当前位置:文档之家› 二次函数动点问题[1]

二次函数动点问题[1]

二次函数动点问题[1]
二次函数动点问题[1]

二次函数与三角形2

1、如图,已知二次函数y=ax2+bx+8(a≠0)的图像与x轴交于点A(-2,0),B,与y轴

交于点C,tan∠ABC=2.

(1)求抛物线的解析式及其顶点D的坐标;

(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P 的直线PM垂直于直线CD,且与直线OP

的夹角为75°?若存在,求出点P的坐

标;若不存在,请说明理由;

(3)过点B作x轴的垂线,交直线CD于点

F,将抛物线沿其对称轴向上平移,使抛

物线与线段EF总有公共点.试探究:抛

物线最多可以向上平移多少个单位长度?

2、如图,抛物线

233

y mx mx

=+-(m>0)与y轴交于点C,与x轴交于A 、B两点,点

A在点B的左侧,且.

1 tan

3

OCB

∠=

(1)求此抛物线的解析式;

(2)如果点D是线段AC下方抛物线上的动点,设D点的横坐标为x,

△ACD的面积为S,求S与x的关系式,并求当S最大时点D的坐标;

(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点的平行四边形?若存在求点P坐标;若不存在,请说明理由.

(24题图)

(备用图)

x

y O

H

G

F

E

3、已知:如图,在□ EFGH 中,点F 的坐标是(-2,-1),∠EFG=45°. (1)求点H 的坐标;

(2)抛物线1C 经过点E 、G 、H,现将1C 向左平移使之经过点F ,得到抛物线2C ,求抛物

线2C 的解析式;

(3)若抛物线2C 与y 轴交于点A ,点P 在抛物线2C 的对称轴上运动.请问:是否存在

以AG 为腰的等腰三角形AGP ?若存在,求出点P 的坐标;若不存在,请说明理由.

4、.如图,设抛物线C 1:()512

-+=x a y , C 2:()512

+--=x a y ,C 1与C 2的交点为A, B,点

A 的坐标是)4,2(,点

B 的横坐标是-2. (1)求a 的值及点B 的坐标;

(2)点D 在线段AB 上,过D 作x 轴的垂线,垂足为点H,

在DH 的右侧作正三角形DHG. 过C 2顶点M的 直线记为l ,且l 与x 轴交于点N. ① 若l 过△DHG 的顶点G,点D 的坐标为 (1, 2),求点N 的横坐标; ② 若l 与△DHG 的边DG 相交,求点N 的横 坐标的取值围.

5、如图,抛物线2

(0)y ax bx c a =++>与y 轴相交于点C ,直线1L 经过点C 且平行于x 轴,将1L 向上平移t 个单位得到直线2L ,设1L 与抛物线的交点为C 、D ,2L 与抛物线的交点

第25题图

为A 、B ,连接 AC 、BC. (1)当1

2

a =

,32b =-,1c =,2t =时,探究△ABC 的形状,并说明理由;

(2)若△ABC 为直角三角形,求t 的值(用含a 的式子表示);

(3)在(2)的条件下,若点A 关于y 轴的对称点A ’恰好在抛物线F 的对称轴上,连

接A ’C ,BD ,求四边形A ’CDB 的面积(用含a 的式子表示)

6、已知:抛物线

k k x k kx y ++++=2

2)2(32经过坐标原点. (1)求抛物线的解析式和顶点B 的坐标;

(2)设点A 是抛物线与x 轴的另一个交点,试在y 轴上确定一点P ,使PA+PB 最短,并求出点P 的坐标;

(3)过点A 作AC ∥BP 交y 轴于点C ,求到直线AP 、AC 、CP 距离相等的点的坐标.

7、已知抛物线()13)2(2++-+-=m x m x y .

(1)求证:无论m 为任何实数,抛物线与x 轴总有交点;

(2)设抛物线与y 轴交于点C ,当抛物线与x 轴有两个交点A 、B (点A 在点B 的 左侧)时,如果∠CAB 或∠CBA 这两角中有一个角是钝角,那么m 的取值围 是 ;

(3)在(2)的条件下,P 是抛物线的顶点,当△PAO 的面积与△ABC 的面积相等时,

求该抛物线的解析式.

8、 如图,已知抛物线C 1:()522

-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A

点B 的左边),点B 的横坐标是1. (1)求P 点坐标及a 的值;

(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛

物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式; (3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线

C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.

95Rt △ABC (C ∠是直角)放在平面直角坐标系中的第二象限, 使顶点A 在y 轴上, 顶点B 在抛物线2

2y ax ax =+-上,顶点C 在x 轴上,坐标为(1-,0).

(1)点A 的坐标为 ,点B 的坐标为 ;

(2)抛物线的关系式为 ,其顶点坐标为 ; (3)将三角板ABC 绕顶点A 逆时针方向旋转90°,到达AB C ''△的位置.请判断点B '、

C '是否在(2)中的抛物线上,并说明理由.

y

x

A

O B

P

M

图1 1

C 2

C 3

图24-1

y

x A

O B P N

图2 C 1

C 4

Q

E

F 图24-2

10、如图,在直角坐标系中,O 是坐标原点,点A 的坐标是(1,3),若把线段OA

绕点O 逆时针旋转120°,可得线段OB . (1)求点B 的坐标;

(2)某二次函数的图象经过A 、O 、B 三点,求该函数的解析式;

(3)在第(2)小题所求函数图象的对称轴上, 是否存在点P ,使△OAP 的周长最小,

若存在,求点P 的坐标; 若不存在, 请说明理由.

11、如图,已知抛物线C 1:5)2(2

--=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点A 的横坐标是1-. (1)求p 点坐标及a 的值;

(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向左平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点A 成中心对称时,求C 3的解析式k h x a y +-=2

)(; (3)如图(2),点Q 是x 轴负半轴上一动点,将抛物线C 1绕点Q 旋转180°后得到抛物线

C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、E

为顶点的三角形是直角三角形时,求顶点N 的坐标.

12、已知:如图1,等边ABC

?的边长为

3

2,一边在

x轴上且()0,3

1-

A,AC交y轴于点E,过点E作EF∥AB交BC于点F.

(1)直接写出点C

B、的坐标;

(2)若直线()0

1≠

-

=k

kx

y将四边形EABF的面积两等分,求k的值;

(3)如图2,过点C

B

A、

、的抛物线与y轴交于点D,M为线段OB上的一个动点,过x轴上一点()0,2-

G作DM的垂线,垂足为H,直线GH交y轴于点N,当M点在线段OB上运动时,现给出两个结论:

①CDM

GNM∠

=

∠②DCM

MGN∠

=

∠,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.

13、如图,直线

1

l:y kx b

=+平行于直线1

y x

=-,且与直线

2

l:

1

2

y mx

=+相交于点图1 图2

专题:二次函数中的动点问题

y x O 二次函数中的动点问题(二) 平行四边形的存在性问题 一、技巧提炼 1、二次函数y=ax 2 +bx+c 的图像和性质 a >0 a <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减 性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而 y 随x 的增大而 2、平行四边形模型探究 如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。 A B C x y 图1 图2 如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。 3、平面直角坐标系中直线和直线l2: 当l1∥l2时k1= k2; 4、二次函数中平行四边形的存在性问题: 解题思路:(1)先分类(2)再画图(3)后计算 二、精讲精练 1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1) (1)求抛物线的解析式; (2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由; (3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

二次函数—动点产生的线段最值问题典型例题

二次函数——动点产生的线段最值问题 【例1】如图,在直角坐标系中,点A,B,C 的坐标分别为(-1,0),(3,0),(0,3),过A,B,C 三点的抛物线的对称轴为直线l . (1)求抛物线的解析式及顶点D 的坐标; (2)点E 是抛物线的对称轴上的一个动点,求当AE+CE 最小时点E 的坐标; (3)点P 是x 轴上的一个动点,求当PD+PC 最小时点P 的坐标; (4)点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有QB QC -最大?并求出 最大值. 解:(1)设抛物线的解析式为:y=ax 2 +bx+c , ∵抛物线经过A 、B 、C 三点, ∴09303a b c a b c c -+=??++=??=?,解得:123a b c =-?? =??=? , ∴抛物线的解析式为:y=-x 2 +2x+3. ∵y=-x 2 +2x+3= 2 (1)4x --+, ∴该抛物线的对称轴为直线x=1,顶点D 的坐标为(1,4). (2)∵点A 关于抛物线的对称轴的对称点为B ,则AE=BE , 要使AE+CE 最小,即BE+CE 最小,则B 、E 、C 三点共线 如图,连接BC 交抛物线的对称轴于点E , 解法一:设直线BC 的解析式为y=kx+n , 则303k n n +=??=? ,解得13k n =-??=? ∴3y x =-+.当x=1时,3132x -+=-+=,∴点E 的坐标为(1,2) 解法二:设抛物线的对称轴交x 轴于点F . ∵E F ∥y 轴,∴∠BEF =∠BCO ,∠BFE =∠BOC ∴△BFE ∽△BOC ∴ BF EF BO CO =, ∴3133EF -=, ∴2EF = ∴点E 的坐标为(1,2) (3)作出点C 关于x 轴的对称点为C′,则C′(0,-3),OC′=3, F E

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

最新最新中考二次函数动点问题(含答案)

二次函数的动点问题 1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长. (2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度. (3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =o ∠的点P 有 个. (抛物线()2 0y ax bx c a =++≠的顶点坐标是2424b ac b a a ?? -- ??? ,.

[解] (1)作BF y ⊥轴于F . ()()01084A B Q ,,,, 86FB FA ∴==,. 10AB ∴=. (2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=Q ,. P Q ∴,两点的运动速度均为每秒1个单位. (3)方法一:作PG y ⊥轴于G ,则PG BF ∥. GA AP FA AB ∴ =,即610 GA t =. 35GA t ∴=. 3 105OG t ∴=-. 4OQ t =+Q , ()113410225S OQ OG t t ? ?∴= ??=+- ?? ?.

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结: ⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断 图象的位置,要数形结合; ⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC 平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。 共同点:

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

二次函数动点面积最值问题

二次函数最大面积 例1 如图所示,等边△ABC 中,BC=10cm ,点1P ,2P 分别从B,A 同时出发,以1cm/s 的速度沿线 段BA,AC 移动,当移动时间t 为何值时,△21P AP 的面积最大并求出最大面积。 A 1P 2P B C 练习 1如图,在矩形ABCD 中,AB=6cm ,BC=12cm,点P 从点A 出发沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发沿BC 边向C 以2cm/s 的速度移动,如果P,Q 同时出发,分别到达B 、C 两点就停止移动。 (1)设运动开始后第t 秒,五边形APQCD 的面积是2 Scm ,写出S 与t 函数关系式,并指出t 的取值范围。 (2)t 为何值时,S 最小并求出这个最小值。 D C Q A P B 2 如图,在△ABC 中,∠B=90°,AB=22CM,BC=20CM ,点P 从点A 开始沿AB 边向点B 以2cm/S 的速度移动,点Q 从点B 开始沿着BC 边向点C 以1cm/S 的速度移动,P,Q 分别从A,B 同时出发。 求四边形APQC 的面积y (2 cm )与PQ 移动时间x (s )的函数关系式, A 以及自变量x 的取值范围。 P

B Q C 3 如图 正方形ABCD 的边长为4cm ,点P 是BC 边上不与B,C 重合的任意一点,连接AP ,过点P 作PQ ⊥AP 交DC 于点Q,设BP 的长为x cm ,CQ 的长为y cm 。 (1)求点P 在BC 上的运动的过程中y 的最大值。 (2)当y= 4 1 cm 时,求x 的值。 A D B P C 4如图所示,边长为1的正方形OABC 的顶点O 为坐标原点,点A 在x 轴的正半轴上,动点D 在线段BC 上移动(不与B,C 重合),连接OD ,过点D 作DE ⊥OD,交AB 的 长为t 。 y (1) 当t= 3 1 时 ,求线段DE 所在直线的函数表达式。(2) 如果梯形CDEB 的面积为S ,那么S 是否存在最大值若存在,请求出最大值,以及此时 t 的值;若不存在,请说明理由。 (3) 当2 2 DE OD 的算术平方根取最小值时, o A (4) 求点E 的坐标。

初中数学二次函数动点问题

函数性问题专题—动点问题 函数及其图象是初中数学中的主要内容之一,也是初中数学与高中数学相联系的纽带.它与代数、几何、三角函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的综合性问题也是命题热点之一,多数省市作压轴题.因此,在中考复习中,关注这一热点显得十分重要.以函数为背景的综合性问题往往都可归结为动点性问题,我们把它归纳为以下七种题型(附例题) 一、因动点而产生的面积问题 例1:如图10,已知抛物线P :y =ax 2 +bx +c (a ≠0 与x 轴交于A 、B 两点(点A 在x 轴的正半轴上,与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下: (1 求A 、B 、C 三点的坐标; (2 若点D 的坐标为(m ,0 ,矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围; (3 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM =k ·DF ,若点M 不在抛物线P 上,求k 的取值范围. 若因为时间不够等方面的原因,经过探索、思考仍无法圆满解答本题,请不要轻易放弃,试试将上述(2、(3小题换为下列问题解答(已知条件及第(1小题与上相同,完全正确解答只能得到5分: (2 若点D 的坐标为(1,0 ,求矩形DEFG 的面积 . 例2:如图1,已知直线

12 y x =-与抛物线2 164 y x =- +交于A B ,两点. (1)求A B ,两点的坐标; (2)求线段A B 的垂直平分线的解析式; (3)如图2,取与线段A B 端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线A B 动点P 将与A B ,构成无数个三角形,这些三角求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.图2 图1 图10 第-2-页共4页 例3:如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODE F ∽矩形ABCO ,其相似比为1 : 4,矩形ABCO 的边 AB=4,BC=4

二次函数动点问题解答方法技巧分析

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求与已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标、 ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式与一元二次方程之间的内在联系: 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)与点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式; (2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上就是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. (3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.

注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值); 方法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。 ①特殊四边形为背景; ②点动带线动得出动三角形; ③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式; ⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。 二次函数的动态问题(动点)

二次函数中动点图形的面积最值(初三数学)

深圳高级中学(集团)GLOBE学科课程教学设计 《二次函数中动点图形的面积最值问题》 初三年级数学备课组 一、聚焦问题 因为点动产生图形发生变化,从而面积发生变化.利用二次函数求以动态几何为背景的最值问题,是中考中的一类重要题型。这类试题能有效整合代数和几何的部分重要知识,适于考查考生分析、解决问题的能力及实践和创新的能力,较好地渗透了分类讨论、数形结合、转化与化归、函数与方程等数学思想。 中考考纲要求教师在教学过程中渗透和落实数学学科核心素养的培养(数感、符号意识、几何直观、应用意识),GLOBE教学法要求教师以问题为导向,通过合作探究,引导学生用跨学科知识、思维和方法来解决问题。根据以上的要求,本课聚焦问题如下: 1.学科知识层面: 复习强化二次函数的基本知识,学会用代数式表示函数各个点的坐标,能够利用坐标计算、利用代数式表示二次函数中特定图形、动态图形的面积及其最大值。 2.学科素养层面: 通过利用代数式表示面积的方式,培养学生几何问题代数化的能力,对复杂问题进行分解和转化的能力,培养学生的几何思维能力,空间思维能力。 3.价值观引领方面: 从数到式、从点到线再到面,从静到动,体会数学学习的过程,体验获得成功的喜悦,锻炼克服困难的意志,建立自信心,养成认真勤奋、独立思考、合作交流、反思质疑的学习习惯,形成坚持真理、修正错误、严谨求实的科学态度。 因此,本课聚焦的重点问题是:“以静制动”把动态问题变成静态问题来解、“复杂问题简单化”归纳总结提炼出这类面积问题解题模型,让学生真正掌握科学、简便的解题路径,正确、快速地解题。 二、核心问题:利用割补法求多边形面积 方法要点是:把所求面积的图形进行适当割补,转化成有利于面积表达的常规几何图形。 三、分解问题 分解问题一:如何求底边平行于坐标轴的三角形面积? 问题引领1:通过坐标求三角形的底和高表示面积. 问题引领2:如何求底边平行于坐标轴的三角形面积? 分解问题二:如何利用割补法求两边均不平行坐标轴三角形的面积? 问题引领:如何利用割补法求两边均不平行坐标轴三角形的面积及其最值? 分解问题三:如何求二次函数中动点四边形的面积及最值? 问题引领:如何求二次函数中动点四边形的面积及最值?

中考二次函数动点问题(含答案)

中考二次函数动点问题(含答案) 1.如图①,正方形的顶点的坐标分别为,顶点在第一象限.点从点出发,沿正方形按逆时针方 向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动.当点到达点时,两点同时停止 运动,设运动的时间为秒. (1)求正方形的边长. (2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分 (如图②所示),求两点的运动速度. (3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标.(4)若点ABCD保持(2)中的速度不变,则点ABCD沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而增大;沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而减小.当点ABCD沿着这两边运动时,使ABCD的点ABCD有个. (抛物线ABCD的顶点坐标是. [解] (1)作轴于. , . . (2)由图②可知,点从点运动到点用了10秒. 又. 两点的运动速度均为每秒1个单位. (3)方法一:作ABCD轴于ABCD,则ABCD. ABCD ,即 ABCD . ABCD .ABCD .ABCD,

ABCD . 即 ABCD . ABCD ,且 ABCD , ABCD当 ABCD 时,ABCD有最大值. 此时 ABCD , ABCD点ABCD的坐标为 ABCD .(8分) 方法二:当ABCD时, ABCD . 设所求函数关系式为. 抛物线过点, . ,且, 当时,有最大值. 此时, 点的坐标为. (4). [点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。 . 2. 如图①,中,,.它的顶点的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒. (1)求的度数. (2)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图②),求点的运动速度. (3)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标. (4)如果点ABCD保持(2)中的速度不变,那么点ABCD沿ABCD边运动时,ABCD的大小随着时间ABCD的增大而增大;沿着ABCD边运动时,ABCD的大小随着时间ABCD的增大而减小,当点ABCD沿这两边运动时,使ABCD的点ABCD有几个?请说明理由. 解: (1)ABCD.

中考二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

二次函数动点与最值问题

一、二次函数中的最值问题: 例1:在平面直角坐标系中,全等的两个三角形Rt⊿AOB与Rt A’OC’如图放置,点B、C’的坐标分别为(1,3),(0,1),BO 与A’ C’相交于D,若⊿A’OC’绕点O旋转90°至⊿AOC,如图所示(1)若抛物线过C、A、A’,求此抛物线的解析式及对称轴;∴y=-x2+2x+3 (2)、若点P是第一象限抛物线线上的一动点,问P在何处时△AP A’的面积最大?最大面积是多少?并求出此时的点P的坐标。

(3)、设抛物线的顶点为N,在抛物线上是否存在点P,使△A’AN与△A’AP的面积相等?,若存 在,请求出此时点P的坐标,若不存在,请说明理由。 例2、(2012)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=. (1)求过A.C.D三点的抛物线的解析式; (2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值围; (3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值. 解答:解:(1)∵四边形ABCD是菱形, ∴AB=AD=CD=BC=5,sinB=sinD=; Rt△OCD中,OC=CD?sinD=4,OD=3; OA=AD﹣OD=2,即: A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0); 设抛物线的解析式为:y=a(x+2)(x﹣3),得:

2×(﹣3)a=4,a=﹣; ∴抛物线:y=﹣x2+x+4. (2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣; 由(1)得:y2=﹣x2+x+4,则: , 解得:,; 由图可知:当y1<y2时,﹣2<x<5. (3)∵S△APE=AE?h, ∴当P到直线AB的距离最远时,S△ABC最大; 若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时, ﹣x+b=﹣x2+x+4,且△=0; 求得:b=,即直线L:y=﹣x+; 可得点P(,). 由(2)得:E(5,﹣),则直线PE:y=﹣x+9; 则点F(,0),AF=OA+OF=; ∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=. 综上所述,当P(,)时,△PAE的面积最大,为.

二次函数综合动点问题

二次函数综合(动点)问题——平行四边形存在问题 适用 学科 数学适用年级九年级授课教师叶祥教材 版本新人教版 课时时长 (分钟) 40分钟授课日期 2017年5月17日 (上午第4节) 知识点1、二次函数y=ax2+bx+c的图像和性质 2、平行四边形性质 3、平行四边形模型探究 教学目标一、知识与技能 1、掌握二次函数y=ax2+bx+c的图像和性质; 2、掌握平行四边形的性质; 3、会对平行四边形模型进行探究,分类讨论不同的情况。 二、过程与方法 1、首先要掌握二次函数y=ax2+bx+c的图像和性质,因为平行四边形存在问题是在二次函数的前提下进行的; 2、掌握平行四边形的性质,先脱离二次函数,再回到二次函数 的情景中研究; 3、先从简单入手探究平面直角坐标系中动点情况下平行四边形

的存在问题,然后回到二次函数前提下的平行四边形存在问题。 4、充分运用数形结合、转化、方程等数学思想来帮助解题。 三、情感、态度与价值观 1、培养学生的处理图像综合运用的能力; 2、让学生养成从特殊到一般,从简单到复杂的学习方法; 3、形成对图形的处理能力,形成解题技巧,树立对解决此类问 题的信心。 教学重 是否存在一点使得四边形是平行四边形,如果存在求出点的坐标点 教学难 是否存在一点使得四边形是平行四边形,如果存在求出点的坐标点 教学过程 一、课堂导入 如图,已知平面直角坐标系上的三点坐标分别为A(2,3)、B(6,3),C (4,0),现要找到一点D,使得这四个点构成的四边形是平行四边形,那 么点D的坐标_______________________________.

初三二次函数动点问题(教师版)

二次函数动点问题 1、如图,已知二次函数y=42 3 412++- x x 的图象与y 轴交于点A ,与x 轴交于B 、C 两点,其对称轴与x 轴交于点D ,连接AC . (1)点A 的坐标为_______ ,点C 的坐标为_______ ; (2)线段AC 上是否存在点E ,使得△EDC 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由; (3)点P 为x 轴上方的抛物线上的一个动点,连接PA 、PC ,若所得△PAC 的面积为S ,则S 取何值时,相应的点P 有且只有2个? 2、已知抛物线 )0(2≠++=a c bx ax y 经过点B (2,0)和点C (0,8),且它的对称轴是直线2-=x 。 (1)求抛物线与x 轴的另一交点A 坐标; (2)求此抛物线的解析式; (3)连结AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B )不重合,过点E 作EF ∥AC 交BC 于点F ,连结CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式; (4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的 坐标,判断此时△BCE 的形状;若不存在,请说明理由。 3、如图,四边形ABCD 是平行四边形,AB=4,OB =2,抛物线过A 、B 、C 三点,与x 轴交于另一点D .一动点P 以每秒1个单位长度的速度从B 点出发沿BA 向点A 运动,运动到点A 停止,同时一动点Q 从点D 出发,以每秒3个单位长度的速度沿DC 向点C 运动,与点P 同时停止. (1)求抛物线的解析式; (2)若抛物线的对称轴与AB 交于点E ,与x 轴交于点F ,当点P 运动时间t 为何值时,四边形POQE 是等腰梯形? (3)当t 为何值时,以P 、B 、O 为顶点的三角形与以点Q 、B 、O 为顶点的三角形相似? 4、如图1,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为 (2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD=2,AB=3. (1)求该抛物线的函数关系式; (2)将矩形ABCD 以每秒1个单位长度的速度从 图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度.....从点A 出发向B 匀速移动,设它们运动的时间为t 秒(0≤t ≤3),直线AB 与该抛物线的交点为N (如图2所示).① 当t= 时,判断点P 是否在直线ME 上,并说明理由; ② 设以P 、N 、C 、D 为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由. 2 5

二次函数与几何图形动点问题

A 专题九 二次函数与几何图形动点问题 中考目标: 1、 灵活运用二次函数、特殊三角形和四边形相关性质、判定、定理,确定二次函数,判定线与线关系、特殊三角形、四边形及相应的周长、面积、还有存在、最值等问题; 2、 能够通过数形结合,进行建构模型,联想、猜测,运用分类、转化、从特殊到一般归纳等数学思想解 决问题; 3、 运用“动中求静”,找到、运用不变的数、不变的量、不变的关系,建立函数关系及综合应用代数、 几何知识解决问题。 一.考点归纳:特殊图形的定义、性质、判定等,图形的变化:轴对称、平移、旋转(特殊的是中心对称) 二次函数部分的归纳: 1、二次函数的表达式:一般式 ,顶点( , ) 对称轴x= , 还有 式; 2、二次函数的图象是 ,二次函数的性质: 。 二、考点探究 活动一:二次函数与三角形 例1.已知抛物线y =ax 2+bx +c (a >0)的图象经过点B (12,0)和C (0,-6),对称轴为x =2. (1)求该抛物线的解析式; (2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同 时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直 平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由; (3)在(2)的结论下,直线x =1上是否存在点M 使,△MPQ 为等腰三角形?若存在,请求出所有点M 的 坐标,若不存在,请说明理由. 练习:如图,二次函数y = -x 2+ax +b 的图像与x 轴交于A (-2 1,0)、B (2,0)两点,且与y 轴交于点C ; (1) 求该拋物线的解析式,并判断△ABC 的形状; (2) 在x 轴上方的拋物线上有一点D ,且以A 、C 、D 、B 四点为顶点的四边形是等腰梯形,请直接写出D 点的坐标; (3) 在此拋物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由。 跟踪练习:《题型专练》P56 T1;P58 T5 中考考点:二次函数与四边形 例1. 如图,抛物线2 23y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物 线交于A 、C 两点,其C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最值; (3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶 点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由. 跟踪练习:《题型专练》P57 T3;P59 T7 中考考点:二次函数与三角形、四边形的面积

中考数学压轴题二次函数动点问题一

二次函数压轴题 1.如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式. (2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小若存在,请求出点M 的坐标;若不存在,请说明理由。 2.如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0), OB =OC ,tan∠ACO=3 1. (1)求这个二次函数的表达式. (2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形若存在,请求出点F 的坐标;若不存在,请说明理由. (3)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大求出此时P 点的坐标和△APG 的最大面积. 3.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点, 与y 轴交于点C (0,3)。

⑴求抛物线的解析式; ⑵设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC 是等腰三角形若存在,求出符合条件的点P的坐标;若不存在,请说明理由; ⑶若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。 4.已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB

二次函数中动点问题_平行四边形(练习)

2018年04月28日187****6232的初中数学组卷 一.解答题(共5小题) 1.如图,已知抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0)和点C(0,3). (1)求抛物线的解析式和顶点E的坐标; (2)点C是否在以BE为直径的圆上?请说明理由; (3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R 的坐标,若不存在,请说明理由. 2.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D. (1)求抛物线的解析式; (2)设点M(1,m),当MB+MD的值最小时,求m的值; (3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E 作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由. 3.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2. (1)求A,B两点的坐标及直线AC的函数表达式;

(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值; (3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ 的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由. (4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由. 4.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧). (1)求抛物线的解析式及点B坐标; (2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值; (3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由. 5.如图,矩形OABC在平面直角坐标系中,点A在x轴正半轴,点C在y轴正半轴,OA=4,OC=3,抛物线经过O,A两点且顶点在BC边上,与直线AC交于

相关主题
文本预览
相关文档 最新文档