当前位置:文档之家› 操作系统实验三

操作系统实验三

操作系统实验三
操作系统实验三

广州大学学生实验报告

开课学院及实验室:计算机学院,电子信息楼416A室 2014年 11 月 20日

一、实验目的

通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。

了解linux环境下如何实现内存的分配与回收。

二、实验内容

(一)内存管理实验1:常用页面置换算法模拟实验

设计一个虚拟存储区和内存工作区,并使用下述算法计算访问命中率。

1、最佳淘汰算法(OPT)

2、先进先出的算法(FIFO)

3、最近最久未使用算法(LRU)

4、最不经常使用算法(LFU)

5、最近未使用算法(NUR)

命中率=1-页面失效次数/页地址流长度

(二)内存管理实验2:Linux下的内存分配与回收的管理

在Linux环境下利用下列系统调用malloc(),free()编写一段程序实现内存分配与回收的管理。

要求:

返回已分配给变量的内存地址;

返回释放后的内存地址;

释放已分配的内存空间后,返回释放内存后未使用内存的大小。

三、实验设备

安装带Linux操作系统的电脑一台。

四、实验程序实现及结果分析

(一)内存管理实验1:常用页面置换算法模拟实验

实验程序如下:

#define TRUE 1

#define FALSE 0

#define INV ALID -1

#define NULL 0

#define total_instruction 320 /*指令流长*/

#define total_vp 32 /*虚页长*/

#define clear_period 50 /*清0周期*/

typedef struct /*页面结构*/

{

int pn,pfn,counter,time;

}pl_type;

pl_type pl[total_vp]; /*页面结构数组*/

struct pfc_struct{ /*页面控制结构*/

int pn,pfn;

struct pfc_struct *next;

};

typedef struct pfc_struct pfc_type;

pfc_type pfc[total_vp],*freepf_head,*busypf_head,*busypf_tail;

int diseffect, a[total_instruction];

int page[total_instruction], offset[total_instruction];

int initialize(int);

int FIFO(int);

int LRU(int);

int LFU(int);

int NUR(int);

int OPT(int);

int main( )

{

int s,i,j;

srand(10*getpid()); /*由于每次运行时进程号不同,故可用来作为初始化随机数队列的“种子”*/

s=(float)319*rand( )/32767/32767/2+1; //

for(i=0;i

{

if(s<0||s>319)

{

printf("When i==%d,Error,s==%d\n",i,s);

exit(0);

}

a[i]=s; /*任选一指令访问点m*/

a[i+1]=a[i]+1; /*顺序执行一条指令*/

a[i+2]=(float)a[i]*rand( )/32767/32767/2; /*执行前地址指令m' */

a[i+3]=a[i+2]+1; /*顺序执行一条指令*/

s=(float)(318-a[i+2])*rand( )/32767/32767/2+a[i+2]+2;

if((a[i+2]>318)||(s>319))

printf("a[%d+2],a number which is :%d and s==%d\n",i,a[i+2],s);

}

for (i=0;i

{

page[i]=a[i]/10;

offset[i]=a[i]%10;

}

for(i=4;i<=32;i++) /*用户内存工作区从4个页面到32个页面*/

{

printf("---%2d page frames---\n",i);

FIFO(i);

LRU(i);

LFU(i);

NUR(i);

OPT(i);

}

return 0;

}

int initialize(total_pf) /*初始化相关数据结构*/

int total_pf; /*用户进程的内存页面数*/

{int i;

diseffect=0;

for(i=0;i

{

pl[i].pn=i;

pl[i].pfn=INV ALID; /*置页面控制结构中的页号,页面为空*/

pl[i].counter=0;

pl[i].time=-1; /*页面控制结构中的访问次数为0,时间为-1*/ }

for(i=0;i

{

pfc[i].next=&pfc[i+1];

pfc[i].pfn=i;

} /*建立pfc[i-1]和pfc[i]之间的链接*/

pfc[total_pf-1].next=NULL;

pfc[total_pf-1].pfn=total_pf-1;

freepf_head=&pfc[0]; /*空页面队列的头指针为pfc[0]*/

return 0;

}

int FIFO(total_pf) /*先进先出算法*/

int total_pf; /*用户进程的内存页面数*/

{

int i,j;

pfc_type *p;

initialize(total_pf); /*初始化相关页面控制用数据结构*/

busypf_head=busypf_tail=NULL; /*忙页面队列头,队列尾链接*/

for(i=0;i

{

if(pl[page[i]].pfn==INV ALID) /*页面失效*/

{

diseffect+=1; /*失效次数*/

if(freepf_head==NULL) /*无空闲页面*/

{

p=busypf_head->next;

pl[busypf_head->pn].pfn=INV ALID;

freepf_head=busypf_head; /*释放忙页面队列的第一个页面*/

freepf_head->next=NULL;

busypf_head=p;

}

p=freepf_head->next; /*按FIFO方式调新页面入内存页面*/

freepf_head->next=NULL;

freepf_head->pn=page[i];

pl[page[i]].pfn=freepf_head->pfn;

if(busypf_tail==NULL)

busypf_head=busypf_tail=freepf_head;

else

{

busypf_tail->next=freepf_head; /*free页面减少一个*/

busypf_tail=freepf_head;

}

freepf_head=p;

}

}

printf("FIFO:%6.4f\n",1-(float)diseffect/320);

return 0;

}

int LRU (total_pf) /*最近最久未使用算法*/

int total_pf;

{

int min,minj,i,j,present_time;

initialize(total_pf);

present_time=0;

for(i=0;i

{

if(pl[page[i]].pfn==INV ALID) /*页面失效*/

{

diseffect++;

if(freepf_head==NULL) /*无空闲页面*/

{

min=32767;

for(j=0;j

if(min>pl[j].time&&pl[j].pfn!=INV ALID)

{

min=pl[j].time;

minj=j;

}

freepf_head=&pfc[pl[minj].pfn]; //腾出一个单元

pl[minj].pfn=INV ALID;

pl[minj].time=-1;

freepf_head->next=NULL;

}

pl[page[i]].pfn=freepf_head->pfn; //有空闲页面,改为有效

pl[page[i]].time=present_time;

freepf_head=freepf_head->next; //减少一个free 页面

}

else

pl[page[i]].time=present_time; //命中则增加该单元的访问次数

present_time++;

}

printf("LRU:%6.4f\n",1-(float)diseffect/320);

return 0;

}

int NUR(total_pf) /*最近未使用算法*/

int total_pf;

{ int i,j,dp,cont_flag,old_dp;

pfc_type *t;

initialize(total_pf);

dp=0;

for(i=0;i

{ if (pl[page[i]].pfn==INV ALID) /*页面失效*/

{diseffect++;

if(freepf_head==NULL) /*无空闲页面*/

{ cont_flag=TRUE;

old_dp=dp;

while(cont_flag)

if(pl[dp].counter==0&&pl[dp].pfn!=INV ALID)

cont_flag=FALSE;

else

{

dp++;

if(dp==total_vp)

dp=0;

if(dp==old_dp)

for(j=0;j

pl[j].counter=0;

}

freepf_head=&pfc[pl[dp].pfn];

pl[dp].pfn=INV ALID;

freepf_head->next=NULL;

}

pl[page[i]].pfn=freepf_head->pfn;

freepf_head=freepf_head->next;

}

else

pl[page[i]].counter=1;

if(i%clear_period==0)

for(j=0;j

pl[j].counter=0;

}

printf("NUR:%6.4f\n",1-(float)diseffect/320);

return 0;

}

int OPT(total_pf) /*最佳置换算法*/

int total_pf;

{int i,j, max,maxpage,d,dist[total_vp];

pfc_type *t;

initialize(total_pf);

for(i=0;i

{ //printf("In OPT for 1,i=%d\n",i); //i=86;i=176;206;250;220,221;192,193,194;258;274,275,276,277,278;

if(pl[page[i]].pfn==INV ALID) /*页面失效*/

{

diseffect++;

if(freepf_head==NULL) /*无空闲页面*/

{for(j=0;j

if(pl[j].pfn!=INV ALID) dist[j]=32767; /* 最大"距离" */

else dist[j]=0;

d=1;

for(j=i+1;j

{

if(pl[page[j]].pfn!=INV ALID)

dist[page[j]]=d;

d++;

}

max=-1;

for(j=0;j

if(max

{

max=dist[j];

maxpage=j;

}

freepf_head=&pfc[pl[maxpage].pfn];

freepf_head->next=NULL;

pl[maxpage].pfn=INV ALID;

}

pl[page[i]].pfn=freepf_head->pfn;

freepf_head=freepf_head->next;

}

}

printf("OPT:%6.4f\n",1-(float)diseffect/320);

return 0;

}

int LFU(total_pf) /*最不经常使用置换法*/

int total_pf;

{

int i,j,min,minpage;

pfc_type *t;

initialize(total_pf);

for(i=0;i

{ if(pl[page[i]].pfn==INV ALID) /*页面失效*/

{ diseffect++;

if(freepf_head==NULL) /*无空闲页面*/

{ min=32767;

for(j=0;j

{if(min>pl[j].counter&&pl[j].pfn!=INV ALID)

{

min=pl[j].counter;

minpage=j;

}

pl[j].counter=0;

}

freepf_head=&pfc[pl[minpage].pfn];

pl[minpage].pfn=INV ALID;

freepf_head->next=NULL;

}

pl[page[i]].pfn=freepf_head->pfn; //有空闲页面,改为有效pl[page[i]].counter++;

freepf_head=freepf_head->next; //减少一个free 页面

}

else

pl[page[i]].counter++;

}

printf("LFU:%6.4f\n",1-(float)diseffect/320);

return 0;

}

实验结果如图1-图3所示。

图1

图2

图3

从实验结果看,随着设置的空闲页面数的增加,各个算法的命中率都相对提高,其中,OPT算法命中率最高,其次为NUR,而FIFO与LRU相差无几,最低的是LFU,但每个页面执行结果有所不同。

OPT算法在执行过程中可能会发生错误。

思考题:

为什么OPT在执行时会有错误产生?

OPT算法:在将来不出现的或最晚出现的先淘汰,可以看出,它是一种对未来的假设判断,假设知道了将来要使用的页面,从而根据该情况来作出选择,但是进程是动态执行的,未来是无法预知的,所以,当碰到这种未来假设与实际不符时就会出现错误。

(一)内存管理实验2:Linux下的内存分配与回收的管理

实验程序如下:

/* MALLOC.C: This program allocates memory with

* malloc, then frees the memory with free.

*/

#include /* For _MAX_PATH definition */

#include

#include

#include

void main()

{

int *string;

/* Allocate space for a path name */

string =(int*) malloc(10 );

if( string == NULL )

printf( "Insufficient memory available\n" );

else

{

printf( "Memory space allocated for path name\n" );

/*printf ("string=%d\n",string);*/

cout<<"string="<

free( string );

printf( "Memory freed\n" );

}

int *stringy;

/* Allocate space for a path name */

stringy =(int*) malloc(12 );

if( stringy == NULL )

printf( "Insufficient memory available\n" );

else

{

printf( "Memory space allocated for path name\n" );

/*printf ("string=%d\n",string);*/

cout<<"stringy="<

free( stringy );

printf( "Memory freed\n" );

}

}

实验结果如下图所示。

图4

第一次调用malloc,申请10个字节大小的连续内存空间,返回该内存空间的首地址string,释放后,第二次调用malloc,申请12个字节大小的内存空间,返回stringy,与string值相同。在第一次调用并释放后,增加一句:string=NULL;发现,此时第二次调用malloc,结果是:Insufficient memory available,说明,调用malloc后返回为空。在第二次调用malloc时,实际上并没有重新申请空间。

五、实验总结

①通过实验,了解到了linux操作系统常见的对内存进行管理的算法,认识了动态分配内

存的概念。

②通过对比以上几种内存管理算法,我们了解到OPT算法的命中率最高的,其次为NUR,

而FIFO与LRU相差无几,最低的是LFU。

③对OPT算法进行分析,OPT的命中率是常见的内存管理算法中最高的。它的原理是最将

晚出现的先淘汰,但是这样子常常会出现错误,因为程序是动态的,这样子无法对程序的将来的情况进行准确的判断,就不具有很好的健壮性。

④以上的内存管理算法也只是真正的系统管理的一部分,实际的情况会更加的复杂,但是

常见的算法是我们深入学习的基础,所以必须熟练掌握。

⑤第二部分我们了解到了内存空间的释放以及调用方式。

操作系统实验三

计算机操作系统实验报告 实验内容: P、V原语的模拟实现 实验类型:验证型 指导教师:毕国堂 专业班级: 姓名: 学号: 实验地点:东6E507 实验时间:2017/10/23

一、实验目的 1.理解信号量相关理论 2.掌握记录型信号量结构 3.掌握P、V原语实现机制 二、实验内容 1.输入给定的代码 2.进行功能测试并得出证正确结果 三、实验要求 1.分析signal和wait函数功能模块 ●Signal函数 在进行资源增加时,首先判断增加的资源是否存在,如果不存在则报错 并结束函数;如果存在则将需要增加的资源数量加一,然后再判断增加 后的资源数是否大于0,如果大于0则表示之前等待队列为空,没有需 要分配的进程;如果增加后的资源不大于0,表示之前等待队列中存在 进程,则将队首的进程取出并将资源分给该进程。 ●Wait 函数 在执行wait函数时,先判断请求的资源和进程是否存在,如果不存在则 报错提示;如果存在则将对应资源的资源数减一,然后判断减少后的资 源数是否小于0,如果小于0,表示该资源等待队列为空,可直接将资源 分配给请求的进程;如果不小于0则表示之前资源的等待队列不为空, 则将请求的进程插在等待队列最后。 2.画出signal和wait函数流程图

3.撰写实验报告 四、实验设备 1.PC机1台安装visual c++ 6.0 五、测试

1.首先将所有的资源分配完 2.这时再请求资源时就会出现等待现象 3.此时增加一个资源s0,则进程1对s0的等待结束直接获取资源s0 4.当再增加资源s0、s1时则进程1也结束对资源s1的等待,并且s0资源 为有空闲状态 六、实验思考 1.如何修改wait操作,使之能一次申请多个信号量? wait函数传入一个进程号和多个资源名,在wait函数中使用循环依

操作系统实验报告三

课程实验报告 课程名称姓名实验名称实验目的及要求 实验3进程并发与同步 1、加深对进程概念的理解,区分进程并发执行与串行执行; 2、掌握进程并发执行的原理,理解进程并发执行的特点; 3、了解fork()系统调用的返回值,掌握用fork()创建进程的方法;熟悉wait、exit等系统调用; 4、能利用相应的系统调用实现进程树与进程间的同 步。 实 验操作系统:linux Un bu ntu 11.10 环 境实验工具:Vmware 实验内容 1、编写一C语言程序,实现在程序运行时通过系统调用fork()创建两个子进程,使父、子三进程并发执行,父亲进程执行时屏幕显示“I am father ”,儿子进 程执行时屏幕显示“ I am son ",女儿进程执行时屏幕显示“ I am daughter ”。 要求多次连续反复运行这个程序,观察屏幕显示结果的顺序,直至出现不一样的情况为止。要求有运行结果截图与结果分析 2、连续4个fork()的进程家族树,family1-1.c 程序清单如下: #in clude main () { fork(); fork(); fork(); fork(); printf( A\n ”); } 请根据程序运行结果,画出进程家族树,并分析原 因。

3、 修改程序1,在父、子进程中分别使用 wait 、exit 等系统调用“实现”其同 步推进,父进程必须等待儿子进程与女儿进程结束, 才可以输出消息。 写出相应的同 步控制,并分析运行结果。 4、 创建一个子进程,并给它加载程序,其功能是调用键盘命令“ ls -I ”,已知 该键盘命令的路径与文件名为: /bin/ls 。父进程创建子进程, 并加载./child2 程序。 写出相应的程序代码并分析程序运行结果。 1、编写一 C 语言程序,实现在程序运行时通过系统调用 fork()创建两个子进 程,使父、子三进程并发执行,父亲进程执行时屏幕显示“ I am father ”, 儿子进程执行时屏幕显示“ I am son ”,女儿进程执行时屏幕显示“ I am daughter "。并且反复的测试,观察每一次的执行的顺序有什么不同 2、修改程序1,在父、子进程中分别使用 wait 、exit 等系统调用“实现”其同 步推进,父进程必须等待儿子进程与女儿进程结束,才可以输出消息。 4、创建一个子进程,并给它加载程序,其功能是调用键盘命令“ ls -I ”,已知 该键盘命令的路径与文件名为: /bin/ls 。父进程创建子进程, 并加载./child2 程序。 法 描 述 及 实 验 步 骤 调 试过 程及实 验结果

操作系统实验实验1

广州大学学生实验报告 1、实验目的 1.1、掌握进程的概念,明确进程的含义 1.2、认识并了解并发执行的实质 2.1、掌握进程另外的创建方法 2.2、熟悉进程的睡眠、同步、撤消等进程控制方法 3.1、进一步认识并发执行的实质 3.2、分析进程竞争资源的现象,学习解决进程互斥的方法 4.1、了解守护进程 5.1、了解什么是信号 5.2、INUX系统中进程之间软中断通信的基本原理 6.1、了解什么是管道 6.2、熟悉UNIX/LINUX支持的管道通信方式 7.1、了解什么是消息 7.2、熟悉消息传送的机理 8.1、了解和熟悉共享存储机制 二、实验内容 1.1、编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统 中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示'a',子进程分别显示字符'b'和字符'c'。试观察记录屏幕上的显示结果,并分析原因。 1.2、修改上述程序,每一个进程循环显示一句话。子进程显示'daughter …'及 'son ……',父进程显示'parent ……',观察结果,分析原因。 2.1、用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容 2.2、利用wait( )来控制进程执行顺序 3.1、修改实验(一)中的程序2,用lockf( )来给每一个进程加锁,以实现进程之间的互斥 3.2、观察并分析出现的现象 4.1、写一个使用守护进程(daemon)的程序,来实现: 创建一个日志文件/var/log/Mydaemon.log ; 每分钟都向其中写入一个时间戳(使用time_t的格式) ; 5.1、用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按^c键);捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child process1 is killed by parent! Child process2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent process is killed! 5.2、用软中断通信实现进程同步的机理

操作系统实验报告三

课程实验报告

3、修改程序1,在父、子进程中分别使用wait、exit等系统调用“实现”其同步推进,父进程必须等待儿子进程与女儿进程结束,才可以输出消息。写出相应的同步控制,并分析运行结果。 4、创建一个子进程,并给它加载程序,其功能是调用键盘命令“ls -l”,已知该键盘命令的路径与文件名为:/bin/ls。父进程创建子进程,并加载./child2程序。写出相应的程序代码并分析程序运行结果。 算法描述及实验步骤 1、编写一C语言程序,实现在程序运行时通过系统调用fork( )创建两个子进 程,使父、子三进程并发执行,父亲进程执行时屏幕显示“I am father”, 儿子进程执行时屏幕显示“I am son”,女儿进程执行时屏幕显示“I am daughter”。并且反复的测试,观察每一次的执行的顺序有什么不同 2、修改程序1,在父、子进程中分别使用wait、exit等系统调用“实现”其同 步推进,父进程必须等待儿子进程与女儿进程结束,才可以输出消息。 4、创建一个子进程,并给它加载程序,其功能是调用键盘命令“ls -l”,已知该键盘命令的路径与文件名为:/bin/ls。父进程创建子进程,并加载./child2程序。 调试过程及实验结果

总结 1、实现在程序运行时通过系统调用fork( )创建两个子进程,使父、子三进程并发执行,父亲进程执行时屏幕显示“I am father”,儿子进程执行时屏幕显示“I am son”,女儿进程执行时屏幕显示“I am daughter”。这一点需要注意。返回结果时,由于每一次的不确定性,所以要想得到比较具有说服性的,就必须经过多次的测试。 2、连续4个fork()的进程家族树在进行实验的时候可能会出现进程输出信息一直一样的情况,需要多次执行输出才有可能会看到输出结果不一样的情况

操作系统实验报告心得体会

操作系统实验报告心得体会 每一次课程设计度让我学到了在平时课堂不可能学到的东西。所以我对每一次课程设计的机会都非常珍惜。不一定我的课程设计能够完成得有多么完美,但是我总是很投入的去研究去学习。所以在这两周的课设中,熬了2个通宵,生物钟也严重错乱了。但是每完成一个任务我都兴奋不已。一开始任务是任务,到后面任务就成了自己的作品了。总体而言我的课设算是达到了老师的基本要求。总结一下有以下体会。 1、网络真的很强大,用在学习上将是一个非常高效的助手。几乎所有的资料都能够在网上找到。从linux虚拟机的安装,到linux的各种基本命令操作,再到gtk的图形函数,最后到文件系统的详细解析。这些都能在网上找到。也因为这样,整个课程设计下来,我浏览的相关网页已经超过了100个(不完全统计)。当然网上的东西很乱很杂,自己要能够学会筛选。 不能决定对或错的,有个很简单的方法就是去尝试。就拿第二个实验来说,编译内核有很多项小操作,这些小操作错了一项就可能会导致编译的失败,而这又是非常要花时间的,我用的虚拟机,编译一次接近3小时。所以要非常的谨慎,尽量少出差错,节省时间。多找个几个参照资料,相互比较,

慢慢研究,最后才能事半功倍。 2、同学间的讨论,这是很重要的。老师毕竟比较忙。对于课程设计最大的讨论伴侣应该是同学了。能和学长学姐讨论当然再好不过了,没有这个机会的话,和自己班上同学讨论也是能够受益匪浅的。大家都在研究同样的问题,讨论起来,更能够把思路理清楚,相互帮助,可以大大提高效率。 3、敢于攻坚,越是难的问题,越是要有挑战的心理。这样就能够达到废寝忘食的境界。当然这也是不提倡熬夜的,毕竟有了精力才能够打持久战。但是做课设一定要有状态,能够在吃饭,睡觉,上厕所都想着要解决的问题,这样你不成功都难。 4、最好在做课设的过程中能够有记录的习惯,这样在写实验报告时能够比较完整的回忆起中间遇到的各种问题。比如当时我遇到我以前从未遇到的段错误的问题,让我都不知道从何下手。在经过大量的资料查阅之后,我对段错误有了一定的了解,并且能够用相应的办法来解决。 在编程中以下几类做法容易导致段错误,基本是是错误地使用指针引起的 1)访问系统数据区,尤其是往系统保护的内存地址写数据,最常见就是给一个指针以0地址 2)内存越界(数组越界,变量类型不一致等) 访问到不属于你的内存区域

操作系统-实验三

操作系统-实验三 文件系统的用户界面 一、实验目的 进一步理解、使用和掌握文件的系统调用、文件的标准子例程,能利用和选择这些基本的文件操作完成复杂的文件处理工作。 二、实验题目 1.编写一个文件复制的C语言程序:分别使用文件的系统调用read(fd, buf, nbytes), write(fd, buf, nbytes)和文件的库函数fread(buf, size, nitems, fp), fwrite(buf, size, nitems, fp),编写一个文件的复制程序(文件大小>1M ),文件可以编一个C 程序来生成,或使用/usr/bin下的二进制执行文件。 调用格式例如: copy file1 file2 #include main(int argc, char*argv[]) { … fd1=open(argv[1], O_RDONLY); //系统调用 creat (argv[2], 0660); fd2=open(argv[2], O_WRONL Y); while((n=read(fd1, buf, BUFSIZE))>0) write(fd2, buf, n); … main带参的调用方法例(含测试时间): time ./mycp infile outfile 流文件的实验程序请参考该程序完成。

上述函数中nbytes, size和nitems都取值为1时(即一次读写一个字节),比较系统调用和流文件两种程序的执行效率。当nbytes取4096字节,size取1字节且nitems取4096时(即一次读写4096字节),再次比较这两种程序的执行效率(文件大小>1M)。如: 创建大文件的方法之一,比如用creat 创建一个新文件,用open写打开该文件,用lseek将写指针移到很远处,写入随便一个字符。比如移动0x100000,用write写个“1”,就会得到一个1M大小的文件。也可到Linux的/usr/bin找一个1~3M左右的大的执行文件。 对于单独使用的速度较快的计算机,文件要10M~100M。 2.编写一个父子进程之间用无名管道进行数据传送的C程序。父进程逐一读出一个文件的内容,并通过管道发送给子进程。子进程从管道中读出信息,再将其写入一个新的文件。程序结束后,对原文件和新文件的内容进行比较。 3.在两个用户的独立程序之间,使用有名管道,重新编写一个C程序,实现题2的功能。 三、源代码 1.编写一个文件复制的C语言程序:分别使用文件的系统调用read(fd, buf, nbytes), write(fd, buf, nbytes)和文件的库函数fread(buf, size, nitems, fp), fwrite(buf, size, nitems, fp),编写一个文件的复制程序。 程序一 #define BUFSIZE 4096 #include #include #include #include int main(int argc, char *argv[]) { printf("这个是一次4096个字节的运行结果:\n");

Windows操作系统实验三实验报告

Windows操作系统C/C++ 程序实验 姓名:___________________ 学号:___________________ 班级:___________________ 院系:___________________ ______________年_____月_____日

实验三Windows 2000/xp线程同步 一、背景知识 二、实验目的 在本实验中,通过对事件和互斥体对象的了解,来加深对Windows 2000/xp线程同步的理解。 1) 回顾系统进程、线程的有关概念,加深对Windows 2000/xp线程的理解。 2) 了解事件和互斥体对象。 3) 通过分析实验程序,了解管理事件对象的API。 4) 了解在进程中如何使用事件对象。 5) 了解在进程中如何使用互斥体对象。 6) 了解父进程创建子进程的程序设计方法。 三、工具/准备工作 在开始本实验之前,请回顾教科书的相关内容。 您需要做以下准备: 1) 一台运行Windows 2000/xp Professional操作系统的计算机。 2) 计算机中需安装V isual C++ 6.0专业版或企业版。 四、实验内容与步骤 1. 事件对象 清单4-1程序展示了如何在进程间使用事件。父进程启动时,利用CreateEvent() API创建一个命名的、可共享的事件和子进程,然后等待子进程向事件发出信号并终止父进程。在创建时,子进程通过OpenEvent() API打开事件对象,调用SetEvent() API使其转化为已接受信号状态。两个进程在发出信号之后几乎立即终止。 步骤1:登录进入Windows 2000/xp Professional。 步骤2:在“开始”菜单中单击“程序”-“Microsoft V isual Studio 6.0”–“Microsoft V isual C++ 6.0”命令,进入V isual C++窗口。 步骤3:在工具栏单击“打开”按钮,在“打开”对话框中找到并打开实验源程序3-1.cpp。 步骤4:单击“Build”菜单中的“Compile 3-1.cpp”命令,并单击“是”按钮确认。系统

操作系统实验报告 实验三

昆明理工大学信息工程与自动化学院学生实验报告 (2012 —2013 学年第二学期) 课程名称:操作系统开课实验室:信自楼445 2013 年 5 月 16 日 一、实验要求 对给定的一个页面走向序列,请分别用先进先出算法和二次机会算法,计算淘汰页面的顺序、缺页次数和缺页率,具体的页面走向可参考教材例题或习题。 二、实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。通过本次实验,要求学生通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解,通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 三、实验原理及基本技术路线图(方框原理图) 用C或C++语言模拟实现请求式分页管理。要求实现:页表的数据结构、分页式内存空间的分配及回收(建议采用位图法)、地址重定位、页面置换算法(从FIFO,LRU,NRU中任选一种)。 提示:可先用动态申请的方式申请一大块空间,然后假设该空间为内存区域,对该空间进行

流程图:

数据结构定义: 我提供定义了两个类。第一个类就是页面类,在这类里面包括一些重要的数据成员。

有页号(page_no),页框号(frame_no),页面是否在内存的标志(flag(1表示在内存,0表示不在内存)),访问次数(times)。另一个类是进程控制块类PCB。类的数据成员有id(进程编号),name(进程名),size(进程大小),*p(页类指针)。在本类中,有一些成员函数:构造函数(用来初始化本类的所有数据),displayPCB(输出函数),convert(地址映射函数),allocation(分配函数),restore(回收函数)。另外还有一些类外的函数:initMemorySpace(初始化内存空间的函数),displayMemorySpace(输出内存空间的状态1(表示占用)0(表示空))。 四、所用仪器、材料(设备名称、型号、规格等)。 计算机一台 五、实验方法、步骤 程序代码: #include #include #include using namespace std; const int frame_size=1024;//页框长度,固定为 1k const int page_size=1024;//页面长度,固定为 1k const int memory_size=102400;//内存容量,固定为 100k const int frame_number=memory_size/frame_size;// 100k/1k=100 frames int *memory;//指针变量,用来存内存的状态1还是0。 void initMemorySpace()//初始化内存空间 { int i,ran,times; time_t t;//定义time_t对象 t t=time(0); srand(t);//随机改变每秒 times=0;//变量times初始化为0,变量的功能是检查内存空间是否有一半空了没。 memory=new int[frame_number];//申请内存空间,有frame_number 这么大的空间 for(i=0;i

操作系统实验报告

操作系统实验报告 实验名称: 系统的引导 所在班级: 指导老师: 老师 实验日期: 2014年3 月29 日

一、实验目的 ◆熟悉hit-oslab实验环境; ◆建立对操作系统引导过程的深入认识; ◆掌握操作系统的基本开发过程; ◆能对操作系统代码进行简单的控制,揭开操作系统的神秘面纱。 二、实验容 1. 阅读《Linux核完全注释》的第6章引导启动程序,对计算机和Linux 0.11的引导过程进行初步的了解。 2. 按照下面的要求改写0.11的引导程序bootsect.s。 3. 有兴趣同学可以做做进入保护模式前的设置程序setup.s。 4. 修改build.c,以便可以使用make BootImage命令 5. 改写bootsect.s主要完成如下功能: bootsect.s能在屏幕上打印一段提示信息XXX is booting...,其中XXX是你给自己的操作系统起的名字,例如LZJos、Sunix等。 6. 改写setup.s主要完成如下功能: bootsect.s能完成setup.s的载入,并跳转到setup.s开始地址执行。而setup.s 向屏幕输出一行"Now we are in SETUP"。setup.s能获取至少一个基本的硬件参数(如存参数、显卡参数、硬盘参数等),将其存放在存的特定地址,并输出到屏幕上。setup.s不再加载Linux核,保持上述信息显示在屏幕上即可。 三、实验环境

本实验使用的系统是windows系统或者是Linux系统,需要的材料是osexp。 四、实验步骤 1. 修改bootsect.s中的提示信息及相关代码; 到osexp\Linux-0.11\boot目录下会看到图1所示的三个文件夹,使用UtraEdit 打开该文件。将文档中的98行的mov cx,#24修改为mov cx,#80。同时修改文档中的第246行为图2所示的情形。 图1图2 图3 2. 在目录linux-0.11\boot下,分别用命令as86 -0 -a -o bootsect.obootsect.s和 ld86 -0 -s -obootsectbootsect.o编译和bootsect.s,生成bootsect文件; 在\osexp目录下点击MinGW32.bat依此输入下面的命令: cd linux-0.11 cd boot as86 -0 -a -o bootsect.obootsect.s ld86 -0 -s -o bootsectbootsect.o

操作系统实验报告

操作系统实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

许昌学院 《操作系统》实验报告书学号: 姓名:闫金科 班级:14物联网工程 成绩: 2016年02月

实验一Linux的安装与配置 一、实验目的 1.熟悉Linux系统的基本概念,比如Linux发行版、宏内核、微内核等。 2.掌握Linux系统的安装和配置过程,初步掌握Linux系统的启动和退出方 法。 3.熟悉Linux系统的文件系统结构,了解Linux常用文件夹的作用。 二、实验内容 1.从网络上下载VMware软件和两个不同Linux发行版镜像文件。 2.安装VMware虚拟机软件。 3.在VMware中利用第一个镜像文件完成第一个Linux的安装,期间完成网络 信息、用户信息、文件系统和硬盘分区等配置。 4.在VMware中利用第二个镜像文件完成第二个Linux的安装,并通过LILO或 者GRUB解决两个操作系统选择启动的问题。 5.启动Linux系统,打开文件浏览器查看Linux系统的文件结构,并列举出 Linux常用目录的作用。 三、实验过程及结果 1、启动VMware,点击新建Linux虚拟机,如图所示: 2、点击下一步,选择经典型,点击下一步在选择客户机页面选择 Linux,版本选择RedHatEnterpriseLinux5,如图所示: 3、点击下一步创建虚拟机名称以及所要安装的位置,如图所示: 4、点击下一步,磁盘容量填一个合适大小,此处选择默认值大小 10GB,如图所示: 5、点击完成,点击编辑虚拟机设置,选择硬件选项中的CD-ROM (IDE...)选项,在右侧连接中选择“使用ISO镜像(I)”选项,点 击“浏览”,找到Linux的镜像文件,如图所示:

操作系统实验

操作系统实验报告

实验一进程控制与描述 一、实验目的 通过对Windows 2000编程,进一步熟悉操作系统的基本概念,较好地理解Windows 2000的结构。通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉操作系统的进程概念,理解Windows 2000中进程的“一生”。 二、实验环境 硬件环境:计算机一台,局域网环境; 软件环境:Windows 2000 Professional、Visual C++ 6.0企业版。 三、实验内容和步骤 第一部分(共三个程序): Windows 2000 Professional下的GUI应用程序,使用Visual C++编译器创建一个GUI 应用程序,代码中包括了WinMain()方法,该方法GUI类型的应用程序的标准入口点。 程序1-1 # include # pragma comment(lib, “user32.lib” ) int APIENTRY WinMain(HINSTANCE /* hInstance */ , HINSTANCE /* hPrevInstance */, LPSTR /* lpCmdLine */, int /* nCmdShow */ ) { :: MessageBox( NULL, “Hello, Windows 2000” , “Greetings”, MB_OK) ; return(0) ; } 实验结果 然后改变参数,运行结果如下:

1-2显示了当前进程的优先级: 1-3进一步显示进程的具体情况: 第二部分:进程的“一生”(共三个程序) 1、创建进程 本程序展示的是一个简单的使用CreateProcess() API函数的例子。首先形成简单的命令行,提供当前的EXE文件的指定文件名和代表生成克隆进程的号码。大多数参数都可取缺省值,但是创建标志参数使用了:BOOL bCreateOK标志,指示新进程分配它自己的控制台,这使得运行示例程序时,在任务栏上产生许多活动标记。然后该克隆进程的创建方法关闭传

计算机操作系统 实验报告

操作系统实验报告 学院:计算机与通信工程学院 专业:计算机科学与技术 班级: 学号: 姓名: 指导教师: 成绩: 2014年 1 月 1 日

实验一线程的状态和转换(5分) 1 实验目的和要求 目的:熟悉线程的状态及其转换,理解线程状态转换与线程调度的关系。 要求: (1)跟踪调试EOS线程在各种状态间的转换过程,分析EOS中线程状态及其转换的相关源代码; (2)修改EOS的源代码,为线程增加挂起状态。 2 完成的实验内容 2.1 EOS线程状态转换过程的跟踪与源代码分析 (分析EOS中线程状态及其转换的核心源代码,说明EOS定义的线程状态以及状态转换的实现方法;给出在本部分实验过程中完成的主要工作,包括调试、跟踪与思考等) 1.EOS 准备了一个控制台命令“loop ”,这个命令的命令函数是 ke/sysproc.c 文件中的ConsoleCmdLoop 函数(第797行,在此函数中使用 LoopThreadFunction 函数(第755 行)创建了一个优先级为 8 的线程(后面简称为“loop 线程”),该线程会在控制台中不停的(死循环)输出该线程的ID和执行计数,执行计数会不停的增长以表示该线程在不停的运行。loop命令执行的效果可以参见下图: 2. 线程由阻塞状态进入就绪状态 (1)在虚拟机窗口中按下一次空格键。 (2)此时EOS会在PspUnwaitThread函数中的断点处中断。在“调试”菜单中选择“快速监视”,在快速监视对话框的表达式编辑框中输入表达式“*Thread”,然后点击“重新计算”按钮,即可查看线程控制块(TCB)中的信息。其中State域的值为3(Waiting),双向链表项StateListEntry的Next和Prev指针的值都不为0,说明这个线程还处于阻塞状态,并在某个同步对象的等待队列中;StartAddr域的值为IopConsoleDispatchThread,说明这个线程就是控制台派遣线程。 (3)关闭快速监视对话框,激活“调用堆栈”窗口。根据当前的调用堆栈,可以看到是由键盘中断服务程序(KdbIsr)进入的。当按下空格键后,就会发生键盘中断,从而触发键盘中断服务程序。在该服务程序的最后中会唤醒控制台派遣线程,将键盘事件派遣到活动的控制台。 (4)在“调用堆栈”窗口中双击PspWakeThread函数对应的堆栈项。可以看到在此函数中连续调用了PspUnwaitThread函数和PspReadyThread函数,从而使处于阻塞状态的控制台派遣线程进入就绪状态。 (5)在“调用堆栈”窗口中双击PspUnwaitThread函数对应的堆栈项,先来看看此函数是如何改变线程状态的。按F10单步调试直到此函数的最后,然后再从快速监视对

操作系统实验报告

操作系统实验报告 银行家算法 班级:计算机()班 姓名:李君益 学号:(号) 提交日期: 指导老师: 林穗 一、设计题目 加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效的防止和避免死锁的发生。 二、设计要求

内容: 编制银行家算法通用程序,并检测思考题中所给状态的安全性。 要求: (1)下列状态是否安全?(三个进程共享个同类资源) 进程已分配资源数最大需求数 (状态) (状态) (2)考虑下列系统状态 分配矩阵最大需求矩阵可用资源矩阵 问系统是否安全?若安全就给出所有的安全序列。若进程请求(),可否立即分配? 三、设计分析 一.关于操作系统的死锁 .死锁的产生 计算机系统中有许多独占资源,他们在任一时刻只能被一个进程使用,如磁带机,绘图仪等独占型外围设备,或进程表,临界区等软件资源。两个进程同时向一台打印机输出将导致一片混乱,两个进程同时进入临界区将导致数据库错误乃至程序崩溃。正因为这些原因,所有操作系统都具有授权一个进程独立访问某一辞源的能力。一个进程需要使用独占型资源必须通过以下的次序: ●申请资源 ●使用资源 ●归还资源 若申请施资源不可用,则申请进程进入等待状态。对于不同的独占资源,进程等待的方式是有差别的,如申请打印机资源、临界区资源时,申请失败将一位这阻塞申请进程;而申请打开文件文件资源时,申请失败将返回一个错误码,由申请进程等待一段时间之后重试。只得指出的是,不同的操作系统对于同一种资源采取的等待方式也是有差异的。 在许多应用中,一个进程需要独占访问多个资源,而操作系统允许多个进程并发执行共享系统资源时,此时可能会出现进程永远被阻塞的现象。这种现象称为“死锁”。 2.死锁的定义 一组进程处于死锁状态是指:如果在一个进程集合中的每个进程都在等待只能由该集合中的其他一个进程才能引发的时间,则称一组进程或系统此时发生了死锁。 .死锁的防止 .死锁产生的条件: ●互斥条件

操作系统实验报告

操作系统教程实验报告 专业班级 学号 姓名 指导教师

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。 (2)掌握WINDOWS API的使用方法。 (3)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32 Consol Application 步骤1:登录进入Windows,启动VC++ 6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows “命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序:E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果 (如果运行不成功,则可能的原因是什么?) : (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果 (如果运行不成功,则可能的原因是什么?) : 步骤5:分别屏蔽While循环中的两个for循环,或调整两个for循环的次数,写出运行结果。 屏蔽i循环:

操作系统实验报告.

学生学号0121210680225 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称操作系统 开课学院计算机科学与技术学院 指导老师姓名刘军 学生姓名李安福 学生专业班级软件sy1201 2014 — 2015 学年第一学期

《操作系统》实验教学大纲 课程编号: 课程名称:操作系统/Operating System 实验总学时数:12学时 适应专业:计算机科学与技术、软件工程 承担实验室:计算机科学与技术学院实验中心 一、实验教学的目的和任务 通过实验掌握Linux系统下常用键盘命令、系统调用、SHELL编程、后台批处理和C程序开发调试手段等基本用法。 二、实验项目及学时分配 序号实验项目名称实验学时实验类型开出要求 01 Linux键盘命令和vi 2 设计必开 02 Linux下C编程 2 设计必开 03 SHELL编程和后台批处理 2 设计必开 04 Linux系统调用(time) 2 设计必开 05 Linux进程控制(fork) 4 设计必开 三、每项实验的内容和要求: 1、Linux键盘命令和vi 要求:掌握Linux系统键盘命令的使用方法。 内容:见教材p4, p9, p40, p49-53, p89, p100 2、Linux下的C编程 要求:掌握vi编辑器的使用方法;掌握Linux下C程序的源程序编辑方法;编译、连接和运行方法。 内容:设计、编辑、编译、连接以及运行一个C程序,其中包含键盘输入和屏幕输出语句。 3、SHELL编程和后台批处理 要求:掌握Linux系统的SHELL编程方法和后台批处理方法。 内容:(1) 将编译、连接以及运行上述C程序各步骤用SHELL程序批处理完成,前台运行。 (2) 将上面SHELLL程序后台运行。观察原C程序运行时输入输出情况。 (3) 修改调试上面SHELL程序和C程序,使得在后台批处理方式下,原键 盘输入内容可以键盘命令行位置参数方式交互式输入替代原键盘输入内容, 然后输出到屏幕。 4、Linux系统调用使用方法。

操作系统实验三 进程的创建#(精选.)

操作系统 实验报告 哈尔滨工程大学 软件学院

第一讲实验环境的使用 一、实验概述 1. 实验名称 进程的创建 2. 实验目的 练习使用EOS API函数CreateProcess创建一个进程,掌握创建进程的方法,理解进程和程序的区别。 调试跟踪CreateProcess函数的执行过程,了解进程的创建过程,理解进程是资源分配的单位。 3. 实验类型(验证、设计) 验证 4. 实验内容

二、实验环境 操作系统:windows xp 编译环境:OS Lab 语言:汇编语言、C语言 三、实验过程(每次实验不一定下面6条都写,根据实际情况定) 1.设计思路和流程图

main函数流程图 2. 需要解决的问题及解答 (1)在源代码文件NewTwoProc.c提供的源代码基础上进行修改,要求使用hello.exe同时创建10个进程。提示:可以使用PROCESS_INFORMATION类型定义一个有10个元素的数组,每一个元素对应一个进程。使用一个循环创建10个子进程,然后再使用一个循环等待10个子进程结束,得到退出码后关闭句柄。 答:后文中,有此题解决方案。 尝试根据之前对PsCreateProcess函数和PspCreateProcessEnvironment函数执行过程的跟踪调试,绘制一幅进程创建过程的流程图。

PspCreateThread创建 了进程的主线程 结束 (3)在PsCreateProcess函数中调用了PspCreateProcessEnvironment函数后又先后调用了PspLoadProcessImage和PspCreateThread函数,学习这些函数的主要功能。能够交换这些函数被调用的顺序吗?思考其中的原因。 答:PspCreateProcessEnvironment 的主要功能是创建进程控制块并且为进程创建了地址空间和分配了句柄表。PspLoadProcessImage是将进程的可执行映像加载到了进程的地址空间中。PspCreateThread创建了进程的主线程。这三个函数被调用的顺序是不能够改变的就向上面描述的加载可执行映像之前必须已经为进程创建了地址空间这样才能够确定可执行映像可以被加载到内存的什么位置在创建主线程之前必须已经加载了可执行映像这样主线程才能够知道自己要从哪里开始执行,执行哪些指令。因此不能交换他们的顺序。 3.主要数据结构、实现代码及其说明 主要定义一个有10个元素的数组,每一个元素对应一个进程。使用一个循环创建10个子进程,然后再使用一个循环等待10个子进程结束,得到退出码后关闭句柄 4.源程序并附上注释 #include "EOSApp.h" // // main 函数参数的意义: // argc - argv 数组的长度,大小至少为1,argc - 1 为命令行参数的数量。 // argv - 字符串指针数组,数组长度为命令行参数个数+ 1。其中argv[0] 固定指向当前 // 进程所执行的可执行文件的路径字符串,argv[1] 及其后面的指针指向各个命令行 // 参数。

操作系统实验报告

操作系统实验报告班级:软件1042 姓名:****** 学号:101***** 指导老师:***老师 安徽工业大学工商学院2012年12月

目录 实验一 WINDOWS进程初识 (2) 1、实验目的 (2) 2、实验内容和步骤 (2) 3、实验结论 (4) 实验二进程管理 (4) 1、实验目的 (4) 2、实验内容和步骤 (4) 3、实验结论 (9) 实验三进程同步的经典算法 (9) 1、实验目的 (9) 2、实验内容和步骤 (10) 3、实验结论 (12) 实验四存储管理 (12) 1、实验目的 (12) 2、实验内容和步骤 (12) 3、实验结论 (19)

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。 (2)掌握WINDOWS API的使用方法。 (3)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32 Consol Application 步骤1:登录进入Windows,启动VC++ 6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows “命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序:E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果 (如果运行不成功,则可能的原因是什么?) : 刚开始由于命令输入有误经改正后,正确调试出结果 (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果 (如果运行不成功,则可能的原因是什么?) :

操作系统实验3答案

实验三操作系统进程管理 一、实验目的 1) 掌握系统进程的概念,加深对Linux / UNIX进程管理的理解。 2) 学会使用ps命令和选项。 3) 列出当前shell中的进程。 4) 列出运行在系统中的所有进程。 5) 根据命令名搜索特定的进程。 6) 使用kill命令终止进程。 7) 根据用户名查找和终止进程。 二、实验内容和相应的答案截图,三、实验结果分析 步骤1:创建一个普通用户(参见实验二),以普通用户身份登录进入GNOME。 步骤2:打开一个“终端”窗口(参见实验二)。 步骤3:回顾系统进程概念,完成以下填空: 1) Linux系统中,几乎每一个启动的进程,都会由内核分配一个唯一的__PID__进程标识符,用于跟踪从进程启动到进程结束。 2) 当启动新进程的时候,内核也给它们分配系统资源,如__内存_和__CPU_。 3) 永远不向父进程返回输出的进程叫做__僵进程__。 4) 由父进程派生出来的进程叫做____子___进程。 5) ___父_进程是一个派生另一个进程的进程。 6) 运行用于提供服务的Linux系统进程是_______________。 7) 如果父进程在子进程之前结束,它创建了一个______________进程。 步骤4:回顾ps命令和信息。基本的ps命令显示当前shell中的进程信息,用户只能够查看当前终端窗口中初始化的进程。输入ps命令,将结果填入表3-3中。 表3-3 实验记录 下面,在当前终端窗口中,练习使用给出的每个选项的ps命令。

输入ps -f 命令,显示运行在系统中的某个进程的完全信息,填入表3-4中。 表3-4 实验记录 步骤5:列出系统中运行的所有进程。 输入ps -ef 命令,显示运行在系统中的各个进程的完全信息。执行该命令,并与ps –f 命令的输出结果对照,一致吗?有何不同? 答:不一致,后者显示了所有进程的完全可用信息,多了很多。 分析当前终端窗口中的输出结果,记录下来用于写实验报告。 a. 显示了多少个进程?答:59 b. 进程ID的PID是什么? c. 启动进程的命令(CMD) 是什么?答:sched d. 请观察,什么命令的PID号是1?答:init[5] e. 执行ps –ef >aaa命令,将ps命令的输出送到文本文件aaa。再次运行cat aaa | wc命令,计算进程的数目。其中,cat是显示文本文件命令。“|”是管道命令,就是将前一个命令的输出作为后一个命令的输入。wc 命令用来计算文本的行数,第一个数字显示的是行的数目,可以用来计算进程的数目。计算出进程数目并做记录。 执行man ps命令,可以打开Linux用户命令手册。了解ps命令的用法。输入wq命令可退出用户手册的阅读。man命令可以执行吗?结果如何? 答:Man ps时出现

相关主题
文本预览
相关文档 最新文档