当前位置:文档之家› 高二物理第八章动量守恒定律应用同步练习(带答案)

高二物理第八章动量守恒定律应用同步练习(带答案)

高二物理第八章动量守恒定律应用同步练习(带答案)
高二物理第八章动量守恒定律应用同步练习(带答案)

高二物理第八章动量守恒定律应用同步练

习(带答案)

由空间平移不变性推出动量守恒定律,能量守恒定律由时间平移不变性推出。以下是第八章动量守恒定律应用同步练习及答案,希望对大家提高成绩有帮助。

1. 放在光滑水平面上的A、B两小物体

中间有一被压缩的轻质弹簧,用两手分别控制两小

物体处于静止状态,如图所示.下面说法正确的是( )

A. 两手同时放开后,两物体的总动量为零

B. 先放开右手,后放开左手,两物体的总动量向右

C. 先放开左手,后放开右手,两物体的总动量向右

D. 两手同时放开,两物体的总动量守恒;当两手不同时放开,在放开一只手到放开另一只手的过程中两物体总动量不守

2. (2009福建)一炮艇总质量为M,以速度v0匀速行驶,从艇上以相对海岸的水平速度v沿前进方向射出一质量为m的炮弹,发射炮弹后艇的速度为v,若不计水的阻力,则下列各关系式中正确的是( )

A. Mv0=(M-m)v+mv

B. Mv0=(M-m)v+m(v+v0)

C. Mv0=(M-m)v+m(v+v)

D. Mv0=Mv+mv

3. 小船相对于静止的湖水以速度v向东航行.某人将船上两个质量相同的沙袋,以相对于湖水相同的速率v先后从船上水平向东、向西抛出船外,那么当两个沙袋都被抛出后,小船的速度将( )

A. 仍为v

B. 大于v

C. 小于v

D. 可能反向

4. (2009全国Ⅰ)质量为M的物块以速度v运动,与质量为m 的静止物块发生正碰,碰撞后两者的动量正好相等,两者质量之比M/m可能为( )

A. 2

B. 3

C. 4

D. 5

5. 一质量为0.5 kg的小球以2.0 m/s的速度和原来静止在光滑水平面上的质量为1.0 kg的另一小球发生正碰,碰后以0.2 m/s的速度被反弹,碰后两球的总动量是kgm/s,原来静止的小球获得的速度大小是m/s.

6. (2009山东)如图所示,光滑水平面轨道上有三个木块,A、

B、C,质量分别为mA=mC=2m,mB=m,A、B用绳连接,中间有一压缩的弹簧(弹簧与滑块不栓接).开始时A、B以共同速度v0运动,C静止.某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同.求B与C碰撞前B的速度.

7. (2019绵阳模拟)如图所示,木板

A质量mA=1 kg,足够长的木板B质量

mB=4 kg,质量为mC=2 kg的木块C置

于木板B上,水平面光滑,B、C之间有摩擦.现使A以v0=12 m/s的初速度向右运动,与B碰撞后以4 m/s速度弹回.求:

(1)B运动过程中的最大速度大小.

(2)C运动过程中的最大速度大小.

8. 火箭的喷气式发动机每次喷出m=0.2 kg气体,喷出气体相对地面的速度为v=1 000 m/s.设火箭的初质量M=300 kg,发动机每秒喷气20次,在不考虑地球引力及空气阻力的情况下,火箭在1 s末的速度是多大?

9.(2019江苏联考)如图所示,光滑水平面上A、B两小车质量都是M,A车头站立一质量为m的人,两车在同一直线上相向运动.为避免两车相撞,人从A车跃到B车上,最终A 车停止运动,B车获得反向速度v0,试求:

(1)两小车和人组成的系统的初动量大小.

(2)为避免两车相撞,且要求人跳跃速度尽量小,则人跳上B 车后,A车的速度多大?

10. 如图所示,甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量共为M=30 kg,乙和他的冰车总质量也是30 kg,游戏时甲推着一个质量m=15 kg的箱子,和他一起以大小为v0=2 m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子推出时乙迅速把它抓住,若不计冰面的摩擦,问甲至少

要以多大的速度(相对地面)将箱子推出,才能避免与乙相撞? 答案部分

选修3-5第一章

动量守恒定律及其应用

1. 解析:根据动量守恒定律的适用条件,两手同时放开后,两物体水平方向不受外力作用,因此总动量守恒;A正确;当两手不是同时放开时,系统动量不守恒,若先放开右手,则左手对系统有向右的冲量,从而两物体的总动量向右,若先放开左手,则向左.正确选项为ABD.

答案:ABD

2.解析:动量守恒定律必须相对于同一参考系.本题中的各个速度都是相对于地面的,不需要转换.发射炮弹前系统的总动量为Mv0;发射炮弹后炮弹的动量为mv,船的动量为

(M-m)v,所以动量守恒定律的表达式为Mv0=(M-m)v+mv,选项A正确.

答案:A

3.解析:抛出的两沙袋的总动量为零,剩余部分动量与原来动量相等,但质量小了,因此速度增大了.选项B正确.

答案:B

4.解析:根据动量守恒和能量守恒,设碰撞后两者的动量都为p,则总动量为2p,根据p2=2mEk以及能量的关系得

4p2/(2M)p2/(2m)+p2/(2M),可得M/m3,所以AB正确.

答案:AB

5.解析:两小球在碰撞过程中动量守恒,总动量为p=m1v1=1 kgm/s,

由动量守恒得m1v1= -m1v1+m2v2,

代入数据得v2=1.1 m/s.

答案:1 1.1

6. 解析:设共同速度为v,球A和B分开后,B的速度为vB,由动量守恒定律有

(mA+mB)v0=mAv+mBvB,mBvB=(mB+mC)v,联立两式得B

和C碰撞前B的速度为vB=9/5v0.

7. 解析:(1)A与B碰后,B速度最大.由A、B系统动量守恒(取向右为正方向)有:

mAv0+0=-mAvA+mBvB,vB=4 m/s.

(2)B与C共速后,C速度最大,由BC系统动量守恒,有mBvB+0=(mB+mC)vC,

vC=83 m/s.

8. 解析:选火箭和1 s内喷出的气体为研究系统,取火箭的运动方向为正方向.

在这1 s内由动量守恒定律得(M-20m)v-20 mv=0,解得1 s 末火箭的速度为

v=20mv/M-20m=200.21 000/(300-200.2 )m/s

=13.5 m/s.

9. 解析:(1)由动量守恒定律可知,系统的初动量大小为

p=(M+m)v0.

(2)为避免两车发生碰撞,最终两车和人具有相同速度(设为v),则(M+m)v0=(2M+m)v,

解得v=(M+m)v0/(2M+m).

10. 解析:设甲至少以速度v将箱子推出,甲推出箱子后速度为v甲,乙抓住箱子后速度为v乙,则由动量守恒定律,则:

甲推箱子过程:(M+m)v0=Mv甲+mv,

乙抓箱子过程:mv-Mv0=(M+m)v乙.

甲、乙恰不相撞的条件为v甲=v乙.

代入数据可解得v=5.2 m/s.

第八章动量守恒定律应用同步练习的全部内容就是这些,更多精彩内容请持续关注查字典物理网。

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少(g取10m/s2) 练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少 例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小. 练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。 例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能.

练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求: (1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=.求: (1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略). 2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则 (1)小滑块b 经过圆形轨道的B 点时对轨道的压力. (2)通过计算说明小滑块b 能否到达圆形轨道的最高点C . 附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为 的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置 于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向 右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求: (1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . O C B a b A B v A v B C

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

高二物理试卷及答案

2011——2012学年上学期期中学业水平测试 高二物理试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分。 第Ⅰ卷 一、选择题(本题包括10小题,每小题4分,共40分,每小题中有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但选不全的得2分,有选错的得0分) 1、关于电场线下述说法正确的是( ) A.电场线是客观存在的 B.电场线与运动电荷的轨迹是一致的 C.电场线上某点的切线方向与电荷在该点受力方向可以不相同 D.沿电场线方向、场强一定越来越大 2、关于电阻的计算式 和决定式 ,下面说法正确的是 ( ) A .导体的电阻与其两端电压成正比,与电流成反比 B .导体的电阻仅与导体长度、横截面积和材料有关 C .导体的电阻随工作温度变化而变化 D .对一段一定的导体来说,在恒温下比值 I U 是恒定的,导体电阻不随U 或I 的变化而变化 3、如图所示,用两根绝缘细线挂着两个质量相同的不带电的小球A 和B ,此时,上、下细线受的力分别为T A 、T B ,如果使A 带正电,B 带负电,上、下细线受力分别为T 'A , T 'B ,则( ) A.T A < T 'A B.T B > T 'B C.T A = T 'A D. T B < T 'B I U R =S L R ρ =

4、某学生在研究串联电路电压特点时,接成如图所示电路,接通K 后,他将高内阻的电 压表并联在A 、C 两点间时,电压表读数为U ;当并联在A 、B 两点间时,电压表读数也为U ;当并联在B 、C 两点间时,电压表读数为零,则出现此种情况的原因可能是( )(R 1 、R 2阻值相差不大) A .AB 段断路 B .BC 段断路 C .AB 段短路 D .BC 段短路 5、如图所示,平行线代表电场线,但未标明方向,一个带正电、电量为10-6 C 的微粒在电场中仅受电场力作用,当它从A 点运动到B 点时动能减少了10-5 J ,已知A 点的电势为-10 V ,则以下判断正确的是( ) A .微粒的运动轨迹如图中的虚线1所示; B .微粒的运动轨迹如图中的虚线2所示; C .B 点电势为零; D .B 点电势为-20 V 6、如右下图所示,平行板电容器的两极板A ,B 接入电池两极,一个带正电小球悬挂在 两极板间,闭合开关S 后,悬线偏离竖直方向的角度为θ,则( ) A .保持S 闭合,使A 板向 B 板靠近,则θ变大 B .保持S 闭合,使A 板向B 板靠近,则θ不变 C .打开S ,使A 板向B 板靠近,则θ变大 D .打开S ,使A 板向B 板靠近,则θ不变 7、如图所示,甲、乙为两个独立电源的路端电压与通过它们的电流I 的关系图象,下列 说法中正确的是( ) A .路端电压都为U 0时,它们的外电阻相等, A B A B 2 1

§2 动量守恒定律及其应用

§2 动量守恒定律及其应用 教学目标: 1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题. 2.掌握应用动量守恒定律解决问题的一般步骤. 3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题. 教学重点: 动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点: 应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性. 教学方法: 1.学生通过阅读、对比、讨论,总结出动量守恒定律的解题步骤. 2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性. 3.讲练结合,计算机辅助教学 教学过程 一、动量守恒定律 1.动量守恒定律的内容 一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即:221 12211v m v m v m v m '+'=+ 2.动量守恒定律成立的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 3.动量守恒定律的表达形式 (1)221 12211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和 1221v v m m ??-= 4.动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中

高考物理练习题库28(动量守恒定律的应用)

高考物理练习题库28(动量守恒定律的应用) 1.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,这是由于( ).【0.5】 (A)A 车的质量一定大于B 车的质量 (B)A 车的速度一定大于B 车的速度 (C)A 车的动量一定大于B 车的动量 (D)A 车的动能一定大于B 车的动能量 答案:C 2.一个静止的质量为m 的不稳定原子核,当它完成一次α衰变.以速度v 发射出一个质量为m α的α粒子后,其剩余部分的速度等于( ).【0.5】 (A)v m m α- (B)-v (C)v m -m m αα (D)v m -m m α α- 答案:D 3.在两个物体碰撞前后,下列说法中可以成立的是( ).【1】 (A)作用后的总机械能比作用前小,但总动量守恒 (B)作用前后总动量均为零,但总动能守恒 (C)作用前后总动能为零,而总动量不为零 (D)作用前后总动景守恒,而系统内各物体的动量增量的总和不为零 答案:AB 4.在光滑的水平面上有两个质量均为m 的小球A 和B,B 球静止,A 球以速度v 和B 球发生碰撞,碰后两球交换速度.则A 、B 球动量的改变量Δp A 、Δp B 和A 、B 系统的总动量的改变Δp 为( ).【1】 (A)△p A =mv,△p B =-mv,△p=2mv (B)△p A ,△p B =-mv,Δp=0 (C)Δp A =0,Δp B =mv,Δp=mv (D)△p A =-mv,Δp B =mv,Δp=0 答案:D 5.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度方向仍沿原来的方向,则( ).【1】 (A)b 的速度方向一定与原来速度方向相同 (B)在炸裂过程中,a 、b 受到的爆炸力的冲量一定相同 (C)从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大 (D)a 、b 一定同时到达水平地面 答案:D 6.大小相同质量不等的A 、B 两球,在光滑水平面上作直线运动,发生正碰撞后分开.已知碰撞前A 的动量p A =20㎏·m/s,B 的动量p B =-30㎏·m/s,碰撞后A 的动量p A =-4㎏·m/s,则:【2】 (1)碰撞后B 的动量p B =_____㎏·m/s. (2)碰撞过程中A 受到的冲量=______N·s. (3)若碰撞时间为0.01s,则B 受到的平均冲力大小为_____N. 答案:(1)-6(2)-24(3)2400 7在光滑的水平面上有A 、B 两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为p A =5㎏·m/s,p B =7㎏·m/s,如图所示.若两球发生正碰,则碰后两球的动量增量Δp A 、Δp B 可能是( ).【2】 (A)Δp A =3㎏·m/s,Δp B =3㎏·m/s (B)Δp A =-3㎏·m/s,Δp B =3㎏·m/s

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

高二上学期期末考试物理试题_含答案

R U 兰州一中2018-2019-1学期期末考试试题 高二物理(理科) 第Ⅰ卷(选择题,共40分) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分,考试时间100分钟,答案写在答题卡上,交卷时只交答题卡。 一、选择题:(本题共10小题,每小题4分,共40分。其中1-6题为单项选择题,7-10为多项选择题。) 1.关于闭合电路欧姆定律,下列叙述中正确的是 A .r I IR E +=适用于所有电路 B .r R E I += 仅适用于外电路是纯电阻电路 C .内外U U E +=只适用于纯电阻电路 D .电源的电动势数值上等于电源两极间的电压 2.将一根电阻丝接在某恒定电压的电源两端,电流做功的功率为P 。若将金属丝均匀的拉长为原来的两倍后再接入原来的电路中,则它的功率为 A .4P B .0.25P C .16P D .0.125P 3.如图所示,电路中的电阻R =10Ω,电动机的线圈电阻r =1Ω,加在电路两端的电压U =100V ,已知电流表的读数为30A ,则通过电动机的电流为 A .100A B .30A C .20A D .10A 4.如图,均匀绕制的螺线管水平放置,在其正中心的上方附近用绝缘绳水平吊 起通电直导线A ,A 与螺线管垂直,A 导线中的电流方向垂直纸面向里,开关S 闭合,A 受到通电螺线管的作用力的方向是 A .水平向左 B .水平向右 C .竖直向下 D .竖直向上 5.如图所示,一根通有电流I 的直铜棒MN ,用导线挂在磁感应强度为B 的匀强磁场中,此时两根悬线处于张紧状态,下列哪项措施可使悬线

中的张力为零 A .适当减小电流I B .使电流反向并适当增大 C .适当增大磁感应强度B D .使磁感应强度B 反向并适当增大 6.如图所示,带电平行板中匀强电场E 的方向竖直向上,匀强磁场B 的方向水平(垂直纸面向里)。某带电小球从光滑绝缘轨道上的A 点自由滑下,经过轨道端点P 进入板间后恰好沿水平方向做直线运动。现使小球从较低的B 点开始滑下,经P 点进入板间,则小球在板间运动的过程中 A .电场力不做功 B .机械能保持不变 C .所受的电场力将会增大 D .所受的磁场力将会增大 7.如图所示的电路中,水平放置的平行板电容器中有一个带电液滴正好处于静止状态,现 将滑动变阻器的滑片P 向左移动,则 A .电容器中的电场强度将增大 B .电容器上的电荷量将减少 C .电容器的电容将减小 D .液滴将向下运动 8.在如图甲所示的电路中,电源电动势为3.0 V ,内阻不计,L 1、L 2、L 3为3 个相同规格的小灯泡,这种小灯泡的伏安特性曲线如图乙所示。当开关闭合后,下列关于电路中的灯泡的判断,正确的是 A .灯泡L 1的电阻为12Ω B .通过灯泡L 1的电流为灯泡L 2的电流的2倍 C .灯泡L 1消耗的电功率为0.75 W D .灯泡L 2消耗的电功率为0.30 W 9.如右图所示为圆柱形区域的横截面,在没有磁场的情况下,带电粒子(不计重力)以某 一初速度沿截面直径方向入射,穿过此区域的时间为t ,在该区域加沿轴线垂直纸面向外的匀磁强场,磁感应强度大小为B ,带电粒子仍以同一初速度从A 点沿截面直径入射并沿某一直径方向飞出此区域时,速度方向偏转角为600,如图所示。根据上述条件可 E R 1 P R 2

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

高考物理动量守恒定律的应用技巧(很有用)及练习题

高考物理动量守恒定律的应用技巧(很有用)及练习题 一、高考物理精讲专题动量守恒定律的应用 1.足够长的水平传送带右侧有一段与传送带上表面相切的 1 4 光滑圆弧轨道,质量为M =2kg 的小木盒从离圆弧底端h =0.8m 处由静止释放,滑上传送带后作减速运动,1s 后恰好与传送带保持共速。传送带始终以速度大小v 逆时针运行,木盒与传送带之间的动摩擦因数为μ=0.2,木盒与传送带保持相对静止后,先后相隔T =5s ,以v 0=10m/s 的速度在传送带左端向右推出两个完全相同的光滑小球,小球的质量m =1kg .第1个球与木盒相遇后,球立即进入盒中并与盒保持相对静止,第2个球出发后历时△t =0.5s 与木盒相遇。取g =10m/s 2,求: (1)传送带运动的速度大小v ,以及木盒与第一个小球相碰后瞬间两者共同运动速度大小v 1; (2)第1个球出发后经过多长时间与木盒相遇; (3)从木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量。 【答案】(1)v =2m/s ;v 1=2m/s (2)t 0=1s (3)24J Q = 【解析】 【详解】 (1)设木盒下滑到弧面底端速度为v ',对木盒从弧面下滑的过程由动能定理得 21 2 Mgh Mv = ' 依题意,木箱滑上传送带后做减速运动,由运动学公式有:v v at ='-' 对箱在带上由牛顿第二定律有:Mg Ma μ= 代入数据联立解得传送带的速度v =2m/s 设第1个球与木盒相遇,根据动量守恒定律得 ()01mv Mv m M v -=+ 代入数据,解得v 1=2m/s (2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过t 0与木盒相遇,则00 s t v = 设第1个球进入木盒后两者共同运动的加速度为a ,根据牛顿第二定律有 ()()m M g m M a μ+=+ 得:2 2m/s a g μ==

【物理】 物理动量守恒定律专题练习(及答案)

【物理】 物理动量守恒定律专题练习(及答案) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求:

人教版高二物理上学期期末考试试题附答案

××学校20××~20××学年度第一学期期末考试题 高二物理 一、选择题(本题共14小题,每小题4分,共56分.每小题给出的四个选项中,有的小题只有一 个选项正确,有的小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分) 1.在较暗的房间里,从射进来的阳光中,可以看到悬浮在空气中的微粒在不停地运动,这些微粒的运动() A.是布朗运动 B.不是布朗运动 C.是自由落体运动 D.是热运动 2 下面关于分子力的说法中正确的有:() A.铁丝很难被拉长,这一事实说明铁丝分子间存在引力 B.将打气管的出口端封住,向下压活塞,当空气被压缩到一定程度后很难再压缩,这一事实说明这时空气分子间表现为斥力 C.水很难被压缩,这一事实说明水分子间存在斥力 D.磁铁可以吸引铁屑,这一事实说明分子间存在引力 3.甲、乙两个相同的密闭容器中分别装有等质量的同种气体,已知甲、乙容器中气体的压强分别为p甲、p乙,且p甲< p乙。则() A.甲容器中气体的温度高于乙容器中气体的温度 B.甲容器中气体的温度低于乙容器中气体的温度 C.甲容器中气体分子的平均动能大于乙容器中气体分子的平均动能 D.甲容器中气体分子的平均动能小于乙容器中气体分子的平均动能 4.对一定量的气体,它的压强、体积和温度存在某些关系。关于这些关系的表述,正确的是()A.温度不变时,体积减小,压强增大 B.体积不变时,压强增大,温度升高 C.体积减小时,温度一定升高 D.温度升高时,压强可能减小 5如图所示,表示一定质量的理想气体沿箭头所示的方向发生状态变化的过程,则该气体压强变化情况是() A.从状态c到状态d,压强减小 B.从状态d到状态a,压强增大 C.从状态a到状态b,压强增大 D.从状态b到状态c,压强减小 6.一个矩形线圈在匀强磁场中匀速转动,产生交变电动势的瞬时表达式为e = 102sin4πtV ,则() A.该交变电动势的频率为0.5Hz B.零时刻线圈平面与磁场垂直 C.t = 0.25s时,e达到最大值D.在1s时间内,线圈中电流方向改变10次 7.一个矩形线圈的匝数为N匝,线圈面积为S ,在磁感强度为B的匀强磁场中以ω的角速度绕垂直磁感线的轴匀速转动,开始时,线圈平面与磁场平行。对于线圈中产生的交变电动势,下列判断正确的是() A.瞬时表达式为e = NBSωcosωt B.平均值为 2 1NBSω C.有效值为 2 1NBSωD.频率为2πω 8.一正弦交变电压的电压u随时间t变化的规律如图所示。下列说法正确的是()A.该交变电压的瞬时值表达式为u=10 sin(50 t)V B.该交变电压有效值为2 5 V C.将该交变电压接在匝数比为1∶2的理 想变压器原线圈上,副线圈输出频率为 50 Hz的交变电压 D.将该交变电压加在阻值R= 20Ω的白炽 灯两端,电灯消耗的功率是5W 9.如图所示,理想变压器的副线圈上通过输电线接有两个完全相同的灯泡L1和L2,原线圈和电源间串接一个电阻R1,输电导线的等效电阻为R2 ,电源的电压恒定。开始时,开关S断开,当S 接通时,以下说法中正确的是() A.R2上的电压增大 B.通过灯泡L1的电流将减小 C.原线圈两端的电压将增大 D.副线圈两端的输出电压减小 10.如图所示,电源电压保持不变,增大交变电流的频率,则1、2和3灯的亮度变化情况是()A.1、2两灯均变亮,3灯变暗 B.1灯变亮,2、3两灯均变暗 C.1、2灯均变暗,3灯亮度不变

动量守恒定律及应用练习题

动量守恒定律习题课 教学目标:掌握应用动量守恒定律解题的方法和步骤 能综合运用动量定理和动量守恒定律求解有关问题教学重点:熟练掌握应用动量守恒定律解决有关力学问题的正确步骤教学难点:守恒条件的判断,系统和过程的选择,力和运动的分析教学方法:讨论,总结;讲练结合 【讲授新课】 1、“合二为一”问题:两个速度不同的物体,经过相互作 用,最后达到共同速度。 例1、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时: (1)两车的速度各为多少?(2)甲总共抛出了多少个小球? 分析与解:甲、乙两小孩依在抛球的时候是“一分为二”的过程,接球的过程是“合二为一”的过程。 (1)甲、乙两小孩及两车组成的系统总动量沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞。设共同速度为V,则: M1V1-M2V1=(M1+M2)V (2)这一过程中乙小孩及时的动量变化为:△P=30×6-30×(- 1.5)=225(kg·m/s) 每一个小球被乙接收后,到最终的动量弯化为△P1=16.5×1- 1.5×1=15(kg·m/s) 故小球个数为 2、“一分为二”问题:两个物体以共同的初速度运动,由于 相互作用而分开后以不同的速度运动。 例2、人和冰车的总质量为M,另有一个质量为m的坚固木箱,开始时人坐在冰车上静止在光滑水平冰面上,某一时刻人将原来静止在冰面上的木箱以速度V推向前方弹性挡板,木箱与档板碰撞后又反向弹 回,设木箱与挡板碰撞过程中没有机械能的损失,人接到木箱后又以速度V推向挡板,如此反复多次,试求人推多少次木箱后将不可能再

最新物理动量守恒定律练习

最新物理动量守恒定律练习 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ; (2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地? 【答案】(1)1m (2)4282 25 t s = 【解析】 【分析】 根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】 解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122 mgL mv mv μ= - 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:22 01211()(cos53)22 mv m M v mg R R =++- 联立解得:1R m = (2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有: 22 00311(cos53)22 mv mv mg R R =+- 解得:322/v m s = 物块从C 抛出后,在竖直方向的分速度为:38 sin 532/5 y v v m s =?= 这时离体面的高度为:cos530.4h R R m =-?=

高二物理期末考试试卷及答案.

高二物理期末试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分。 第Ⅰ卷 一、选择题(本题包括10小题,每小题4分,共40分,每小题中有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但选不全的得2分,有选错的得0分) 1、关于电场线下述说法正确的是( ) A.电场线是客观存在的 B.电场线与运动电荷的轨迹是一致的 C.电场线上某点的切线方向与电荷在该点受力方向可以不相同 D.沿电场线方向、场强一定越来越大 2、关于电阻的计算式 和决定式 ,下面说法正确的是 ( ) A .导体的电阻与其两端电压成正比,与电流成反比 B .导体的电阻仅与导体长度、横截面积和材料有关 C .导体的电阻随工作温度变化而变化 D .对一段一定的导体来说,在恒温下比值 I U 是恒定的,导体电阻不随U 或I 的变化而变化 3、如图所示,用两根绝缘细线挂着两个质量相同的不带电的小球A 和B ,此时,上、下细线受的力分别为T A 、T B ,如果使A 带正电,B 带负电,上、下细线受力分别为T 'A , T 'B ,则( ) A.T A < T 'A B.T B > T 'B C.T A = T 'A D. T B < T 'B 4、某学生在研究串联电路电压特点时,接成如图所示电路, 接 通 I U R =S L R ρ =

K后,他将高内阻的电压表并联在A、C两点间时,电压表读数为U;当并联在A、B 两点间时,电压表读数也为U;当并联在B、C两点间时,电压表读数为零,则出现此种情况的原因可能是()(R1、R2阻值相差不大) A.AB段断路B.BC段断路 C.AB段短路D.BC段短路 5、如图所示,平行线代表电场线,但未标明方向,一个带正电、电量为10-6 C的微粒 在电场中仅受电场力作用,当它从A点运动到B点时动 能减少了10-5 J,已知A点的电势为-10 V,则以下判 断正确的是() A.微粒的运动轨迹如图中的虚线1所示; B.微粒的运动轨迹如图中的虚线2所示; C.B点电势为零; D.B点电势为-20 V 6、如右下图所示,平行板电容器的两极板A,B接入电池两极,一个带正电小球悬挂在 两极板间,闭合开关S后,悬线偏离竖直方向的角度为θ,则() A.保持S闭合,使A板向B板靠近,则θ变大 B.保持S闭合,使A板向B板靠近,则θ不变 C.打开S,使A板向B板靠近,则θ变大 D.打开S,使A板向B板靠近,则θ不变 7、如图所示,甲、乙为两个独立电源的路端电压与通过它们的电流I的关系图象,下列 说法中正确的是() A.路端电压都为U0时,它们的外电阻相等, B.电流都是I0时,两电源的内电压相等 θ A B S A B 2 1

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

动量守恒定律的综合应用练习及答案

1.如图所示,以质量m=1kg的小物块(可视为质点),放置在质量为M=4kg的长木板,左侧长木板放置在光滑的水平地面上,初始时长木板与木块一起,以水平速度v?=2m/s向左匀速运动。在长木板的左侧上方固定着一个障碍物A,当物块运动到障碍物A处时与A发生弹性碰撞(碰撞时间极短,无机械能损失),而长木板可继续向左运动,重力加速度g=10m/s2。 (1)设长木板足够长,求物块与障碍物第1次碰撞后,物块与长木板速度相同时的共同速率 1.2m/s (2)设长木板足够长,物块与障碍物发生第1次碰撞后,物块儿向右运动能到达的最大距离,s=0.4m,求物块与长木板间的动摩擦因数以及此过程中长木板运动的加速度的大小.1.25m/s2 (3)要使物块不会从长木板上滑落,长木板至少为多长?2m 2.如图所示为一根直杆弯曲成斜面和平面连接在一起的轨道,转折点为C,斜面部分倾角为30度,平面部分足够长,滑块A,B放在斜面上,开始时A,B之间的距离为1米,B与C的距离为0.6米,现将A B同时由静止释放.已知A 、B与轨道的动摩擦因数分别为√3/5和√3/2 ,A、B质量均为m,g取10m/s2,设最大静摩擦力等于滑动摩擦力,A、B发生碰撞时为弹性碰撞。物体A,B可以看作是质点,不计在斜面与平面转弯处的机械能损失,则 (1)经过多长时间滑块A,B第1次发生碰撞. 1s (2)滑块B停在水平轨道上的位置与C点儿的距离是多少?m 10 3 3.如图所示,光滑的轨道固定在竖直平面内,其O点左边为水平轨道,O点右边的曲面轨道高度h等于0.45米,左右两段轨道在O点平滑连接.质量m=0.10kg的小滑块a由静止开始从曲面轨道的顶端沿轨道下滑,到达水平段后与处于静止状态的质量M=0.30kg的小滑块b发生碰撞,碰撞后现小滑块a恰好停止运动,取重力加速度g=10m/s2,求 (1)小滑块a通过O点时的速度大小3m/s (2)碰撞后小滑块b的速度大小1m/s (3)碰撞后碰撞过程中小滑块a、b组成的系统损失的机械能。0.3J A B C b c h o

动量守恒定律 练习题及答案

动量守恒定律 一、单选题(每题3分,共36分) 1.下列关于物体的动量和动能的说法,正确的是 ( ) A .物体的动量发生变化,其动能一定发生变化 B .物体的动能发生变化,其动量一定发生变化 C .若两个物体的动量相同,它们的动能也一定相同 D .两物体中动能大的物体,其动量也一定大 2.为了模拟宇宙大爆炸初期的情境,科学家们使用两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.若要使碰撞前重离子的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离子在碰撞前的瞬间具有 ( ) A .相同的速度 B .相同大小的动量 C .相同的动能 D .相同的质量 3.质量为M 的小车在光滑水平面上以速度v 向东行驶,一个质量为m 的小球从距地面H 高处自由落下,正好落入车中,此后小车的速度将 ( ) A .增大 B .减小 C .不变 D .先减小后增大 4.甲、乙两物体质量相同,以相同的初速度在粗糙的水平面上滑行,甲物体比乙物体先停下来,下面说法正确的是 ( ) A .滑行过程中,甲物体所受冲量大 B .滑行过程中,乙物体所受冲量大 C .滑行过程中,甲、乙两物体所受的冲量相同 D .无法比较 5.A 、B 两刚性球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg·m /s ,B 球的动量是7kg·m /s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是 ( ) A .-4kg·m/s 、14kg·m/s B .3kg·m/s 、9kg·m/s C .-5kg·m/s 、17kg·m/s D .6kg·m /s 、6kg·m/s 6.质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v .在碰撞过程中, 地面对钢球冲量的方向和大小为 ( ) A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 7.质量为m 的α粒子,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,而碳 核获得的速度为 ( ) A .06v B .20v C .02v D .03 v 8.在光滑水平面上,动能为0E ,动量大小为0P 的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1的运动方向 相反,将碰撞后球1的动能和动量的大小分别记作1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有 ( ) ①1E <0E ②1P <0P ③2E >0E ④2P >0P A .①② B.①③④ C.①②④ D.②③ 9.质量为1.0kg 的小球从高20 m 处自由下落到软垫上,反弹后上升的最大高度为5.O m .小球与软垫接触的时间是1.0s ,在接触的时间内小球受到的合力的冲量大小为(空气阻力不计,g 取10m/s 2) ( ) A .10N·s B .20N·s C .30N·s D .40N·s 10.质量为2kg 的物体,速度由4m /s 变成 -6m/s ,则在此过程中,它所受到的合外力冲量是 ( ) A .-20N·s B.20N·s C .-4N·s D .-12N·s 11.竖直向上抛出一个物体.若不计阻力,取竖直向上为正,则该物体动量随时间变化的图线是 ( ) 12.一颗水平飞行的子弹射入一个原来悬挂在天花板下静止的沙袋并留在其中和沙袋一起上摆.关于子弹和沙袋组成的系统,下列说法中正确的是 ( ) A .子弹射入沙袋过程中系统动量和机械能都守恒 B .子弹射入沙袋过程中系统动量和机械能都不守恒 C .共同上摆阶段系统动量守恒,机械能不守恒 D .共同上摆阶段系统动量不守恒,机械能守恒 二、多选题(每题4分,共16分) 13.下列情况下系统动量守恒的是 ( )A .两球在光滑的水平面上相互碰撞 B .飞行的手榴弹在空中爆炸 C .大炮发射炮弹时,炮身和炮弹组成的系统 D .用肩部紧紧抵住步枪枪托射击,枪身和子弹组成的系统 14.两物体相互作用前后的总动量不变,则两物体组成的系统一定 ( ) A .不受外力作用 B .不受外力或所受合外力为零 C .每个物体动量改变量的值相同 D .每个物体动量改变量的值不同

相关主题
文本预览
相关文档 最新文档