当前位置:文档之家› VOX TONELAB LE中文说明书

VOX TONELAB LE中文说明书

VOX TONELAB LE中文说明书
VOX TONELAB LE中文说明书

ELITE 1500型激光测距仪望远镜使用说明

ELITE 1500型激光测距仪望远镜使用说明 ELITE 1500型激光测距仪发射一种不可见的对眼睛安全的红外脉冲。复杂的线路和高精度时钟可瞬时校准距离,它通过测量每一个脉冲从测量者到目标,并返回的时间来测量距离。 在大多数情况下ELITE 1500的距离修正值是+/-1码(0.914米)。仪器的最大量程依靠待测目标的反射率。大多数情况下能达到1000码,高反射率情况下能达到1500码。仪器能测的最长、最短距离根据不同目标的反射特性和当时的环境状况不同。目标物的颜色、表层、尺寸和形状都会影响反射率和测程。颜色越亮,量程越远。红色具有很高的反射率,黑色反射率最低。明亮的表面比暗淡的表面测距远。待测物体的角度也有影响,90度角测量时(即:物体表面与发射的脉冲垂直)测距远,而有斜度时,测量距离就会受到限制。光线的强弱也会影响量程。阳光充足时量程提高。 针对不同目标的测量能力:

反射性较好的目标 1500码(约1370米) 树 1000码(约913米) 鹿 500码(约457米) 旗杆 400码(约365米) ELITE 1500型激光测距仪操作简介: 首先将9V方电池按正确极性装入电池安装处; >>电源: 轻按“发射键”测距仪内部电源即打开!通过目镜可看见测距仪处于准备测量状态。 >>单位切换: 通过长按“模式键”可直接切换单位:米(M)或码(Y) >>测量: 在打开电源,单位切换好以后,通过测距仪目镜中的“内部液晶显示屏”瞄准被测物体。 轻按“发射键”,测量的距离立即会显示在“内部液晶显示屏”上。 >>提示: 用户可通过“+/-2屈光度调节器”来调节被测物体,远近的清晰度。 瞄准越近的物体,“屈光度调节器”因往左旋转; 相反,瞄准越远的物体,“屈光度调节器”因往右旋转. 七、ELITE 1500型激光测距仪常见故障的排除: 仪器没有显示 ——压下发射键按纽; ——如果有必要,请更换电池; 转换测量目标时没有清除上一次的测量值 ——上一次测量值不需清除,只需对准新的目标,按下发射键按纽并保持,直到出现测量值。光学系统中出现黑点 ——是正常情况,在加工过程中无法完全消除。 无法得到测量值 ——确保LCD有显示 ——确保压下发射键按纽 ——确保没有任何物体遮住目镜 ——确保压下发射键按纽时仪器稳定 ——低反射率的目标要扫描其表面以找到反射率比较高的点。按住发射键按纽,使瞄准器在待测物体表面移动,在待测物体信号比较强时,把仪器固定在这个位置,按住发射键按纽,直到测量值出现 YARDAGE PRO ELITE 1500激光测距仪操作说明您所购买的YARDAGEPRO?ELITE1500型激光测距仪是一款经久耐用的高精度测距产品。这本说明书将向您详细介绍仪器的操作功能、模式调教以及如何对其进行保养,从而帮助您在使用过程中得到最佳的效果。要想获得最佳的性能并使仪器寿命更长,请务必在操作PRO?ELITE1500之前阅读这份操作说明:

样品预处理大全.

检测实验室样品预处理方法汇总 普通碳钢及中低合金钢的样品溶解体系基本采用如下四种体系 (1)硝酸(1+3) (2)稀王水(硝酸+盐酸+水=50+150+200) (3)硫酸(1+19) (4)盐酸(1+1)滴加过氧化氢 其中试验显示:王水加过氧化氢对于Cr、Al测定更有利,而采用硫酸溶样对Cr、Al测定的数据偏低。因此建议采用如下方法: 准确称取样品0.1-0.5克加入王水或者(1+1)稀王水20-50毫升,缓慢加热到样品基本溶解,滴加三到五滴过氧化氢,加热赶净气泡后冷却定容到100毫升容量瓶,待测。 特殊样品测定和讨论: 钢铁中痕量硼的测定:硼在钢铁中一般以固溶体存在,因此采用王水溶样只能溶解酸溶硼。用密闭消解罐加酸微波消解可测总硼。选择B249.68nm测定。 钢中微量的砷、锡、锑的测定:0.5000克钢样用硝酸(1+3)15毫升,溶解并蒸发至近干,加5毫升浓盐酸溶解残渣,稀释至100毫升,纯铁为基体。 钢铁及高温合金中痕量硒的测定:取1克样品于烧杯中,加10毫升水,10毫升硝酸,30毫升盐酸,低温加热,加6毫升高氯酸至样品溶解,用定量滤纸过滤,于滤液中加3克抗坏血酸,盐酸55毫升,缓慢加热至微,直至出现黑色无定形炭后保持2-3分钟取下,用滤纸过滤,将沉淀连滤纸加硝酸及高氯酸硝化,稀释至10毫升用于测定。 钢中总铝的测定:钢中的铝一般以金属铝、氧化铝及氮化铝等形式存在。一般称取样品0.1-0.5克,加入12毫升王水和0.1毫升HF消解钢样,来测定总铝。王水,硝酸等都无法消解氮化铝,加入一定量HF酸可以使其消解90%以上。 高合金钢:包括不锈钢,高温合金,耐热合金及工具钢等,其共同特点是含较高的合金元素镍、铬、钼等。溶解时容易生成碳化物及其他不溶物,需要专门处理。

实验二 自组望远镜

实验二 自组望远镜 一、实验目的 (1)了解望远镜的工作原理和用途。 (2)掌握构建望远镜的光路和元件。 (3)测试望远镜的视放大率。 二、原理概述 望远镜也是由物镜和目镜组成,是用来把远处物体的观察视角放大的仪器(望远镜所成像对人眼的视角大于物体本身对人眼的视角),由于物体位于距物镜很远的地方,故望远镜只能起到把物体拉近的作用,也就是它的线放大倍数通常小于一,而视角放大倍数是大于一的。如(图2-1)所示,物镜把远处物体成像在像方焦点附近(外侧),为一缩小的倒立实像。目镜进一步把此实像放大为虚像,以提高其观察视角。由前述可知,物镜的像方焦点和目镜的物方焦点是大致重合的。当用在观测无限远物体时,物镜的像方焦点和目镜的物方焦点重合,光学间隔Δ=0。当用在观测有限距离的物体时,物镜和目镜的光学间隔是一个不为零的小量。一般研究,可认为望远镜是由光学间隔为零的物镜和目镜组成的无焦系统。 不难证明(参阅《物理光学与应用光学》 相关内容 P379-384)望远镜的视角放大率 ''tan 'tan 2 '1D D f f -=-==ωωΓ (2-1) 式中1'f 是物镜像方焦距,2'f 是目镜像方 焦距,D 为入瞳直径(也是物镜孔径),'D 为出瞳直径。 当物镜和目镜都为正焦距(0,0'2'1>>f f )的光学系统时,如开普勒(Kepler)望远镜, 则放大率Γ为负值,系统成倒立的像;当物镜的焦距为正(0'1>f ),目镜的焦距为负(0' 2

样品预处理

徐州工程学院 论文报告 题目:样品预处理 学生:骆乃薇 指导教师:刘辉 专业:食品质量与安全 班级:12质量2 目录 1.样品预处理的目的 1 2.样品预处理的原则 1 3.样品预处理的方法 1 3.1有机物破坏法 2 3.2蒸馏法 3 3.3溶剂抽提法 5 3.4色层分离法 7 3.5化学分离法 7 3.6浓缩---------------------------------------------------------------------------9 一目的: 1、测定前排除干扰组分; 2 、对样品进行浓缩。 二原则: ①消除干扰因素; ②完整保留被测组分; ③使被测组分浓缩; 以便获得可靠的分析结果 三方法: 主要有6种。 (一)有机物破坏法 测定食品中无机成分的含量,需要在测定前破坏有机结合体,如蛋白质等。操作方法分为干法和湿法两大类。 1.干法灰化 原理:将样品至于电炉上加热,使其中的有机物脱水、炭化、分解、氧化,在置高温炉中灼烧灰化,直至残灰为白色或灰色为止,所得残渣即为无机成分。

2.湿法消化 原理:样品中加入强氧化剂,并加热消煮,使样品中的有机物质完全分解、氧化,呈气态逸出,待测组分转化为无机物状态存在于消化液中。 常用的强氧化剂有浓硝酸、浓硫酸、高氯酸、高锰酸钾、过氧化氢等。 湿法消化的优缺点 优点:(1)有机物分解速度快,所需时间短。 (2)由于加热温度低,可减少金属挥发逸散的损失。 缺点:(1)产生有害气体。 (2)初期易产生大量泡沫外溢。 (3)试剂用量大,空白值偏高。 3. 紫外光分解法 高压汞灯提供紫外光。85±5 ℃,加双氧水。 4. 微波高压消煮器。 食品样品最多只要10分钟(2.5 MPa); 其它方法: 1. 高压密封消化法——120~150℃,数小 时,要求密封条件高。 2.自动回流消化仪。 (二)蒸馏法 利用液体混合物中各种组分挥发度的不同而将其分离。 常压蒸馏 蒸减压蒸馏 馏水蒸气蒸馏 方 法 1.常压蒸馏 适用对象:常压下受热不分解或沸点不太高的物质。 蒸馏釜:平底、圆底 冷凝管:直管、球型、蛇型 注意:1. 爆沸现象。(沸石、玻璃珠、 毛细管、素瓷片) 2. 温度计插放位置。 3. 磨口装置涂油脂

离子色谱样品预处理

离子色谱样品预处理 随着离子色谱日益广泛的应用,许多样品已经无法用传统的方法采用采样、稀释、过滤后直接进样的模式来进行离子色谱的分析。对于大量复杂基体的样品,离子色谱可以采用合适的方法,通过预处理后再用离子色谱法进行分析,这样一方面可以解决样品复杂基体对离子色谱柱的污染,另一方面也可以大大提高复杂基体样品测定结果和准确性,提高分析方法的灵敏度。 有关样品预处理方法,随着国内离子色谱的用户水平的提高,出现了大量相关离子色谱的预处理方法,这些方法有如下几方面的特点: (1)大部分样品前处理方面,采用国产材料进行,预处理的成本很低,更能适合于中国国情,可以在国内广泛推广使用; (2)大部分样品预处理方法采用离线方法,不需要昂贵的在线设备;但相对而言,样品处理的时间比较长,需要的样品量也比较多一些; (3)与国际上出现的一些样品预处理方法相比较,国内出现的样品前处理绝大多数均出自于基层单位,实用性强;但相关的理论方面的探讨比较少。因此,许多国内采用样品前处理方法,一方面可以再进一步从理论角度进行讨论,另一方面也可以通过适当改进配合包括国内和国外的仪器用于在线样品的预处理。 离子色谱样品前处理遵循的原则 (1)样品处理后待测组分的含量应不低于检测器的检出限 ; (2)样品中各组分的分离必须达到色谱定量要求; (3)样品中不能含有机械杂质和微小颗粒物,以免堵塞色谱柱; (4)尽可能避免待测组分离子发生化学变化,防止和减少待测组分损失; (5)待测组分进行化学反应时其化学计量关系必须明确并且反应彻底; (6)避免和减少无关离子和化合物的引入,防止待测组分被污染并增加分离难度。 1.膜处理法 1.1.滤膜或砂芯处理法 滤膜过滤样品是离子色谱分 析最通用的水溶液样品前处 理方法,一般如果样品含颗 粒态的样品时,可以通过 0.45或0.22μm微孔滤膜过滤后直接进样。由于一般的滤膜不能耐高压,因此滤膜过滤只能用于离线样品处理。有时需要在线样品处理,或者将该方法用于仪器管路中,必须采用砂芯滤片。但滤膜过滤方法只能去除颗粒态不溶性物质,对于极小颗粒或有机大分子可溶性化合物和金属水溶性离子,照样能够进入色谱柱干扰样品的测定并沾污色谱柱。 1.2.电渗析处理法 在国内比较的特色的工作是采用电渗析法,与其它的膜处理方法相比,电渗析处理法有一定的选择性,因此不仅可以有效去除颗粒物、有机污染物,而且也可以去除重金属离子的污染物。是处理复杂基体样品最有效的方法之一。 1.3.电解中和法 强酸、强碱中微量离子的测定是离子色谱较难解决的问题,电解中和法的应用使问题迎刃而解。该方法是利用水电解产生的氢离子或氢氧根离子对高浓度

货物取样和样品处理须知

货物取样和样品处理须知 船方对装载货品的责任范围是以船舷为界,即从装港的货品进入船舶的Manifold处开始到卸货港货品卸出Manifold为止。为了明确责任,确定货品装货前和装货后的品质参数是否一致,通常要对岸罐、岸管、船舶出口和船舶货舱进行取样,装港的样品是船方在装货港接收的货品在装货之前至装船后各个阶段的品质证明。在卸港卸货前还必须对货品取样,卸货前的样品是证明船舶交付的货品品质的依据。装货后和卸货前货舱取样样品的比照,是判断所交付的货品品质在船舶管理期间是否变化的重要证据。 1.取样前的准备工作: 1.1取样前,必须彻底清洁取样器具,注意安全,尤其注意静电的影响; 1.2货物取样应以安全方式进行。取样人员应穿着正确的防护设备,例如:眼镜、面罩、 防化手套、防护服、长靴和呼吸器。 2.装货港取样步骤: 2.1装货前船方、商检和LOADING MASTER三方会议上明确样品取样方法和取样地点, 若岸方拒绝联合取样和签署,船长应立即通知商务操作员,在得到妥善解决或商务操作员明确指示后方可开始装货; 2.2开始装货时,由大副会同商检或Loading Master在船上Manifold出口阀处取样(注明: 岸罐样品和Manifold样品比对是评定岸管和岸上货物是否受污染的依据),每票货在Manifold处的取样应不少于一次,第一次的样品最好是在关闭进口阀的状态下进行,取样后应要求商检在现场对样品签字封存。在样品标签上应注明货物名称、取样点、取样时间并经签名后贴在样品瓶上然后进行封存。大副在取得样品后,要仔细观察样品中是否有杂质,悬浮物等异常情况。如果对样品品质有疑问,不得倒掉重取,应立即报告船长。船长如果认为样品有问题,应立即停止货物作业,并报告商务操作员,在未经商务操作员同意前,不得进行装货作业; 2.3Manifold出口阀处所取的样品合格并封存后,可按计划装货; 2.4对于质量要求较高的货品,有时货主要求进行一英尺取样,样品化验的合格表明船 上的管系和舱底板是合格的,符合该种货物的装载要求,可以继续装货;若化验不合格,应立即报告商务操作员,并按照其指示执行; 2.5在装货期间,只要有可能,还要对货物进行目测监控。如有疑问,应立即停止装货, 报告商务操作员,按照其指示执行; 2.6装货结束后应待货物静置30分钟后方可从货舱中进行取样封存,标明舱室、取样时 间等;

天文望远镜原理图

一、折射式望远镜 上图为开普勒望远镜原理光路图。从天体射来的平行光线,经物镜后,在焦点以外距焦点很近处成一倒立缩小实像a′b′。目镜的前焦点和物镜的焦点是重合的,所以实像a′b′位于目镜和它的焦点之间距焦点很近的地方,目镜以a′b′为物形成放大的虚像ab。当我们对着目镜观察时,进入眼睛的光线就好像是从ab射来的。显然,图中ab的视角β远大于直接用眼睛观察天体的视角a,所以,从望远镜中看到的天体使人觉得离自己近看得更清楚。 开普勒望远镜系统是目前应用最广泛的望远镜光学系统,实际应用中还需要增加正像系统,作为双筒望远镜,一般是通过棱镜来实现,根据棱镜种类的不同,分为保罗式和屋脊式,棱镜的作用是在获得正像的同时,使光线在有限长度的镜筒内反复迂回,从而大大缩短光路,这一点对于手持式望远镜是非常重要的,早期的望远镜的物镜甚至需要吊在桅杆上,人们不可能把这样的望远镜随身携带,随意观测的。 下图为伽利略望远镜原理光路图。作为目镜的凸透镜改为凹透镜,从而使人眼睛接收到一个正立的虚像。伽利略望远镜是一种古老的观剧望远镜,能直接成立正像,但视场较小,现在一般应用于玩具望远镜,以及外观精美的观剧望远镜,高倍单筒望远镜等更倾向于作为工艺礼品的望远镜产品。 二、反射式望远镜

使用凹面主镜采集光线反射形成图像,上图是典型的牛顿反射式天文望远镜,光线被反射到镜筒内一块小的平板反射副镜到目镜成像观测。 反射式望远镜能以较低的成本获得较大的口径,从而获得较好的集光力,同时能很好的控制色差,因此至今仍被广泛应用于天文望远镜系统。 三、折反式望远镜 施密特结构 马克苏托夫结构 折反射望远镜的物镜是由折射镜和反射镜组合而成。主镜是球面反射镜,副镜是一个透镜,用来矫正主镜的像差。此类望远镜视场大,光力强,适合观测流星,彗星,以及巡天寻找新天体。根据副镜的形状,折反射镜又可以分为施密特结构和马克苏托夫结构,前者视场大,像差小;后者易于制造。

伽利略望远镜设计原理

光电技术学院 ——望远镜系统结构设计专业:电子科学与技术 班级:光电子082班 姓名:张毅 学号:2008031161 指导老师:张翔

2010年5月28日 目录 第一章引言......................................................................................... . (3) 第二章概述 (3) 2.1 课程设计的目的及意义 (3) 2.2 课程设计的内容 (3) 2.3 望远镜的介绍 (3) 2.4 望远镜的分类 (4) 第三章伽利略望镜工作原理及发展简史 (5) 3.1 望远镜的工作原理 (5) 3.2 望远镜发展简史 (5) 第四章望远镜的主要特性分析 (6) 4.1 望远镜的主要特性分析 (6) 4.2 开普勒望远镜的参数计算 (8) 第五章物镜和目镜的选择 (9) 5.1 物镜的选择 (9) 5.2 物镜实例 (10) 5.3 目镜的选择 (12) 5.4 目镜实例 (13) 第六章测微准直望远镜 (15) 6.1 测微准直望远镜概述 (15) 6.2 测微准直望远镜计量特性 (15) 第七章棱镜转向系统 (16) 7.1 Porro棱镜结构及其点 (16) 7.2 Roof棱镜结构及其特点 (16) 7.3 折转形式望远镜系统分 (17) 7.4 类似棱镜结构晶体分析 (17) 第八章光学系统初始结构参数计算方法 (17) 第九章光栅 (19) 第十章心得体会 (19)

第十一章参考文献 (20) 第一章引言 本课程的任务是在学习工程光学基础、光学测试技术等技术基础课程的基础上,进行光学仪器的设计,目的是让学生了解光学设计中主要的环节,掌握光学仪器设计、开发的基本方法,以便今后能从事光学仪器的设计、研发工作。本课程主要研究光学仪器设计中的基本部分,如:光源、目镜、物镜、分化板等,以及光学仪器设计中考虑的基本问题,如:物象位置关系、系统放大倍数、系统分辨率、相差等。课程涉光学基础、光学测试技术、误差理论及数据处理、精密仪器设计等多方面。光学设计过程分为四个阶段:外形尺寸计算、初始结构计算、象差校正和平衡以及像质评价。了解光学系统的光学特性、光学系统的设计过程。初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。目镜设计的特点、常用目镜的型式和像差分析。 关键词:光学系统成像质量像差像距望远镜 第二章概述 2.1 课程设计的目的及意义 运用应用光学的知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸,物镜组,目镜组及转向系统的简易设计原理。了解光学系统中pw法的基本原理。 2.2 课程设计的内容 初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。 目镜设计的特点、常用目镜的型式和像差分析。 2.3 望远镜的介绍 1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。 2.望远镜的一般特性 望远镜的光学系统简称望远系统,是由物镜和目镜组成。当用在观测无限远物体

水样的采集、保存和预处理1

实验一: 水样的采集、保存和预处理 一、水样的采集和保存 水样采集和保存的主要原则是: (1)水样必须具有足够的代表性; (2)水样必须不受任何意外的污染。 水样类型 (1)瞬时水样 (2)等时混合水样(平均混合水样) (3)等时综合水样 (4)等比例混合水样(平均比例混合水样) (5)流量比例混合水样 (6)单独水样 水样采集 采样前准备 根据监测内容和监测项目的具体要求,选择适合的采样器和盛水器,要求采样器具的材质化学性质稳定、容易清洗、瓶口易密封。其次,确定采样总量(分析用量和备份用量)。 (1)采样器 (2)盛水器 (3)采样量 地表水采样方法: 地表水水样采样时,通常采集瞬时水样;遇有重要支流的河段,有时需要采集综合水样或平均比例混合水样。 地表水表层水的采集,可用适当的容器如水桶等采集。在湖泊、水库等处采集一定深度的水样,可用直立式或有机玻璃采样器,并借助船只、桥梁、索道或涉水等方式进行水样采集。采样器一 简单采样器 1、绳子; 2、带有软绳的橡胶塞;急流采样器 3、采样瓶; 4、铅锤; 5、铁框;1、带重锤的铁框;2、长玻璃管;3、采样瓶; 6、挂钩4、橡胶塞;5、短玻璃管;6、钢管; 7、橡胶 管;8、夹子

采样器二 溶解氧采样器 1、带重锤的铁框; 2、小瓶;虹吸连续采样器 3、大瓶; 4、橡胶管; 5、夹子; 6、塑料管; 7、绳子 地下水采样方法 地下水的水质比较稳定,一般采集瞬时水样,即能有较好的代表性。 废水或污水采样方法 工业废水和生活污水的采样种类和采样方法取决于生产工艺、排污规律和监测目的,采样涉及采样时间、地点和采样频数。 水样类型: 瞬时水样、等时混合水样、等时综合水样、等比例混合水样和流量比例混合水样等 废水和污水的采样方法: (1)浅水采样当废水以水渠形式排放到公共水域时,应设适当的堰,可用容器或用长柄采水勺从堰溢流中直接采样。在排污管道或渠道中采样时,应在具有液体流动的部位采集水样。 (2)深层水采样适用于废水或污水处理池中的水样采集,可使用专用的深层采样器采集。 (3)自动采样利用自动采样器或连续自动定时采样器采集。可在一个生产周期内,按时间程序将一定量的水样分别采集在不同的容器中;自动混合采样时采样器可定时连续地将一定量的水样或按流量比采集的水样汇集于一个容器中。

光学望远镜系统的设计

光学望远镜系统的设计 【摘要】运用光学知识,在了解望远镜工作原理的基础上,根据开普勒望远镜的主要参数,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易设计。 【关键词】望远镜设计;视放大率;凸透镜;焦距 1引言

上图中物镜框为孔径光阑,也是入射光瞳,出射光瞳目镜像方焦点外,观察者再次观察成像情况,望远镜系统的视场光阑设在物镜的像平面处。 下面介绍望远镜系统中的光学参数。 (1)望远镜系统的放大率分别为: 轴向放大率α= f2f1 2 垂轴放大率β=?f2f1 角放大率γ=?f1f2 且这三种放大率之间的关系为αγ=β,可见它们仅仅取决于望远镜系统的结构参数。 (2)望远镜系统的视放大率 对于目视光学仪器来说,更有意义的特性是它的视放大率。由于物体位于无限远。物体对人眼所成张角θ眼和对仪器的张角θ是相等的,即θ眼=θ,物体通过望远镜对人眼的张角θ眼‘ 等于仪器像方视场角θ′,即θ眼’ =θ‘。望眼镜的作用是把 视角从原来的θ放大到θ’。设视场光阑的孔径为D 0。则: tan θ=?D 02 f 1=?D 02f 1 tan θ′=?D 02 f 2=?D 02f 2 所以望远镜的视放大率为:Γ= tan θ′ tan θ=?f 1f 2 于此可见欲增大视放大率,必增大物镜的焦距或减小目镜的焦距。 (3)望远镜的极限分辨角 表示观测仪器精度的指标是极限分辨角。若以60''作为人眼的分辨极限,为使望远镜所能分辨的细节也能被人眼分辨,则望远镜的视放大率和它的极限分辨角Φ应满足 ΦΓ=60'' 所以,若要求分辨角减小,视放大率应该增大。或者说望远镜视放大率越大,它的分辨角即精度越高,人眼极限分辨角为 α=1.22λ/D (4)望远镜的结构尺寸 当光学间隔?=0时,目镜观察中间实像应是实像位于目镜的焦平面上,因此从物镜到目镜为望远镜的筒长L =f 1+f 2。 3设计内容 (1)望远镜外形尺寸设计 设计一个开普勒式望远镜,其主要要求如下:

兽药残留分析中样品前处理技术新进展

山东畜牧兽医2010年第31卷 54 兽药残留分析中样品前处理技术新进展 屈常林王怀娜(山东益生畜禽疾病研究院烟台 264680)中图分类号:S859.7 文献标识码:A 文章编号:1007-1733(2010)01-0054-02药物残留分析因具有待测药物浓度低且波动范围 大、样品基质复杂、干扰物质多、样品基质和待测组分的不确定性等特点,传统意义上的化学分析方法通常不能独立进行。 样品前处理过程涉及很多因素,直接影响各项分析指标、成本和效率,占用残留分析70%以上的工作量[1]。近10几年来,兽药的种类和应用规模剧增,化学结构组成日益复杂,并日趋高效或低剂量化,特别是人们对长期摄入低水平兽药残留所致的各种慢性及远期效应的关注和国际间贸易等原因,使分析对象、样本数量和测定难度大大增加,经典的样品前处理方法通常繁琐复杂、操作时间长、选择性差,逐渐满足不了兽药残留分析的发展要求,一些新的样品前处理技术被应用到这个领域[2]。 1 各种检测方法 样品前处理一般分为提取、净化、浓缩和衍生化4个部分。固相萃取(SPE)、液相微萃取(LPME)、基体分散固相萃取(MSPD)、凝胶层析(GPC)、分子印迹技术(MIP)、免疫亲和层析技术(IAC)、微波提取技术(MAE)、加速溶剂提取(ASE)、超临界萃取(SFE)、膜分离技术、吹扫捕集技术和超声波辅助提取等技术,下面就残留样品前处理新技术分别予以评述。 1.1 固相萃取(SPE) 固相萃取(Solid Phase Extraction , SPE)是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱达到分离和富集目标化合物的目的。 固相微萃取(SPME)是一项集取样、萃取、富集和进样于一体的无溶剂技术。是在20世纪80年代末由加拿大Waterloo大学Pawliszyn 等人开发研制的一种非溶剂的分析萃取技术,其萃取原理与气相色谱(GC)类似,是在固相萃取基础上发展起来的一种新型、高效的样品预处理技术。与液液萃取和固相萃取相比,具有融取样、萃取、浓缩和进样为一体,操作简便,费用低,选择性好,与其他的一些分离方法有良好兼容性等优点。固相微萃取技术的未来发展趋势是:使用新的固定相,与顶空(HeadSpace)进样技术及GC联用分析挥发性药物,拓展该技术的应用范围[3]。 1.2 液相微萃取(LPME) 液相微萃取法(LPME)是1996年Cantwell等提出一种新的前处理方法,最初提出的LPME 形式是微液(MD)-液相微萃取法(MD-LPME),MDLPME 避免了SPME使用中存在的残留量的问题,有机接收相溶液的变换更是提高了方法的选择性[4]。在国外LPME技 术已经得到了广泛的推广,而在国内对此进行研究的人员还相对较少,因此,LPME技术将来在我国的微萃取技术、样品前处理技术中具有广泛的发展前景。 1.3 基体分散固相萃取(MSPD) 基体分散固相萃取(MSPD)是美国Louisiana州立大学的Barker教授在1989年提出并给予理论解释的一种快速样品处理技术。其原理是将涂渍有C18等多种聚合物的担体固相萃取材料与样品一起研磨,得到半干状态的混合物并将其作为填料装柱,然后用不同的溶剂淋洗柱子,将各种待测物洗脱下来[5]。其优点是浓缩了传统的样品前处理中的样品匀化、组织细胞裂解、提取、净化等过程,不需要进行组织匀浆、沉淀、离心、pH调节和样品转移等操作步骤,避免了样品的损失。MSPD适用于多药物的残留分析,在Barker 等提出MSPD,成功地应用于分析牛肉中的苄青霉素、氨苄青霉素和头孢匹林后的数年间,该方法已被用于近40种的兽药残留分析。 1.4 凝胶渗透色谱(GPC) 凝胶渗透色谱(GPC)是利用有机溶剂和疏水凝胶大分子(主要是交联二乙烯基苯-聚苯乙烯共聚物)从样品中提取分离不同分子量干扰物的一种常用有效分离技术。由于具有自动化程度高、较好的净化效率以及较好的回收率,柱子可以重复使用,被广泛用于纯化含类脂、色素、聚合物、蛋白质等的复杂基体组分[6]。GPC分离方法已经被应用于食品、环境的农残分析。近年来全自动凝胶净化系统解决了馏分的不间断收集和大量使用有机溶剂等问题,使GPC技术得到了进一步的发展。 1.5 分子印迹技术(MIP) 分子印迹的原理是首先使模板分子与聚合物单体键合,键合方式有共价键结合和非共价键结合两种。然后将聚合物单体交联,再将模板分子从聚合物中提取出来,聚合物内部就留下了模板分子的印迹。近10年来,分子印迹固相萃取技术(MISPE)已被广泛研究和应用。目前,MISPE主要应用于水、土壤等环境样品中微量与痕量污染物及药物的分离与富集等前处理

望远镜显微镜实验原理

实验设备-显微镜和望远镜的成像原理(一) 显微镜的基本光学原理(一)折射和折射率光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。(二)透镜的性能透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称"焦点",通过交点并垂直光轴的平面,称"焦平面"。焦点有两个,在物方空间的焦点,称"物方焦点",该处的焦平面,称"物方焦平面";反之,在象方空间的焦点,称"象方焦点",该处的焦平面,称"象方焦平面"。光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。(三)凸透镜的五种成象规律 1. 当物体位于透镜物方二倍焦距以外时,则在象方二倍焦距以内、焦点以外形成缩小的倒立实象; 2. 当物体位于透镜物方二倍焦距上时,则在象方二倍焦距上形成同样大小的倒立实象; 3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在象方二倍焦距以外形成放大的倒立实象; 4. 当物体位于透镜物方焦点上时,则象方不能成象; 5. 当物体位于透镜物方焦点以内时,则象方也无象的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚象。 三、光学显微镜的成象(几何成象)原理只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1'。为易于观测,一般将该量加大到2',并取此为平均目镜分辨率。物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=Lε距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率ε=2'的眼睛,能清楚地区分大小为0.15mm的物体细节。在观测视角小于1'的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。(一)放大镜的成像原理表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y'的虚像A'B'。放大镜的放大率Γ=250/f' 式中250--明视距离,单位为mm f'--放大镜焦距,单位为mm 该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。(二)显微镜的成像原理显微镜和放大镜起着同样的作用,就是把近处的微小物体成一放大的像,以供人眼观察。只是显微镜比放大镜可以具有更高的放大率而已。图2是物体被显微镜成像的原理图。图中为方便计,把物镜L1和目镜L2均以单块透镜表示。物体AB位于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距。所以,它经物镜以后,必然形成一个倒立的放大的实像A'B'。A'B'位于目镜的物方焦点F2上,或者在很靠近F2的位置上。再经目镜放大为虚像A''B''后供眼睛观察。虚像A''B''的位置取决于F2和A'B'之间的距离,可以在无限远处(当A'B'位于F2上时),也可以在观察者的明视距离处(当A'B'在图中焦点F2之右边时)。目镜的作用与放大镜一样。所不同的只是眼睛通过目镜所看到的不是物体本身,而是物体被物镜所成的已经放大了一次的像。(三)显微镜的重要光学技术参数在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等等。这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系,但应

液相色谱使用中样品预处理注意的几个环节

液相色谱使用中样品预处理注意的几个环节 高效液相色谱具有分离效率高、分析速度快和应用范围广等特点,特别适合于高沸点、大分子、强极性和热稳定性差的化合物的分离分析。目前高效液相色谱已成为化学、生化、医学、工业、农业、环保、商检和法检等学科领域中重要的分离技术,是分析化学家和生物化学家手中用于解决他们面临的各种实际分析和分离课题必不可少的工具之一。虽然在检测分析中使用了昂贵的、性能优越的高档精密仪器,但是由于在样品的前处理,标准溶液的制备,样品液的测定,分析中的污染,仪器常见故障等等问题上的不注意,而引起大的系统误差,使整个测定分析失败。现就液相色谱分析的应用中样品预处理注意的几个环节,作简要分析,以达到更好的检测效果。 1 样品预处理方法 样品预处理应包括进样前的一切操作。除了称重、溶解、稀释等步骤外,样品需要: ①过滤; ②萃取; ③衍生化(柱前衍生) ; ④液相色谱(低压柱层析) 。这些操作可以是手工进行或实行自动化操作。样品预处理的目的是除去干扰物、增加检测器灵敏度(富集) 、保护色谱柱等。样品预处理同时也是为了避免色谱分离故障,其中样品萃取是关键的一步,要从大量的干扰物中萃取出微量组分难度极大。 有些样品经预处理后还不能作进样分析,需进行衍生化处理,使一些无紫外吸收或无荧光的组分,经过衍生化后能用紫外和荧光检测器检测,这样既提高了灵敏度,又改善了分离度(质量变化) 。样品预处理的同时也会带来一些问题,如样品损失、样品被污染、衍生化反映不完全或多种反应物生成等。衍生反应常会影响试验的精确度,或者在整个样品预处理过程中带来误差。 用于液相色谱分析的样品溶液必须均匀而无颗粒,有颗粒会损坏进样器并阻塞柱头。处理好的样品在准备上柱前应对准光线摇动,检查样品溶液中有无颗粒。只要看到颗粒、混浊或乳化,就应过滤一下,过滤膜要能截留住015μm 以上的颗粒,样品过滤的过程中可能引起:样品被污染,因过滤吸附降低样品组分的含量,样品溶剂挥发引起误差。萃取的目的是从共溶的样

实验室耗材大全

实验室耗材大全 一、样品瓶 样品瓶适用于各种药物中间体、高附加值化学品、生物制剂、化妆品、香精香油等产品的分装,适合产品的长时间储存与运输,具有极好的密封性能。宁波海曙恒隆实验仪器有限公司主要经营super-tech、安捷伦、tedia等进口品牌,盖子有黑色和白色等多种颜色可供选择,垫片有PE 垫、PTFE 垫等多个规格可供选择,同时可根据客户需求提供产品的包装定制服务。 样品瓶架为了放置样品,减少空间,方便取放。恒隆提供各种款式花式样品瓶架,适用各种样品瓶存放。

三、新型定量吸球(特别推荐) 1、用途:适用于0.1~100mL移液管 2、使用方法:0.1~100mL移液管顶端套入吸球,吸液速度可根据吸入控制杆的位置连续变化;将控制杆向下扳,则液体流出。 3、产品特点: a. 手感舒适,便于操作。 b. 精确的移液控制。 c. 适合0.1~100ml各种量液用塑料和玻璃移液管。 d. 使用0.45μm过滤器,可更换。 e. 可方便快捷进行维护和保养。 f. 五种颜色(黑、红、粉、绿、黄) 四、固相萃取装置与耗材 1、固相萃取(Solid-Phase Extraction 简称SPE)是近年发展起来一种样品预处理技术, 由液固萃取和柱液相色谱技术结合发展而来, 主要用于样品的分离、纯化和浓缩,与传统的液液萃取法相比较可以提高分析物的回收率、更有效的将分析物与干扰组分分离减少样品预处理过程,操作简单,省时,省力。SPE可以延长色谱柱的使用寿命、提高检测限。广泛用于医药、食品、环保、商检、农药残留等领域。我公司提供SPE装置、控制阀(夸克)、通用连接头、过滤筛板、SPE空管柱、筛板,也可以按用户要求装填SPE柱。 原理:固相萃取是一个包括液相和固相的物理萃取过程。在固相萃取过程中,固相对分析物的吸附力大于样品母液,当样品通过固相萃取柱时,分析物被吸附在 a 、 SPE固相萃取小柱-控制阀(夸克) SPE固相萃取小柱-控制阀是用于样品的预处理,通过样品的分离,纯化和浓缩,提高样品进行液相、气相分析的速度,去除杂质,延长色谱设备的使用寿命,避免色谱系统的污染。 b 、通用接头适合于3mL\6mL\12mL各种固相萃小柱 c 、SPE空管3mL\6mL\12mL d 、SPE筛板 20um,3mL\6mL\12mL e 、填料C18,C8,CN,NH2,Silica,sax,cooH,psA,或其它各种填料。

样品预处理的原则是___

1、样品预处理的原则是___、___、__。。 2、脂类的测定方法有__、__、__、__、__、__11、()测定是糖类定量的基础。 A还原糖B非还原糖C葡萄糖D淀粉 12、直接滴定法在测定还原糖含量时用()作指示剂。 A亚铁氰化钾 B Cu2+的颜色C硼酸D次甲基蓝 13、为消除反应产生的红色Cu2O沉淀对滴定的干扰,加入的试剂是() A铁氰化钾B亚铁氰化钾C醋酸铅 D NaOH 14、K2SO4在定氮法中消化过程的作用是( ). A.催化 B. 显色 C.氧化 D.提高温度 15、凯氏定氮法碱化蒸馏后,用( )作吸收液. A.硼酸溶液 B.NaOH液 C.萘氏试纸 D.蒸馏水 16、灰分是标示()一项指标。 A 无机成分总量 B 有机成分 C 污染的泥沙和铁、铝等氧化物的总量 17、测定葡萄的总酸度时,其测定结果以()来表示。 A 柠檬酸 B 苹果酸 C 酒石酸 18、用直接滴定法测定食品还原糖含量时,所用标定溶液是() A、菲林试剂 B、样品 C、葡萄糖 D、酒石酸甲钠 19、高锰酸钾测定食品还原糖含量时,所用标定溶液是() A、菲林试剂 B、次甲基蓝 C、葡萄糖 D、高锰酸钾 20、用水提取水果中的糖分时,应调节样液至()。 A、酸性 B、中性 C、碱性 1、处理样品的干灰化法需要以下()设备 A、坩埚 B、容量瓶 C、马福炉 D、称量瓶 3、采用蒸馏法测水分含量时,选用()作为溶剂 A、苯 B、四氯化碳 C、二甲苯 D、甲苯 8、检测下列()元素时,样品处理不适合用干法消化 A、Ca B、Hg C、As D、Mg 10、脂类测定最常用的提取剂有() A、乙醚 B、苯 C、石油醚 D、二甲苯 11、下列()样品应用乙醇作提取剂。 A 白柠檬 B 巧克力 C 饼干 D、面包

分析样品的预处理

固相萃取技术在样品处理中的应用 在2003版的“食品卫生检测方法”标准系列中,有一个较大的改动就是很多项目,尤其是农药项目的前处理普遍使用了固相萃取技术(详见表1 )。现针对这一技术的原理、使用和误区进行探讨。 一.固相萃取技术简介 固相萃取(Solid Phase Extraction,简称SPE)技术,发展于上世纪70年代,由于其具有高效、可靠、消耗试剂少等优点,在许多领域取代了传统的液-液萃取而成为样品前处理的有效手段。 一些传统的介绍SPE的书籍将其归于一个液相色谱的原理,这其实是引起使用不当的主要源由之一。把SPE小柱看作一根液相色谱柱,不如把它看成单纯的萃取剂更合适,因为:液相色谱的重点在于分离,而SPE的重点在于萃取。 固相萃取技术在样品处理中的作用分两种:一是净化,二是富集,这两种作用可能同时存在。 固体萃取和液-液萃取相比,其长处在于方便和消耗试剂少,短处在于批次间的重复性难以保证。出现这种情况的原因在于:液体试剂的重复性好,只要其纯度可靠,不同年代的产品的物理化学性质都是可靠的。而固体萃取剂就算保证了纯度外,还存在着颗粒度的差异,外形的差异等液体试剂不存在的且难以衡量的因素,不同年代不同批号的萃取性质可能会有较大的区别。 从理论上和厂家宣传来看,固相萃取应该在色谱分析的前处理上得到很好的应用:有机溶剂用得很少,可批量处理样品,既可富集,又能除杂质,给人印象是前处理的革命性进步。然而现实情况,起码在国内,虽然推广了多年,实际应用还是相当有限。 SPE应用得不广,与我们的使用方式和期望有关,也与它本身的局限有关。对于供应商来说,从经济利益出发,向来都是忽略固相萃取的局限与不足。固相萃取可以作为前处理手段的一个很好补充,但是在使用时,一定要清醒知道到它的优点和缺点,注意因地制宜,扬长避短。 二、固相萃取的应用优势 在什么项目的前处理适合使用固相萃取技术,即用固相萃取会比普通的溶剂萃取更理想,个人认为有以下几种情况: (一)水中有机物的前处理。

伽利略望远镜的原理及光路图

物镜是会聚透镜而目镜是发散透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。 你可以用很低的费用制作一架伽利略式望远镜。从文化用品商店买一块直径、焦距大一些的眼镜片作为物镜和一块焦距、直径较小的透镜作为目镜。用胶水和小槽把两块镜片装在硬纸筒内,再做一个简单的台座,于是一架能够看到月亮上的群山、银河中的繁星和木星的卫星的望远镜便制成了。想想看,伽利略就是用这人发现的。但是切记,不要通过望远镜直接观察太阳,以免高温灼伤眼睛!伽利略的折射望远镜有一个令人讨厌的缺点,就是在明亮物体周围产生“假色”。“假色”产生的症结在于通常所谓的“白光”根本不是白颜色的光,而是由组成彩虹的从红到紫的所有色光混合而成的。当光束进入物镜并被折射时,各种色光的折射程度不同,因此成像的焦点也不同,模糊就产生了。 1611年,另一位天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式。但是

“假色”问题仍然未能解决。 利珀希不是天文学家,从未想过把自己的新装置对准天空。但是没过多久,关于他的发现的消息传开了。幸运地是,意大利的帕多瓦大学教授伽利略得知了此事。伽利略很快就制造了一台折射望远镜。他以平凸透镜作为物镜,凹透镜作为目镜。从待研究的物体发出的光照射到望远镜物镜的一个玻璃透镜上,物镜使光线折射并把它集中于称为焦点的一点上,在那里便形成了发光体的像。这个像被目镜的透镜放大,进入人眼。

相关主题
文本预览
相关文档 最新文档