当前位置:文档之家› 第二类曲面积分的计算方法

第二类曲面积分的计算方法

第二类曲面积分的计算方法
第二类曲面积分的计算方法

第二类曲面积分的计算方法

赵海林张纬纬

摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes公式,积分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解.

关键词第二类曲面积分定义法参数法投影法高斯公式Stokes公式向量计算形式

1引言

曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧?由于第二型曲面

积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当

困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用

2预备知识

2. 1第二型曲面积分的概念

2.1.1 流量问题(物理背景)

设稳定流动的不可压缩流体(假定密度为 1 )的速度为

v v v v

v(x, y,z) P(x, y,z)i Q(x,y,z)j R(x, y,z)k,

刀是一光滑的有向曲面,求单位时间内从曲面刀一侧流向另一侧的流量若为平面上面积为

S的区域,而流速v是常向量,指定侧的单位法向量

v v v v

n cos i cos j cosk

v v v

S v cos S v n.

若为曲面,流速v不是常向量,则用下面的方法计算流量

(1) 分割

将任意分成小块S i(i 1,2…,n), S同时代表其面积?

M i( i, i, i) S 以点M j处的流速v i v(M i)和单位法向量^分别代替

(2) 近似

S i 上其他各点处的流速和单位法向量,得到流过S i指定侧的流量的近似值:

v v

S i v i n i (i 1,2,…,n).

(3) 求和

n v v

V i n i S i

i 1

(4) 取极限

n v v

设T| i吧{ S的直径},则=常。v i n i S i.

i 1

这种与曲面的侧有关的和式极限就是所要讨论的第二型曲面积分

2.1.2 定义

设P, Q, R为定义在双侧曲面S上的函数,在S所指定的一侧作分割T,它

把S分为n个小曲面S,S2,…,S n,分割T的细度||T||7:蔦{S的径},

T m&{ S i的直径}, S yz, S i zx, S xy,分别表示S i在三个坐标面上的投影区域

的面积,他们的符号由S i的方向来确定若S i的法线正向与z轴正向成锐角时,

S在xoy平面的投影区域的面积S xy为正?反之,若S法线正向与z轴正向成钝角时,他在平面的投影区域xoy勺面积S xy为负在各个小曲面S i上任取一点(i, i, J

n n n

若|T| 0 P ( i, i, i ) S yz Ul 0 Q ( i, i , i ) S zx |T| 0 R ( i, i, i) S xy 存在

i 1 i 1 i 1

且与曲面S的分割T和(i, i, i)在S i上的取法无关,贝V称此极限为函数P, Q, R.在曲面S所指定的一侧上的第二型曲面积分,记作

P(x,y,z)dydz Q(x, y, z)dzdx R(x, y,z)dxdy

S

或者

P(x, y,z)dydz Q(x, y,z)dzdx R(x, y,z)dxdy

S S S '

据此定义,某流体以速度在单位时间内从曲面S的负侧流向正侧的总流量为

v (P,Q,R)在单位时间内从曲面S的负侧流向正侧的总流量为

P(x, y, z)dxdz Q(x, y,z)dzdx R(x, y,z)dxdy

S

又若,空间的磁场强度为(P(x, y,z),Q(x,y, z), R(x, y,z)),则通过曲面S的磁通量

H P(x, y,z)dxdz Q(x, y, z)dzdx R(x,y,z)dxdy

S

若以s表示曲面s的另一侧,由定义易得

P(x,y,z)dxdz Q(x, y, z)dzdx R(x, y,z)dxdy

S

P(x,y,z)dxdz Q(x, y, z)dzdx R(x, y,z)dxdy

S

2. 2第二型曲面积分的性质

性质1 (方向性)设向量值函数V在定向的光滑曲面S上的第二型曲面积分存在.记S为与S取相反侧的曲面,则V在S上的第二型曲面积分也存在,且成立

v ndS v ndS ?注意这个等式两边的n是方向相反的?

S S

性质2 (线性性) 若Pdydz Q j dzdx Rdxdy (i 1,2,…,k)存在,则

S

k k k k

(cP)dydz ( qQJdzdx ( qR)dxdy= c Rdydz Q i dzdx Rdxdy,

S i 1 i 1 i 1 i 1 S

其中C (i 1,2, , k)是常数?

性质3 (曲面可加性)若曲面S是由两两无公共内点的曲面块S1,S2,— , S k所组成,且

P(x, y,z)dxdz Q(x, y, z)dzdx R(x, y,z)dxdy (i 1,2 , k)

S

存在,则有

P(x,y,z)dxdz Q(x, y,z)dzdx R(x, y,z)dxdy

S

k

P(x, y,z)dxdz Q(x, y, z)dzdx R(x, y,z)dxdy

i

1

S

2.3第二型曲面积分的数量表达式

、uv

设 A(x, y,z) { P(x, y,z),Q(x, y,z), R(x,y,z)}

v

n {cos ,cos ,cos }, 则

uv v

A(x, y, z) ndS (Pcos Qcos Rcos )dS

其中dS 是曲面S 的面积元素.

uv v

记 dS n dS {cos dS,cos dS,cos dS} {dydz,dzdx,dxdy},称 dS 为曲面 S 的面积微元向量?则

uv v uv

A ndS A dS Pdydz Qdzdx Rdxdy,

从而

uv v

A ndS Pdydz Qdzdx Rdxdy

S

S

?

uv v

即 A(x,y, z) ndS Pdydz Qdzdx Rdxdy dydz 是 dS 在 yoz 面上的投影;

S

S

'

dzdx 是dS 在zox 面上的投影;dxdy 在dS 在xoy 面上的投影.他们的取值可正、

可负、也可为零.如当cos 0时,dxdy 取符号.

特殊形式:

P(x, y, z)dydz 称为P 对坐标y, z 的曲面积分;

S

Q(x, y, z)dzdx 称为Q 对坐标乙x 的曲面积分;

S

R(x, y, z)dxdy 称为R 对坐标x, y 的曲面积分.

S

2.4 介绍两类曲面积分之间的联系

与曲线积分一样,当曲面的侧确定之后,可以建立两种类型曲面积分的联系

.设

S为光滑曲面,并以上侧为正侧,R为S上的连续函数,曲面积分在S的正侧进行.因而有

. n

R(x,y,z)dxdy 0 R( i , i , i )

S

i

1

1

由曲面面积公式

s

dxdy ,其中 是曲面S i 的法线方向与 z 轴正向

S

COS

i xy

的交角,它是定义在S 上的函数?因为积分沿曲面正侧进行, 所以 是锐角?又由S 'xy 是光滑的,所以cos 在闭区域S i 上连续?应用中值定理,在 S 内必存在一点,使 xy xy

这点的法线方向与

z 轴正 向的夹角

1

i 满足等式 S

cos i

S 或

xy

S i cos i S .

xy

于是 R( i ,i ,i ) S xy

R(

H i i i

)cos i S ? n 个部分相加后得

n

i R( i

1

,i , i ) ' S xy

n

R(

i , i , i )cos i

S

i

i 1

(2)

现在以cos i 表示曲面S 在点 任孑再)的 法线方向与z 轴正向夹角的余弦,则由

cos 的连续性,可推得当ITII

0时,(2)式右端极限存在.因此由(1)式得到

Q(x, y, z)dzdx

S

Q(x, y, z)cos S

dS

(3) 这里注意当改变曲面的侧向时,左边积分改变符

■,右边积分中角 改为

?因

而cos 也改变符号,所以右边积分也相应改变了符号

同理可证:

P(x,y,z)dydz

S

P(x, y,z)cos S

dS

Q(x, y,z)dzdx

Q(x, y,z)cos dS

S

S

(4)

其中,分别是S 上的法线方向与x 轴正向和与y 轴正向的夹角? 一般地有

P(x,y,z)dxdz S

Q(x, y,z)dzdx R(x,y,z)dxdy

[P(x,y,z)cos

Q(x, y, z)cos R(x, y, z)cos ]dS

S

(5)

这样在确定余弦函数 cos , cos

,cos 之后,由 (3),(4), (5) 式,

S

xy

(1)

便建立了两种不同类型曲面积分的联系

3介绍第二型曲面积分的多种计算方法

在数学分析课程中,有关曲面积分,尤其是第二型曲面积分的计算是一个重点、 也是一个难点问题,学生在学习过程中往往对这一问题感到束手无策、无从下手。 这一方面是由于曲面积分计算本身的复杂性,它既要考虑到曲面的形状及其投影区 域,又要注意到曲面的侧;另一方面

,也表明学生对这一计算问题缺乏必要而又行之

有效的方法?第二型曲面积分常用的计算方法主要有定义法,参数法,单一坐标平面 投影法,分项投影法,利用高斯公式求解,利用

stokes 公式求解,利用积分区间对

称性,向量法以及利用两类曲面积分之间的联系等方法进行求解

3.1 直接利用定义法进行计算

若R(x, y,z)在光滑有向曲面S: z z x, y , x, y D xy 上连续,则

R(x, y, z)dxdy 存在,且有计算公式:

S

其中D xy 表示S 在xoy 面上的投影区域,当曲面取上侧时公式(1)的右端取“ ”号, 取下侧时取“

”号.这一公式表明,计算曲面积分

R(x,y,z)dxdy 时,只要把其中变量

S

z 换为表示刀的函数 z z(x, y),然后D xy 在S 的投影区域上计算二重积分,

并考虑到符

号的选取即可,这一过程可总结成口诀:

“一代二投三定向”.

类似地,如果曲面

的方程y y(z, x),则

Q(x, y,z)dzdx

Q[x, y(z,x), z]dzdx

S

D zx

如果曲面刀的方程为

x x( y, z),则

P(x, y,z)dydz

P[x( y, z), y,z]dydz

S

D

yz

例1计算积分:

xyzdxdy

S

其中S 是球面x 2

y 2 z 2 1在第一、八卦限的部分,取球面外侧 .(如图1)

R x, y,z dxdy

S

R[ x, y,z x, y dxdy

xy

第一型曲面积分.

例5? 设有空间闭区域仏={(x 』,z )|L 十b + z* 炉,z"}, 。2 ={(*』,Z )|x2 + y' + z* 炉,xno 』no,zno},则有(「) (A) Jff = 4fJf xdv a \ 口 2 (C) JjJ 皿=4jJJz 加 2 n 2 解:由对称性, JJj xdv = 0, JJJ xdv JJf ydv = 0, JJf ydv 工? n. ?2 Jjj xyzdv = 0, JJJ xyzdv □ 门2 3.含绝对值函数的二重积分的计算 例1计算血-兀2|db ?其中6-1 W0"" 解 先去掉绝对值符号,如图 川y_p|db D =jj (x 2-j)da + JJ(y-x 2 )da Di 4-D J D 、 訂:时:(宀刃与+匸时:0-兀湎=*? (B) |JJ ydv = 4jjj ydv

4、交换积分次序的方法 1.计算fdxfxb - dy 解由于卜一心堤无法积出类型,则需交 换积分次序, y \ /歹=x V D: O^x

曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳 一、曲线积分与曲面积分的计算方法 1.曲线积分与曲面积分的计算方法归纳如下: (1) 利用性质计算曲线积分和曲面积分. (2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则 1 (,)2(,)L L f x f x y ds f x y ds f x ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P x P x y dx P x y dy P x ??=?????对为奇函数 对为偶函数 1 0 (,)2(,)L L Q x Q x y dy Q x y dy Q x ??=?????对为偶函数 对为奇函数 其中1L 是L 在右半平面部分. 若积分曲线L 关于x 轴对称,则 1 (,)2(,)L L f y f x y ds f x y ds f y ??=? ??? ?对为奇函数对为偶函数 1 0 (,)2(,)L L P y P x y dx P x y dy P y ??=?????对为偶函数 对为奇函数 1 0 (,)2(,)L L Q y Q x y dy Q x y dy Q y ??=?????对为奇函数 对为偶函数 其中1L 是L 在上半平面部分.

(2)若空间积分曲线L 关于平面=y x 对称,则 ()()=??L L f x ds f y ds . (3)若积分曲面∑关于xOy 面对称,则 1 0 (,,)2(,,)f z f x y z dS R x y z dS f z ∑ ∑?? =????? ??对为奇函数对为偶函数 1 0 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分. 若积分曲面∑关于yOz 面对称,则 1 0 (,,)2(,,)f x f x y z dS R x y z dS f x ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分. 若积分曲面∑关于zOx 面对称,则 1 0 (,,)2(,,)f y f x y z dS R x y z dS f y ∑ ∑?? =????? ??对为奇函数 对为偶函数 1 0 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑?? =???????对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分. (4)若曲线弧() :()()αβ=?≤≤?=? x x t L t y y t ,则 [ (,)(),()()β α αβ=

探讨第二型曲面积分的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 0 前言 (1) 1直接利用公式进行计算 (1) 2利用积分曲面的对称性进行计算 (3) 3利用两类曲面积分之间的联系进行计算 (6) 4利用高斯公式进行计算 (6) 参考文献 (9)

探讨第二型曲面积分的计算方法 姓名:李亚平 学号:20105031272 数学与信息科学学院 数学与应用数学专业 指导老师:张萍 职称:讲师 摘 要:本文总结了有关第二类曲面积分的几种算法,对每种计算方法均配以典型例题加以诠释. 关键词:曲面积分;二重积分;投影区域;高斯公式. The application of symmetry to the calculation of curvilinear integral and camber integral Abstract:Some theorems and methods for simplifying curvilinear integral and camber integral calculations by means of symmetry have been introduced in this essay .And the proves of theorems is also included . Key Words :symmetry ;curvilinear integral ;camber integral ;gauss formula . 0 前言 众所周知,第二型曲面积分的计算比较繁琐,但是若能分类,利用曲面的对称性、两类曲面积分之间的联系、高斯公式、图形结合等方法系统的来解答第二型曲面积分,有时候就能使第二型曲面积分的计算相对简单、易懂,故此篇文章就第二型曲面积分的几种常见计算方法为中心进行展开讨论. 1 利用公式直接进行计算 大家知道,若()z y x R ,,在光滑有向曲面()()xy D y x y x z z ∈=∑,,,:上连续,则()??∑ dxdy z y x R ,,存在,且有计算公式: ()()()d x d y y x z y x R d x d y z y x R xy D ????±= ∑,,,,, (1) 其中xy D 表示∑在xOy 面上的投影区域,当曲面取上侧时(1)的右端取“+”号,取下侧时取“—”号.

空间曲线积分的计算方法

空间曲线积分的计算方法 (1)曲线积分的计算例1 计算,其中为平面被三个坐标平面所截三角形的边界,若从轴正向看去,定向为逆时针方向.方法一根据第二型曲线积分的定义化为定积分计算根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数.解法一:设,则,,,则.由曲线积分的定义,有.同理可得: .所以.方法二将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系.解法二:设,,则,是围成的区域.代入原积分由格林公式得原式.化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算.方法三根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮

助.我们主要在讨论单轮换对称的情形.解法三:由题目特征可知该积分及曲线都具有轮换对称性,因此由对称性知原式.同样由对称性知原式.方法四根据公式求曲线积分 公式建立了空间曲线积分和曲面积分之间的联系,从而将曲线积分和曲面积分有机联系起来. 解法四: 设,方向为上侧,曲面上一点的外法线向量的方向余弦为由公式化为第一型曲面积分得原式.为解法一中所设的点组成的三角形.另解: 根据上面解法中所设,并设为在面上的投影.用公式化为第二型曲面积分得原式 .用公式将曲线积分化为曲面积分时,若曲面为平面化为第一型曲面积分较简单.

第二类曲线积分的计算

第二类曲线积分的计算 Jenny was compiled in January 2021

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为 }{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量 形式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿 空间有向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的

第二型曲线积分与曲面积分的计算方法

第二型曲线积分与曲面积分的计算方法 摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目. 关键词: 曲面积分;曲线积分 1 引 言 第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的 重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义. 2 第二型曲线积分 例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-?,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线 o (0,0) 的弧. 方法一:利用格林公式法 L D Q P Pdx Qdy dxdy x y ?? ??+=- ????????,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的. 解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L , ()()()()()()1 1 sin cos sin cos x x L L x x L I e y b x y dx e y ax dy e y b x y dx e y ax dy =-++---++-?? 记为12I I I =- , 则由格林公式得:()1cos cos x x D D Q P I dxdy e y a e y b dxdy x y ??????=-=---- ??????????? ()()22 D b a dxdy a b a π =-= -?? 其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

曲线积分的计算法

曲线积分 第一类 ( 对弧长 ) 第二类 ( 对坐标 ) ? ??转化 定积分 (1) 选择积分变量 用参数方程 用直角坐标方程 用极坐标方程 (2) 确定积分上下限 第一类: 下小上大 第二类: 下始上终 对弧长曲线积分的计算 定理 ) ()()()](),([),(,],[)(),()(),(), (, ),(22βαψ?ψ?βαψ?βαψ?β α <'+'=≤≤? ? ?==?? dt t t t t f ds y x f t t t t y t x L L y x f L 且 上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意: ;.1βα一定要小于上限定积分的下限. ,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形 . ) (:)1(b x a x y L ≤≤=ψ. )(1)](,[),(2dx x x x f ds y x f b a L ?? '+=ψψ. )(:)2(d y c y x L ≤≤=?. )(1]),([),(2dy y y y f ds y x f d c L ?? '+=??

).(, sin ,cos :,象限第椭圆求I ? ? ?===?t b y t a x L xyds I L 解 dt t b t a t b t a I 2220 )cos ()sin (sin cos +-?=?π dt t b t a t t ab 222220 cos sin cos sin +=?π ?-= a b du u b a ab 22 2) cos sin (2222t b t a u +=令. ) (3) (22b a b ab a ab +++=例2 . )2,1()2,1(,4:, 2 一段到从其中求-==?x y L yds I L x y 42=解 dy y y I 222)2 (1+=?-. 0=例3 ) 20(., sin ,cos :, πθθθθ≤≤===Γ=?Γ 的一段其中求k z a y a x xyzds I 解 θ θθθd k a k a 222sin cos +?? =π 20 I . 2 1 222k a ka +-=π例4 ?? ?=++=++Γ=?Γ . 0, , 22 2 2 2z y x a z y x ds x I 为圆周其中求解 由对称性, 知 . 22 2 ???Γ ΓΓ==ds z ds y ds x ?Γ ++=ds z y x I )(312 22故例1

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林 张纬纬 摘要 利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词 第二类曲面积分 定义法 参数法 投影法 高斯公式 Stokes 公式 向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++ , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 cos .S v S v n θΦ==?? 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积.

数学专业毕业论文-第二型曲线积分与曲面积分的计算方法

师范大学 本科毕业论文 题目:第二型曲线积分与曲面积分的计算方法专业:数学与应用数学 系班:数学与信息科学系2006级数本2班毕业年份: 姓名: 学号: 指导教师: 职称:教授

目录 本科毕业论文任务书 (1) 本科毕业论文开题报告 (3) 本科毕业论文登记表 (5) 毕业论文论文正文文稿 (7) 本科毕业论文答辩记录 (15)

西北师范大学本科毕业论文(设计)任务书论文(设计)题目第二型曲线积分与曲面积分的计算方法 学生姓名系、专业、班级 数学与信息科学系 数学与应用数学2006级数本2班 毕业年份2010年学号 指导教师职称教授 一、文献查阅指引 1. 查阅的专著 [1] 华东师大数学系. 数学分析(下)[M],第三版. 高等教育出版社,2001,224-231. [2] 刘玉琏,傅沛仁等.数学分析讲义(下)[M],第四版.高等教育出版社,2003,75-388. [3] 林源渠,方企勤. 数学分析解题指南[M]. 北京大学出版社,2001,38-362. [4] 陈文灯. 数学复习指南[M]. 世界图书出版社,2000,276-287. [5] 田勇.硕士研究生入学考试历年真题解析[M]. 机械工业出版社,2002,175-188. [6] 华中科技大学数学系.考研特别快车—数学[M].华中科技大学出版社,2001,04-212 2. 查阅的学术论文及期刊 [1] 孙一生.第二型曲线与曲面积分计算的基本方法与技巧[J].《哈尔滨师范大学自然 科学学报》,1989,5(2):106-112 . [2] 陈少元.第二型曲线积分计算方法与技巧[J]. 科技信息(学术版),2007(1). 3. 查阅的相关网站 [1]http //https://www.doczj.com/doc/a0952657.html,/Periodical_lygzyjsxyxb200604029.aspx . 二、内容要求 1. 提出第二型曲线积分与曲面积分的基本计算方法. 2. 查阅相关的资料、书籍对所用到的基本计算方法进行分析,并加以概括与总结. 3. 论文中所用到的实例必须具有典型代表性,而且逻辑推理性强、分析恰当. 4. 论文可以借鉴相关的研究成果,但不能抄袭.

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中, 必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二 型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌 握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题 型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说 明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第 一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系, 让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的 应用. 2 预备知识 2.1第二型曲面积分的概念

2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++v v v v , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++v v v v 则 若∑为曲面,流速v v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =v v 和单位法向量i n v 分别代替 i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 2.1.2 定义

第二类曲面积分的计算方法

第二类曲面积分的计算 方法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes公 式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过 程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧. 由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知 识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在 求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种 方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分, 并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重 积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第 二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为

(,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++, ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =和单位法向量i n 分别代替i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 定义 .S S i i 的面积,他们的符号由的方向来确定若的法线正向与轴正向成锐角时, z .S xy i i i S xoy S z ?在平面的投影区域的面积为正反之,若法线正向与轴正向成钝角时, .S xy i i xoy S ?他在平面的投影区域的面积为负在各个小曲面上任取一点,(,) i i i ξηζ. 若 lim 1 T n i P →=∑,(,)i i i ξηζyz i S ?0 lim 1 T n i Q →=+ ∑,(,)i i i ξηζzx i S ?0 lim 1 T n i R →=+ ∑,(,)i i i ξηζxy i S ?存在, 或者

第二型曲面积分的计算方法

龙源期刊网 https://www.doczj.com/doc/a0952657.html, 第二型曲面积分的计算方法 作者:周三章赵大方 来源:《科教导刊》2014年第24期 摘要本文从化归的角度,介绍利用高斯公式和合一投影法简化第二型曲面积分的计算,并结合实例予以说明。 关键词第二型曲面积分高斯公式合一投影法 中图分类号:O172.2 文献标识码:A Methods of Computing the Second Surface Integral ZHOU Sanzhang[1], ZHAO Dafang[2] ([1]College of Mechatronics and Control Engineering, Hubei Normal University,Huangshi, Hubei 435002; [2] College of Mathematics and Statistics, Hubei Normal University, Huangshi, Hubei 435002) Abstract This paper introduces how to simplify the caculation of the Second Surface Integral by utilizing the Gauss formula and Projection method, there application are illustrated by some typical example. Key words the second surface integral; Gauss formula; projection 高等数学的学习中,第二型曲面积分的计算是一个难点。计算第二型曲面积分方法比较多,计算的难易程度也不同。如果运用化归的思想,通常可以达到事半功倍的效果。化归的思想具体表现在运用合一投影法,高斯公式简化求解过程。本文以几例具体来说明以上两种 计算方法。 1 利用高斯公式转化为三重积分计算 引理[1]:设空间闭区域是由分片光滑的闭曲面所围成,函数(),(),()在具有一定阶连续偏导数,则有 ( + + ) = + + , 或

第二类曲线积分的计算

第二类曲线积分的计算 Revised as of 23 November 2020

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

空间曲线积分的计算方法

空间曲线积分的计算方法. (1)曲线积分的计算 例1 计算222222()()()C I y z dx z x dy x y dz =-+-+-?,其中C 为平面 1=++z y x 被三个坐标平面所截三角形的边界,若从x 轴正向看去,定向为逆时针方向. 方法一 根据第二型曲线积分的定义化为定积分计算 根据定义求曲线积分的关键是使被积函数满足曲线方程,即可将曲线方程代入被积函数. 解法一:设(1,0,0),(0,1,0),(0,0,1)A B D ,则0,1:==+z y x ,:1,0BD y z x +==,:1,0DA x z y +==,则:C AB BD DA ++.由曲线积分的定义,有 dz y x dy x z dx z y AB )()()(222222-+-+-? 32])1[(0122-=+-= ?dx x x . 同理可得: 222222()()()BD y z dx z x dy x y dz -+-+-? 2222222()()()3 DA y z dx z x dy x y dz =-+-+-=-?. 所以 2AB BD DA I =++=-???. 方法二 将空间曲线积分转化为平面曲线积分后用格林公式计算 格林公式给出了平面上有限条逐段光滑封闭曲线上的积分与它们所包含的区域上的二重积分之间的关系. 解法二:设)0,0,0(O ,OA BO AB L ++:1,则dy dx dz y x z --=--=,1,D 是1L 围成的区域.代入原积分由格林公式得 原式))((])1[(])1([2222221dy dx y x dy x y x dx y x y L ---+---+---=? ??-=-=D dxdy 24. 化为平面曲线积分后也可以由定义计算积分值,但比格林公式要复杂得多.用格林公式首先要验证问题是否满足定理条件,其次可用对称性简化计算. 方法三 根据对称性求曲线积分. 轮换对称性即当被积函数和积分域同步进行同一轮换时,积分的值不变.当被积函数和积分域都具有轮换对称性,这种情形称为双轮换对称性;当被积函数具有轮换对称性而积分域没有或积分域具有轮换对称性而被积函数没有时称为单轮换对称性.双轮换对称性把原题变成了原题,所以对我们解题没有任何帮助.我们主要在讨论单轮换对称的情形. 解法三:由题目特征可知该积分及曲线C 都具有轮换对称性,因此由对称性知 原式dz y x dy x z dx z y )()()(3222222-+-+-=?

第一类曲线积分

§1 第一类曲线积分的计算 设函数(),,f x y z 在光滑曲线l 上有定义且连续,l 的方程为 ()()() ()0x x t y y t t t T z z t =?? =≤≤?? =? 则 ()()()() ,,,,T l t f x y z ds f x t y t z t =??? ?。 特别地,如果曲线l 为一条光滑的平面曲线,它的方程为()y x ?=,()a x b ≤≤,那么有 ((,) , ()b l a f x y ds f x x ?=? ?。 例:设l 是半圆周t a y t a x sin , cos ==, π≤≤t 0。求22 ()l x y ds +? 。 例:设l 是曲线x y 42 =上从点) 0 , 0 (O 到点) 2 , 1 (A 的一段,计算第一类曲线积分l yds ?。 例:计算积分2l x ds ? ,其中l 是球面2222a z y x =++被平面0=++z y x 截得的圆周。 例:求()l I x y ds =+?,此处l 为连接三点()0,0O ,()1,0A ,()1,1B 的直线段。 §2 第一类曲面积分的计算 一 曲面的面积 (1)设有一曲面块S ,它的方程为 (),z f x y =。 (),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则该 曲面块的面积为 xy S σ=。 (2)若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =?

令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则该曲面块的面积为 S ∑ =。 例:求球面2 2 2 2 x y z a ++=含在柱面()220x y ax a +=>内部的面积。 例:求球面2 2 2 2 x y z a ++=含在柱面()220x y ax a +=>内部的面积。 二 化第一类曲面积分为二重积分 (1)设函数(),,x y z φ为定义在曲面S 上的连续函数。曲面S 的方程为(),z f x y =。(),f x y 具有对x 和y 的连续偏导数,即此曲面是光滑的,且其在XY 平面上的投影xy σ为可求面积的。则 ()( ),,,,,xy S x y z dS x y f x y σφφ=??????。 (2)设函数(),,x y z φ为定义在曲面S 上的连续函数。若曲面的方程为 () ()() ,,,x x u v y y u v z z u v =?? =?? =? 令 222u u u E x y z =++,u v u v u v F x x y y z z =++,222 v v v G x y z =++, 则 ()()()( ),,,,,,,S x y z dS x u v y u v z u v φφ∑ =??????。 例:计算 ()S x y z dS ++?? ,S 是球面2222 x y z a ++=,0z ≥。 例:计算 S zdS ??,其中S 为螺旋面的一部分:

第二类曲面积分的计算方法定稿版

第二类曲面积分的计算 方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes公 式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程 中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面 广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识

2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++, ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =和单位法向量i n 分别代替 i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限

第二类曲线积分的计算教案资料

第二类曲线积分的计 算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是 弯弯曲曲.怎么办呢?

为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P 与),(y x Q ,那么()y x F , =()),(),,(y x Q y x P j y x Q i y x P ),(),(+=由于 ),,(),,(111i i i i i i y x M y x M ---则有向小曲线段i i M M 1-),,2,1(n i =在x 轴和y 轴方 向上的投影分别为11---=?-=?i i i i i i y y y x x x 与.记i i M M L 1- =),(i i y x ??从而力()y x F , 在小曲线段i i M M 1-上所作的功i W ?≈),(i F ηξ i i M M L 1- = ()i i P ηξ,i x ?+()i i Q ηξ,i y ? 其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力()y x F , 沿L 所作的功可近似等 于 i W =∑=n i i W 1 i n i i i i n i i i y s Q x S P ?+?≈∑∑==1 1 ),(),(ηη当0→T 时,右端积分和式的 极限就是所求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分. 2.2 第二型曲线积分的定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限

相关主题
文本预览
相关文档 最新文档