析 (15) 3.9 男女声音的辨别和分析 (16) 4.结束语 (17) 4.1 结论………………………………………………… 17 4.2 感言………………………………………………… 18 5.参考文献…………………………………………………

相关主题
文本预览