当前位置:文档之家› 电磁感应常考题型及解析

电磁感应常考题型及解析

电磁感应常考题型及解析
电磁感应常考题型及解析

电磁感应经典题型及解析

1.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ 、MN ,MN 的左边有一如图所示的闭合电路,当PQ 在一外力的作用下运动时,MN 向右运动,则PQ 所做的运动可能是( )

A .向右加速运动

B .向左加速运动

C .向右减速运动

D .向左减速运动

解析:选BC.MN 向右运动,说明MN 受到向右的安培力,因为ab 在MN 处的磁场垂直纸面向里――→左手定则MN 中的感应电流由M →N ――→安培定则L 1中感应电流的磁场方向向上――→楞次定律???

L 2中磁场方向向上减弱

L 2中磁场方向向下增强

.若L 2中磁场方向向上减弱――→安培定则PQ 中电流为Q →P 且减小――→右手定则向右减速运动;若L 2中磁场方向向下增强――→安培定则PQ 中电流为P →Q 且增大――→右手定则向左加速运动.

2.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( )

A .2.5 m/s 1 W

B .5 m/s 1 W

C .7.5 m/s 9 W

D .15 m/s 9 W

解析:选B.小灯泡稳定发光说明棒做匀速直线运动.此时:F

安=

B2l2v

R总

,对

棒满足:mg sin θ-μmg cos θ-

B2l2v

R棒+R灯

=0

因为R

灯=R

则:P

=P

再依据功能关系:mg sin θ·v-μmg cos θ·v=P

灯+P

联立解得v=5 m/s,P

=1 W,所以B项正确.

3.(1)如图甲所示,两根足够长的平行导轨,间距L =0.3 m ,在导轨间有垂直纸面向里的匀强磁场,磁感应强度B 1=0.5 T .一根直金属杆MN 以v =2 m/s 的速度向右匀速运动,杆MN 始终与导轨垂直且接触良好.杆MN 的电阻r 1=1 Ω,导轨的电阻可忽略.求杆MN 中产生的感应电动势E 1.

(2)如图乙所示,一个匝数n =100的圆形线圈,面积S 1=0.4 m 2,电阻r 2=1 Ω.在线圈中存在面积S 2=0.3 m 2垂直线圈平面(指向纸外)的匀强磁场区域,磁感应强度B 2随时间t 变化的关系如图丙所示.求圆形线圈中产生的感应电动势E 2.

(3)有一个R =2 Ω的电阻,将其两端a 、b 分别与图甲中的导轨和图乙中的圆形线圈相连接,b 端接地.试判断以上两种情况中,哪种情况a 端的电势较高?求这种情况中a 端的电势φa .

解析:(1)杆MN 做切割磁感线的运动,E 1=B 1L v 产生的感应电动势E 1=0.3 V .

(2)穿过圆形线圈的磁通量发生变化,E 2=n ΔB 2

Δt S 2 产生的感应电动势E 2=4.5 V .

(3)当电阻R 与题图甲中的导轨相连接时,a 端的电势较高 通过电阻R 的电流I =E 1

R +r 1

电阻R 两端的电势差φa -φb =IR a 端的电势φa =IR =0.2 V .

答案:(1)0.3 V (2)4.5 V (3)与图甲中的导轨相连接a 端电势高 φa =0.2 V

4.[2016·全国卷Ⅱ] 如图1-所示,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:

(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.

图1-

24.[答案] (1)Blt 0????F m -μg (2)B 2l 2

t 0m

[解析] (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得

ma =F -μmg ①

设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0 ②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为 E =Bl v ③

联立①②③式可得 E =Blt 0????F m -μg ④

(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律 I =E

R

⑤ 式中R 为电阻的阻值.金属杆所受的安培力为 f =BIl ⑥

因金属杆做匀速运动,由牛顿运动定律得 F -μmg -f =0 ⑦ 联立④⑤⑥⑦式得 R =B 2l 2t 0m

5.(2017·北京东城期末)如图所示,两根足够长平行金属导轨MN 、PQ 固定在倾角θ=37°的绝缘斜面上,顶部接有一阻值R =3 Ω的定值电阻,下端开口,轨道间距L =1 m .整个装置处于磁感应强度B =2 T 的匀强磁场中,磁场方向垂直斜面向上.质量m =1 kg 的金属棒ab 置于导轨上,ab 在导轨之间的电阻r =1 Ω,电路中其余电阻不计.金属棒ab 由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好.不计空气阻力影响.已知金属棒ab 与导轨间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.

(1)求金属棒ab沿导轨向下运动的最大速度v m;

(2)求金属棒ab沿导轨向下运动过程中,电阻R上的最大电功率P R;

(3)若从金属棒ab开始运动至达到最大速度过程中,电阻R上产生的焦耳热总共为1.5 J,求流过电阻R的总电荷量q.

解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度v m.

由牛顿第二定律得mg sin θ-μmg cos θ-F

=0

F安=BIL,I=BL v m

R+r

,解得v m=2.0 m/s

(2)金属棒以最大速度v m匀速运动时,电阻R上的电功率最大,此时P R=I2R,解得P R=3 W

(3)设金属棒从开始运动至达到最大速度过程中,沿导轨下滑距离为x,由能量守恒定律得

mgx sin θ=μmgx cos θ+Q R+Q r+1

2m v

2

m

根据焦耳定律Q R

Q r=

R

r,解得x=2.0 m

根据q=IΔt,I=

E R+r

E=ΔΦ

Δt=

BLx

Δt,解得q=1.0 C

答案:(1)2 m/s(2)3 W(3)1.0 C

5.(2017·四川资阳诊断)如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L=1 m,底部接入一阻值为R=0.4 Ω的定值电阻,上端开口.垂直斜面向上的匀强磁场的磁感应强度B=2 T.一质量为m =0.5 kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1 Ω,电路中其余电阻不计.现用一质量为M=2.86 kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放M,当M下落高度h=2.0 m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好).不计空气阻力,sin 53°=0.8,cos 53°=0.6,取g=10 m/s2.求:

(1)ab棒沿斜面向上运动的最大速度v m;

(2)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热Q R和流过电阻R的总电荷量q.

解析:(1)由题意知,由静止释放M后,ab棒在绳拉力T、重力mg、安培力F和导轨支持力N及摩擦力f共同作用下沿导轨向上做加速度逐渐减小的加速运动直至匀速运动,当达到最大速度时,由平衡条件有

T-mg sin θ-F-f=0

N-mg cos θ=0,T=Mg

又f=μN

ab棒所受的安培力F=BIL

回路中的感应电流I=BL v m R+r

联立以上各式,代入数据解得

最大速度v m=3.0 m/s

(2)由能量守恒定律知,系统的总能量守恒,即系统减少的重力势能等于系

统增加的动能、焦耳热及由于摩擦产生的内能之和,有Mgh-mgh sin θ=1

2(M+

m)v2m+Q+fh

电阻R产生的焦耳热Q R=

R

R+r

Q

根据法拉第电磁感应定律和闭合电路欧姆定律有流过电阻R的总电荷量q=IΔt

电流的平均值I=

E R+r

感应电动势的平均值E=ΔΦΔt

磁通量的变化量ΔΦ=B·(Lh)

联立以上各式,代入数据解得Q R=26.30 J,q=8 C.

答案:(1)3.0 m/s(2)26.30 J8 C

6. 如图所示,N=50匝的矩形线圈abcd,ab边长l1=20 cm,ad边长l2=25 cm,放在磁感应强度B=0.4 T的匀强磁场中,外力使线圈绕垂直于磁感线且通过线圈中线的OO′轴以n=3 000 r/min的转速匀速转动,线圈电阻r=1 Ω,外电路电阻R=9 Ω,t=0时线圈平面与磁感线平行,ab边正转出纸外、cd边转入纸里.求:

(1)t=0时感应电流的方向;

(2)感应电动势的瞬时值表达式;

(3)线圈转一圈外力做的功;

(4)从图示位置转过90°的过程中流过电阻R的电荷量.

解析:(1)根据右手定则,线圈感应电流方向为adcba.

(2)线圈的角速度

ω=2πn=100π rad/s

图示位置的感应电动势最大,其大小为

E m=NBl1l2ω

代入数据得E m=314 V

感应电动势的瞬时值表达式 e =E m cos ωt =314cos(100πt ) V . (3)电动势的有效值E =E m

2

线圈匀速转动的周期 T =2π

ω=0.02 s

线圈匀速转动一圈,外力做功大小等于电功的大小,即 W =I 2

(R +r )T =E 2

R +r

·T

代入数据得W =98.6 J.

(4)从t =0起转过90°过程中,Δt 内流过R 的电荷量: q =

N ΔΦ(R +r )Δt Δt =NB ΔS R +r =NBl 1l 2

R +r

代入数据得q =0.1 C.

答案:(1)感应电流方向沿adcba (2)e =314cos (100πt ) V (3)98.6 J (4)0.1

2010高中物理易错题分析集锦——11电磁感应

第11单元电磁感应 [内容和方法] 本单元内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 本单元涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极? 【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【正确解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。 【小结】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例2长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[ ]

电磁感应计算题总结(易错题型)

电磁感应易错题 1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小; (2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。 2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。已知cd 边刚进入磁场时线框恰好做匀速运动。重力加速度为g 。 (1)求cd 边刚进入磁场时导线框的速度大小。 (2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。 (3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。 3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。设cd 边刚进入磁场时,线框恰好开始做匀速运动。(g 取10m /s 2) 求:(1)线框进入磁场前距磁场下边界的距离H 。 (2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F 做的功是多少?线框内产生的热量又是多少 ? a b d c l l

电磁感应现象中的常见题型汇总(精华版)

电磁感应现象的常见题型分析汇总 一、反映感应电流强度随时间的变化规律 例1如图1—1,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行。取它刚进入磁场的时刻t=0,在图1-2所示的下列图线中,正确反 映感应电流强度随时间变化规律的是( ) 分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开),分析运动过程中的电磁感应现象,确定感应电流的大小和方向。 线框在进入磁场的过程中,线框的右边作切割磁感线运动,产生感应电动势,从而在整个回路中产生感应电流,由于线框作匀速直线运动,其感应电流的大小是恒定的,由右手定则,可判断感应电流的方向是逆时针的,该过程的持续时间为t=(20/20)s=1s 。 线框全部进入磁场以后,左右两条边同时作切割磁感线运动,产生反向的感应电动势,相当于两个相同的电池反向连接,以致回路的总感应电动势为零,电流为零,该过程的时间也为1s 。而当线框部分离开磁场时,只有线框的左边作切割磁感线运动,感应电流的大小与部分进入时相同,但方向变为顺时针,历时也为1s 。正确答案:C 评注 (1)线框运动过程分析和电磁感应的过程是密切关联的,应借助于运动过程的分析来深化对电磁感应过程的分析;(2)运用E=Blv 求得的是闭合回路一部分产生的感应电动势,而整个电路的总感应电动势则是回路各部分所产生的感应电动势的代数和。 例2在磁棒自远处匀速沿一圆形线圈的轴线运动,并穿过线圈向远处而去,如图2—1所示,则下列图2—2中较正确反映线圈中电流i 与时间t 关系的是(线圈中电流以图示箭头为正方向)( ) 分析与解 本题要求通过图像对感应电流进行描述,具体思路为:先运用楞次定律判断磁铁穿过线圈时,线圈中的感应电流的情况,再提取图像中的关键信息进行判断。 条形磁铁从左侧进入线圈时,原磁场的方向向右且增大,根据楞次定律,感应电流的磁场与之相反,再由安培定则可判断,感应电流的方向与规定的正方向一致。当条形磁铁继续向右运动,被 ← → 图1—1 图1—2 图2—1 图2—2

电磁感应现象中的常见题型汇总(很全很细)---精华版

电磁感应现象的常见题型分析汇总(很全) 命题演变 “轨道+导棒”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.图像 2.导轨 (1)轨道的形状:常见轨道的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)轨道的闭合性:轨道本身可以不闭合,也可闭合; (3)轨道电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)轨道的放置:水平、竖直、倾斜放置等等. 理图像是一种形象直观的“语言”,它能很好地考查考生的推理能力和分析、解决问题的能力,下面我们一起来看一看图像在电磁感应中常见的几种应用。 一、反映感应电流强度随时间的变化规律 例1如图1—1,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定 速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始 终与磁场区域的边界平行。取它刚进入磁场的时刻t=0,在图 1-2所示的下列图线中,正确反映感应电流强度随时间变化规 律的是( ) 分析与解 本题要求能正确分解线框的运动过程(包括部分进入、全部进入、部分离开、全部离开),分析运动过程中的电磁感应现象,确定感应电流的大小和方向。 线框在进入磁场的过程中,线框的右边作切割磁感线运动,产生感应电动势,从而在整个回路中产生感应电流,由于线框作匀速直线运动,其感应电流的大小是恒定的,由右手定则,可判断感应电流的方向是逆时针的,该过程的持续时间为t=(20/20)s=1s 。 线框全部进入磁场以后,左右两条边同时作切割磁感线运动,产生反向的感应电动势,相当于两个相同的电池反向连接,以致回路的总感应电动势为零,电流为零,该过程的时间也为1s 。而当线框部分离开磁场时,只有线框的左边作切割磁感线运动,感应电流的大小与部分进入时相同,但方向变为顺时针,历时也为1s 。正确答案:C ← → 图1—1 图1—2

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

电磁感应典型题型归类

电磁感应期中复习材料 知识结构: 常见题型 一、磁通量 【例1】如图所示,两个同心放置的共面单匝金属环a和b,一条形磁铁穿过圆心且与环面垂直放置.设穿过圆环a 的磁通量为Φa ,穿过圆环b 的磁通量为Φb ,已知两圆环的横截面积分别为S a 和Sb,且S a Φb C.Φa<Φb ? D.无法确定 二、电磁感应现象 【例2】图为“研究电磁感应现象”的实验装置. (1)将图中所缺的导线补接完整. (2)如果在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后( ) A.将原线圈迅速插入副线圈时,电流计指针向右偏转一下 B.将原线圈插入副线圈后,电流计指针一直偏在零点右侧 C.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指针向右偏转一下 D.原线圈插入副线圈后,将滑动变阻器触头迅速向左拉时,电流计指针向左偏转一下 三、感应电流产生的条件 (1)文字概念性 【例3】关于感应电流,下列说法中正确的是( ) A.只要闭合电路里有磁通量,闭合电路里就有感应电流 B .穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生 C .线框不闭合时,即使穿过线框的磁通量发生变化,线框也没有感应电流 电磁感应产生的条件 感应电流的方向判定 感应电动势的大小 回路中的磁通量变化 楞次定律 法拉第电磁感应定律E=ΔΦ/Δt 电磁感应的实际应用:自感现象(自感系数L ),涡流 特殊情况:导体切 割磁感线E=BLV 特殊情况:右手定则

D.只要电路的一部分切割磁感线运动电路中就一定有感应电流 (2)图象分析性 【例4】金属矩形线圈abcd在匀强磁场中做如图6所示的运动,线圈中有感应电流的是: 【例5】如图所示,在条形磁铁的外面套着一个闭合弹簧线圈,若把线圈四周 向外拉,使线圈包围的面积变大,这时: A、线圈中有感应电流 B、线圈中无感应电流 C、穿过线圈的磁通量增大 D、穿过线圈的磁通量减小 二、感应电流的方向 1、楞次定律 【例6】在电磁感应现象中,下列说法中正确的是( ) A.感应电流的磁场总是跟原来的磁场方向相反 B.闭合线框放在变化的磁场中一定能产生感应电流 C.闭合线框放在匀强磁场中做切割磁感线运动时一定能产生感应电流 D.感应电流的磁场总是阻碍原磁通量的变化 【例7】如图,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈 中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到 的支持力FN及在水平方向运动趋势的正确判断是( ) A.FN先小于mg后大于mg,运动趋势向左 B.F N先大于mg后小于mg,运动趋势向左 C.F N先大于mg后大于mg,运动趋势向右 D.F N先大于mg后小于mg,运动趋势向右 【例8】如图1所示,当变阻器R的滑动触头向右滑动时,流过电阻R′的电流方向是_______. 图1 图2图3 【例9】如图2所示,光滑固定导轨MN水平放置,两根导体棒PQ平行放在导轨上,形成闭合

电磁感应典型例题和练习进步

电磁感应 课标导航 课程内容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析

知识:安培力的大小与方向 例1. (09年上海物理)13.如图,金属棒ab置于水平 放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B, 磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef 内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 答案:收缩,变小 点评:深刻领会楞次定律的内涵 热点关注 知识:电磁感应中的感应再感应问题 例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒 PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动. 则PQ所做的运动可能是 A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动

电磁感应题型汇总

电磁感应题型汇总

电磁感应专题复习汇总2(基础练) 专题一:等效电路的问题 1. 产生感应电流的部分导体相当于整个电路中的电源,可画出等效电路图 2. 电源的电动势可用E n t φ?=?或,,===E E BLv I F BIL R 计算 3. 判断电源正负极或比较电路中电势可根据等效电路中外电路的电流方向判断 (电流在电源外部是从 极流向 极,从 电势流向 电势) 4. 根据闭合电路的欧姆定律E I R =总 算出电流,由此还可算出电功率或热量 5. 通过闭合回路电量的公式:总 φ?=q n R 1、(北京市西城区2014届高三上学期期末考 试) (1)如图1所示,两根足够长的平行导 轨,间距L =0.3 m ,在导轨间有垂直纸面向 里的匀强磁场,磁感应强度B 1 = 0.5 T 。一根 直金属杆MN 以v= 2 m/s 的速度向右匀速运动,杆MN 始终与导轨垂直且接触良好。杆 MN 的电阻r 1,导轨的电阻可忽略。求 杆MN 中产生的感应电动势E 1。 (2)如图2所示,一个匝数n=100的圆形线圈,面积 S 1=0.4m 2,电阻r 2=1Ω。在线圈中存在面积S 2=0.3m 2垂 直线圈平面(指向纸外)的匀强磁场区域,磁感应强度B 2随时间t 变化的关系如图3所示。求圆形线圈中产生的感应电动势E 2。 (3)有一个R=2Ω的电阻,将其两端a 、b 分别与图1中的导轨和图2中的圆形线圈相连接,b 端接地。试判

断以上两种情况中,哪种情况a端的电势较高?求这种情况中a端的电势φa。 2、有人设计了一种可测速的跑步机,测速原理如图所示. 该机底面固定有间距为L、长度 为d的平行金属电极,电极间充 满磁感应强度为B、方向垂直纸 面向里的匀强磁场,且接有电压 表和电阻R. 绝缘橡胶带上镀有间距为d的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻. 若橡胶带匀速运动时,电压表读数为U,求: (1)橡胶带匀速运动的速率; (2)电阻R消耗的电功率; (3)一根金属条每次经过磁场区域克服安培力做的功. 巩固题:

电磁感应中“单杆、双杆、线圈”问题归类例析

电磁感应中“单杆、双杆、线圈”问题归类例析 余姚八中陈新生 导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种: 1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。 2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等 3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等 4、求通过回路的电量 解题的方法、思路通常是首先进行受力分析和运动过程分析。然后运用动量守恒或动量定理以及能量守恒建立方程。按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强 度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一 阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势 差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m, 上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框 架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r= 0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度 达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知 sin37°=0.6,cos37°=0.8;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量. 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个 电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金 属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考 虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度 为多大? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒

电磁感应中几种重要题型

电磁感应中的几种重要题型 一、四种感应电动势的表达式及应用 1、法拉第电磁感应定律 2、导体平动产生的电动势(两两垂直) 3、导体转动产生的电动势 4、线圈平动产生的电动势 5、线圈转动产生的电动势 二、1、导体电流受力分析及动态运动过程的处理 2、电磁感应中图像问题 3、电磁感应中能量问题(动能定理及能量守恒) 4、怎样求电量 5、怎样求电磁感应中非匀变速运动中的位移 6、怎样处理双轨问题及动量定理及守恒的应用 7、自感现象的处理 对应练习: 1、如图所示,有一闭合的矩形导体框,框上M、N两点间连有一电压表,整个装置处于磁感应强度为B 的匀强磁场中,且框面与磁场方向垂直.当整个装置以速度v向右匀速平动时,M、N之间有无电势 __________. 差?__________(填“有”或“无”),电压表的示数为 2、匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M相接,如图所示,导轨上放一根导 线ab,磁感线垂直导轨所在的平面,欲使M所包围的小闭合线圈Array N产生顺时针方向的感应电流,则导线的运动可能是() A、匀速向右运动 B、加速向右运动 C、减速向右运动 D、加速向左运动

3、如图所示,质量为m 的跨接杆可以无摩擦地沿水平的平行导轨滑行,两轨间宽为L ,导轨与电阻R 连接.放在竖直向上的匀强磁场中,磁场的磁感应强度为B ,杆的初速度为v 0,试求杆到停下来所滑行的距离及电阻R 消耗的最大电能为多少? 【2 20L B mRv ;2 0mv 2 1】 4、两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻。将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示。除电阻R 外其余电阻不计。现将金属棒从弹簧原长位置由静止释放.则( ) A .释放瞬间金属棒的加速度等于重力加速度g B .金属棒向下运动时,流过电阻R 的电流方向为a →b C .金属棒的速度为v 时.所受的安培力大小为22B L v F R D .电阻R 上产生的总热量等于金属棒重力势能的减少 5、如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。则此过程 ( ) A.杆的速度最大值为 B.流过电阻R 的电量为 C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量 D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

电磁感应练习题

电磁感应练习题 一、单选择试题 1、如图1所示,一个矩形线圈与通有相同大小电流的两平行直导线位于同一平面内,而且矩形线圈处在两导线的中央,则( ) A .两电流同向时,穿过线圈的磁通量为零 B .两电流反向时,穿过线圈的磁通量为零 C .两电流同向或反向,穿过线圈的磁通量都相等 D .因两电流产生的磁场是不均匀的,因此不能判定穿过线圈的磁通量是否为零 2、如图2,粗糙水平桌面上有一质量为m 的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB 正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力F N 及在水平方向运动趋势的正确判断是( ) A.F N 先小于mg 后大于mg,运动趋势向左 B.F N 先大于mg 后小于mg,运动趋势向左 C.F N 先大于mg 后大于mg,运动趋势向右 D.F N 先大于mg 后小于mg,运动趋势向右 3、如图3a 所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ 沿导轨从MN 处匀速运动到M'N'的过程中,棒上感应电动势E 随时间t 变化的规律,在图3b 中,正确的是( ) 图1 N ` M ` M N v B Q P (a ) (b ) 图3 A B S N 图2

4、用均匀导线做成的单匝正方形线框,每边长为0.2米,正方形的一半放在垂直纸面向里的匀强磁场中,如图4所示,当磁场以每秒10T 的变化率增强时, 线框中点a 、b 两点电势差是( ) A.U ab =0.1V B.U ab =-0.1V C.U ab =0.2V D.U ab =-0.2V 5、穿过某线圈的磁通量随时间变化的关系如图5所示,在下列几段时间内,线圈中感应电动势最小的是( ) A.0~2s B.2~4s C.4~5s D.5~10s 二、双项选择试题 6、如图6所示的电路中,三个相同的灯泡a 、b 、c 和电感L 1、L 2与直流电源连接,电感的电阻忽略不计.电键K 从闭合状态突然断开时,下列判断正确的有( ) A.a 先变亮,然后逐渐变暗 B.b 先变亮,然后逐渐变暗 C.c 先变亮,然后逐渐变暗 D.b 、c 都逐渐变暗 7、两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图7所示.除电阻R 外其余电阻不计,现将金属棒从弹簧原长位置由静止释放.则 ( ) A .释放瞬间金属棒的加速度等于重力加速度g B .金属棒向下运动时,流过电阻R 的电流方向为a →b C .金属棒的速度为v 时.所受的安培力大小为 R v L B F 22 D .电阻R 上产生的总热量等于金属棒重力势能的减少 8、边长为L 的正方形金属框在水平恒力F 的作用下,穿过如图8所示的有界匀强磁场,磁场宽度为d (d >L ),已知ab 边进入磁场时,线框的加速度为零,线框进入磁场过程和从 b a 图4 F a L L d B 图5 R B a b F r 图7 图6

最新高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析word版本

高考物理二轮专题复习:电磁感应中“单、双棒”问题归类例析 一、单棒问题: 1.单棒与电阻连接构成回路: 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 2、杆与电容器连接组成回路 例2、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 为多大? 3、杆与电源连接组成回路 例3、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析: (1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、双杆问题: 1、双杆所在轨道宽度相同——常用动量守恒求稳定速度 例4、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根 导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd B v 0 L a d b

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的 ??B t 叫磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时 , 且导线与磁感线互相垂直(l B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+== 222ω, 故2 21l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。 公式三:ω···S B n E m =——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁

完整版电磁感应综合典型例题

电磁感应综合典型例题 【例11电阻为R的矩形线框abed,边长ab=L, ad=h,质量为m 自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁 场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线 框中产生的焦耳热是 _________ ?(不考虑空气阻力) 【分析】线框通过磁场的过程中,动能不变。根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热?所以,线框通过磁场过程中产生的焦耳热为 Q=W=mg- 2h=2mgh 【解答1 2mgh

【说明】本题也可以直接从焦耳热公式Q=l2Rt进行推算: 设线框以恒定速度v通过磁场,运动时间 从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感 线产生的感应电流的大小为 cd边进入磁场时的电流从d到c, cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上, 大小恒为 据匀速下落的条件,有 因线框通过磁场的时间,也就是线框中产生电流的时间,所以据 焦耳定律,联立(I )、(2)、(3)三式,即得线框中产生的焦耳热 为

Q=2mgh 两种解法相比较,由于用能的转化和守恒的观点,只需从全过程 考虑,不需涉及电流的产生等过程,计算更为简捷. 【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1 Q的矩形线圈,从离匀强磁场上边缘高h i=5m处由静止自由下落.进 入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运 动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s,求: (1)匀强磁场的磁感强度B; (2)磁场区域的高度h2;

物理高考选考中电磁感应计算题问题归类例析(精品,有详解)

物理选考中电磁感应计算题问题归类例析 余姚八中 陈新生 导体在磁场中运动切割磁感线产生电磁感应现象,是历年物理选考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,要探讨的问题不外乎以下几种: 1、问题的总体动态分析:①运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。②运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等。③等效电路分析:谁是等效电源,路端电压如何求解,外电路的串并联情况等。 2、能量转化的计算:分析运动过程中各力做功和能量转化的问题:如安培力所做的功、摩擦力做功等,结合研究对象写好动能定理。明确在电磁感应现象中,通过克服安培力做功,把其他形式的能转化为电能,再通过电流做功,把电能转化为内能和其他形式的能。 3、各运动量速度v 、位移x 、时间t 的计算:两个思路,①位移x 的计算一般需要结合电量q : ②速度v 和时间t 的计算一般需要结合动量定理: 12mv -mv q -t =+BL I F 变力恒力, 还可以计算变力的冲量。以电荷量作为桥梁,可以直接把上面的物理量位移x 、速度v 、时间t 联系起来。 按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感 强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有 一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导 线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的 方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度 为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因 数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电 阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取 10m /s2)求: 总总总R BL R B R x n s n n q =?=?=φ

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案

备战高考物理法拉第电磁感应定律-经典压轴题附详细答案 一、法拉第电磁感应定律 1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。导线的电阻不计,求0至t1时间内 (1)通过电阻R1上的电流大小及方向。 (2)通过电阻R1上的电荷量q。 【答案】(1) 2 02 3 n B r Rt π 电流由b向a通过R1(2) 2 021 3 n B r t Rt π 【解析】【详解】 (1)由法拉第电磁感应定律得感应电动势为 2 202 2 n B r B E n n r t t t π π ?Φ? === ?? 由闭合电路的欧姆定律,得通过R1的电流大小为 2 02 33 n B r E I R Rt π == 由楞次定律知该电流由b向a通过R1。 (2)由 q I t =得在0至t1时间内通过R1的电量为: 2 021 1 3 n B r t q It Rt π == 2.光滑平行的金属导轨MN和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP间接有阻值R=2.0Ω的电阻,其它电阻不计,质量 m=2.0kg的金属杆ab垂直导轨放置,如图(a)所示.用恒力F沿导轨平面向上拉金属杆ab,由静止开始运动,v?t图象如图(b)所示.g=10m/s2,导轨足够长.求: (1)恒力F的大小; (2)金属杆速度为2.0m/s时的加速度大小; (3)根据v?t图象估算在前0.8s内电阻上产生的热量.

电磁感应常考题型及解析

电磁感应经典题型及解析 1.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ 、MN ,MN 的左边有一如图所示的闭合电路,当PQ 在一外力的作用下运动时,MN 向右运动,则PQ 所做的运动可能是( ) A .向右加速运动 B .向左加速运动 C .向右减速运动 D .向左减速运动 解析:选BC.MN 向右运动,说明MN 受到向右的安培力,因为ab 在MN 处的磁场垂直纸面向里――→左手定则MN 中的感应电流由M →N ――→安培定则L 1中感应电流的磁场方向向上――→楞次定律??? L 2 中磁场方向向上减弱 L 2中磁场方向向下增强 .若L 2中磁场方向向上减弱 ――→安培定则PQ 中电流为Q →P 且减小――→右手定则向右减速运动;若L 2中磁场方向向下增强――→安培定则PQ 中电流为P →Q 且增大――→右手定则向左加速运动. 2.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ) A .2.5 m/s 1 W B .5 m/s 1 W C .7.5 m/s 9 W D .15 m/s 9 W 解析:选B.小灯泡稳定发光说明棒做匀速直线运动.此时:F 安=B 2l 2v R 总 ,对

相关主题
文本预览
相关文档 最新文档