当前位置:文档之家› 电磁场对变压器ansoft仿真作业.

电磁场对变压器ansoft仿真作业.

电磁场对变压器ansoft仿真作业.
电磁场对变压器ansoft仿真作业.

电磁场仿真作业

问题:利用Ansoft maxwell14进行变压器的仿真模拟,并且利用有限元方法对其进行剖分,求解磁感应强度B。

1、打开ansoft软件,新建工程。

2、用maxwell进行3D作图,如下图所示。

①首先绘制磁芯,如下图可以看到U型薄片。

②从上面菜单选择Draw\Sweep\Along Vector,构成立体图形。

③选中磁芯,在左下方的属性栏中修改物体的材质,选中铁氧体(ferrite)

④绘制绕组,先画出轮廓线。

⑤做矩形,在菜单栏中选择Draw\Sweep\Along path,绘制绕组,并且选择材料为铜copper。

⑥选中磁芯绕组最好绘制的矩形,做镜像复制。再平移,完成变压器磁铁和绕组的绘制,如下图所示。

3、设置边界条件和激励源。

①建立有限元分析的边界,如下图所示。

②对绕组电流进行赋值,设置为8A。

4、用菜单栏,设置求解参数,3D仿真较慢,可以适当降低求解误差。然后按叹号进行仿真。

5、仿真结果

①对绕组进行剖分单元,如下图所示

②对磁铁部分进行剖分分析结果。

④磁感应强度B大小及其分布,仿真图如下图所示。

⑤磁感强度B矢量仿真效果图如下图所示、

⑥剖分各单元参数值。

⑦选择Mag_B就可以看磁密的情况。

同轴电缆的电场3D仿真

同轴电缆的电场3D仿真 目录 1.课程设计的目的与作用 (1) 1.1设计目的 (1) 2.设计任务及所用Maxwell软件环境介绍 (1) 2.1设计任务 (1) 2.2 Maxwell软件环境 (2) 3.电磁模型的建立 (2) 3.1建模并设计模型属性 (2) 3.2选择求解器类型 (2) 3.3建立内心圆柱模型 (3) 3.4设置材料属性 (5) 3.5设定激励源 (5) 3.6设置计算参数 (6) 3.7检验所有设置是否正确并求解 (8) 4.电磁模型计算及仿真结果后处理分析 (8) 4.1电场强度分布 (8) 4.2电通密度分布 (10) 4.3电位分布 (11) 4.4电能量的计算 (12) 5.设计总结和体会 (14) 6.参考文献 (14)

1.课程设计的目的与作用 1.1设计目的: 本次课设是同轴电缆的电场仿真,通过设计与仿真验证理论的真实性,以便使我们更好的理解实体的理论,才能更好的深度学习电磁场的知识。通过对典型电磁产品的仿真设计,并模拟电磁场的特性,将理论与实践有效结合,强化学生对电磁场与电磁波的理解和应用,提高教学质量。 1.2设计作用:总体要求:熟练使用 Ansoft Maxwell 仿真软件,对电场,磁场进行分析,了解所做题目的原理。利用 Ansoft Maxwell 软件仿真简单的电场以及磁场分布,画出电场矢量E线图,磁感应强度B线图。并对仿真结果进行分析,总结。将所做步骤详细写出,并配有相应图片说明。 2.设计任务及所用Maxwell软件环境介绍 2.1设计任务:同轴电缆的电场仿真 如图2所示,同轴电缆模型。内导体半径为20mm,外导体半径为160mm,外导体厚度为20mm。内导体和外导体均用银(silver),内外导体间填充树脂玻璃(Plexiglass)(3.40,0.0051)。 (1)内导体电势为380V,外导体电势为0。

2016年《电磁场与电磁波》仿真实验 (1)

《电磁场与电磁波》仿真实验 2016年11月

《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题

目录 一、电磁场仿真软件——Matlab的使用入门 (4) 二、单电荷的场分布 (10) 三、点电荷电场线的图像 (1) 2 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17)

实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)。 注意,运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6)

系统仿真结课作业

系统仿真导结课作业 一、概述 建模与仿真技术已成功地应用于航空航天、生产制造、交通运输、信息、生物、医学、材料、能源、教育、军事、社会、经济等众多领域;并成功地应用于产品研制的全生命周期,包括需求分析、方案论证、概念设计、初步设计、详细设计、生产制造、试验试飞、运行、维护、训练等各个阶段。仿真科学与技术正是从其广泛的应用中获得了日益强大的生命力,而仿真技术的发展反过来使得其得到愈来愈广泛的应用。 广义而言,仿真是采用建模的方法和物理的方法对真实环境客观事物进行 抽象、映射、描述和复现。基于系统原理、理论、定律、系统数据等应用计算机技术、软件技术和信息技术建立仿真环境(虚拟环境) ,在仿真环境中对客观事物进行研究。客观事物包括真实环境中的实体/系统、自然环境(地形、大气、海洋、空间)、和人的行为(操作、决策、推理)。仿真环境包括模型、数据、软件、物理效应设备、计算机等。 计算机仿真的三要素是系统、模型、计算机,三个基本活动是模型设计、模型执行、模型分析。计算机仿真的三要素和三个基本活动的关系关系如图1 所示。 系统 模型设计模型分析 模型执行 模型计算机 图1 从模型设计到模型分析经历的过程,即对实物进行仿真可概括为以下几个方面: 1) 问题的描述; 2) 建立概念模型; 3) 建立仿真模型; 4) 收集数据; 5) 编写程序; 6) 在计算机进行模型试验; 7) 模型和数据的验证; 8) 仿真结果显示; 9) 仿真结果分析和评估。 仿真是建立模型在计算机上运行,但这属于数学仿真,随着技术的发展,许多应用 领域建立仿真系统时除了模型外还要求将实物和人员包含在仿真回路中。 由此可见,基于仿真设计与传统设计的方法和流程两者有很大区别(图2) ,基于仿真设计可以在计算机上建立虚拟样机,对产品的外形、结构、强度、动力

电磁场HFSS实验报告

实验一? T形波导的内场分析 实验目的? 1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。????? 2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。?实验仪器 1、装有windows 系统的PC 一台 2、或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导 实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\ Insert HFSS Design,

在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选 3D Modeler\Units ,在 Set Model Units 对话框中选中 in 项。。 2、创建T形波导模型: 创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,处,作为端口终点。 复制长方体:展开绘图历史树的 Model\Vacuum\Tee节点,右键点击Tee项,选择 Edit\Duplicate\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.

ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较.

期末大作业 题目:简单直流致动器 ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙 学科(专业):机械工程 学号:21225169 所在院系:机械工程学系 提交日期2013 年 1 月

1、 背景简述: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。 本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。 现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。 2、 问题描述: 简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。模型为轴对称。 3、 ANSYS 仿真操作步骤: 第一步:Main menu>preferences

第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete 第三步:设置单元行为 模拟模型的轴对称形状,选择Options(选项) 第四步:定义材料 Preprocessor>Material Props> ?定义空气为1号材料(MURX = 1) ?定义衔铁为2号材料(MURX = 1000) ?定义线圈为3号材料(自由空间导磁率,MURX=1)

武大电气工程电磁场仿真实验报告

武汉大学 工程电磁场及高电压综合实验

一、题目 有一极长的方形金属槽,边宽为1cm,除顶盖电位为100sinπxV外,其他三面的电位均为零,试用差分法求槽内电位的分布。 二、解题原理:均匀媒质中的有限差分法 我们在求解场的分布时,当边界形状比较复杂时,解析分析法不再适合了,我们可以采用数值计算的方法,数值计算法的基本思想,是将整体连续的场域划分为若干个细小区域,一般称之为网格或单元,如图1所示,然后用所求的网格交点(一般称为节点或离散点)的数值解,来代替整个场域的真实解。因而数值解,即是所求场域离散点的解。虽然数值解是一种近似解法,但当划分的网格或单元愈密时,离散点数目也愈多,近似解(数值解)也就愈逼近于真实值。 实解。在此处键入公式。 图1场域的剖分,网格节点及步长

(一)、场域的剖分、网格节点及步长 由边界Γ所界定的二维平行平面场(见图1),若采用直角坐标系则可令该场处在xoy 平面内。 所谓场域的剖分就是场域的离散化,即将场域剖分为若干个网格或单元。最常见最简单的剖分为正方形剖分,这种剖分就是在xy 平面上作许多分别与x 轴及y 轴平行的直线,称为网格线。网格线的交点称为节点或离散点,场域内的节点称为内节点,场域边界上的节点称为边界节点。两相邻网格线间距离称为步长,一般以h 表示。若步长相等则整个场域就被剖分为许多正方形网格,这就是正方形剖分。节点(离散点)的布局不一定采用正方形剖分,矩形剖分也常采用,正三角形剖分偶尔也被应用,不过最常见的最简单的仍然是正方形剖分。 (二)、差分与微分 从前面的分析可知,稳恒电、磁场的求解问题,归根到底是求解满足给定边界条件的偏微分方程(泊松方程或拉普拉斯方程)的解的问题所谓差分方法,就是用差商近似代替偏微商,或者说用差分代替微分,从而把偏微分方程转换为差分方程,后者实际上为代数方程。因此这种转化有利于方程的求解。 下面分别对一阶及二阶的差分公式进行推导。首先回顾有关偏导数的定义,有 00(,)(,)(,)(,) lim lim x x f f x x y f x y f x y f x x y x x x →→?+---==? (1) 因此当|x| 充分小时,可近似地用(,)(,)f x x y f x y x +- 或(,)(,) f x y f x x y x -- 代 替 f x ??,所谓差分公式,即是基于上述观点推得的。 设图1所示场域中的位函数为A ,任取一网格节点0,它在xy 平面上的坐标为(x ,i i y ),记节点0的矢量磁位为,i j A ,并把与节点0相邻的其他四个节点1、2、3、4的矢量磁位分别记为1,i j A +、,1i j A +、1,i j A -、,1i j A -,将节点0处函数A 的 一阶偏微商A x ??,用1、0两点函数值的差商1,,i j i j A A h +-近似代替,则有

Maxwell静电场中同轴电缆的3D仿真

Maxwell 静电场中同轴电缆的3D 仿真 电气1008班 研究题目: 单心电缆有两层绝缘体,分界面为同轴圆柱面。 已知R 1=10mm,R 2=20mm,R 3=30mm,R 4=31mm,内导体为copper ,外导体为lead ,中间的介质ε1=5ε0, ε2=3ε0, ,内导体U=100V ,外导体为0V 求:电位,电场强度,电位移随半径的变化,单位长度电容和电场能量。 用解析法计算电位,电场强度,电位移随半径的变化,计算单位长度电容和 电场能量。 解: 设同轴电缆内、外层导体分别带电+τ、-τ。 由高斯定理:在介质中?=?S d S D τL 所以D= πρ τ 2 2 32 1 21 21ln 2ln 23 2 2 1 ρρπε τ ρρπε τ ρρρρρρ+ = + = ? ? d E d E U 所以2 32 1 21 ln 1 ln 1 2ρρερρεπτ+ = U R1 R2 R4 R3 ε1 ε2 (2)D l l πρτ=111 22222D E D E τεπρετεπρε== ==

代入E 1,E 2 ρρεερρρ+ = U E ) ln ln (2 31 21 22ρρρρεερ+= U E 代入具体数值,得到E 1 = ρ 05 .73,E 2 = ρ 75 .121 由?=?3 ρρ EdL 可得电位?1 =268.1-73 ln ρ,?2 =414.1-121.8 ln ρ 电场能量:W=DEdv V ?2 1 =5.0775×10-7 J/m D= πρ τ 2= ) ln 1 ln 1 ( 2 32 1 21 ρρερρερ+ U = ρ -9 10 ×3.23(ρ单位为m) C= =U τ L L =+ 2 32 1 21 ln 1 ln 1 2ρρερρεπ 1.0155×10 -10 F 用ansfot 软件计算上述物理量随半径的变化曲线,并画出电压分布图,计 算出单位长度电容,和电场能量 一、建模并设置模型属性 1,打开Ansoft Maxwell ,单击project ,选择Insert Maxwell 3D Design 建立一个3D 模型 2,选择求解器类型:选择电场—静电场(Maxwell 3D > Solution Type>Electrostatic )

信号与系统仿真作业

nGDOU-B-11-112广东海洋大学学生实验报告书(学生用表) 课程名称课程号学院(系)信息学院 专业班级 学生姓名学号 实验地点04002 实验日期 实验一连时间信号的MATLAB表示 和连续时间LTI系统的时域分析 一、实验目的 1.掌握MATLAB产生常用连续时间信号的编程方法,并熟悉常用连续时间信号的波形和特性; 2.运用MATLAB符号求解连续系统的零输入响应和零状态响应; 3.运用MATLAB数值求解连续系统的零状态响应; 4.运用MATLAB求解连续系统的冲激响应和阶跃响应; 5.运用MATLAB卷积积分法求解系统的零状态响应。 二、实验原理 1. 连续信号MATLAB实现原理 从严格意义上讲,MATLAB数值计算的方法并不能处理连续时间信号。然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB处理,并且能较好地近似表示连续信号。

MATLAB提供了大量生成基本信号的函数。比如常用的指数信号、正余弦信号等都是MATLAB的内部函数。为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图。 三、实验内容 1.实例分析与验证 根据以上典型信号的MATLAB函数,分析与验证下列典型信号MATLAB程序,并实现各信号波形图的显示,连续信号的图形显示使用连续二维图函数plot()。 (1) 正弦信号:用MATLAB命令产生正弦信号2sin(2/4) ππ+,并会出时间0≤t≤3的波形图。 程序如下: K=2;w=2*pi;phi=pi/4; t=0:0.01:3; ft=K*sin(w*t+phi); plot(t,ft),grid on; axis([0,3,-2.2,2.2]) title('正弦信号')

电磁场HFSS实验报告

实验一 T形波导的内场分析 实验目的 1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。 2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。实验仪器 1、装有windows 系统的PC 一台 2、HFSS15.0 或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导

实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开HFSS 软件后,自动创建一个新工程:Project1,由主菜单选File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选Project\ Insert HFSS Design,在工程树中选择HFSSModel1,点右键,选择Rename项,将设计命名为TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选3D Modeler\Units ,在Set Model Units 对话框中选中in 项。。 2、创建T形波导模型: 创建长方形模型:在Draw 菜单中,点击Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为0.8。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于yz 面、x=2 的平面;单击右键,选择Assign Excitation\Wave port项,弹出Wave Port界面,输入名称WavePort1;点击积分线(Integration Line) 下的New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。 复制长方体:展开绘图历史树的Model\Vacuum\Tee节点,右键

运动控制系统仿真作业

运动控制系统仿真作业 利用Matlab解运动控制系统习题 习题2-5在转速、电流双闭环调速系统中,两个调节器均采用PI调节器。当系统带额定负载运行时,转速反馈线突然断线,系统重新进入稳态后,电流调节器的输入偏差电压是否为零?为什么? 解:(一)结合电流、转速调节器的设计建立转速、电流双闭环调速系统模型。设有某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电动机:220V,136A,1460r/min,e C=0.132V2min/r,允 许过载倍数λ=1.5; 晶闸管装置放大系数s K=40; 电枢回路总电阻R=0.5Ω; 时间常数l T=0.03s,m T=0.18s; 电流反馈系数β=0.05V/A(≈10V/1.5N I); 转速反馈系数α=0.007V2min/r(≈10V/N n)。 设计要求:设计电流调节器,要求电流超调量5%iσ=。设计转速调节器,要求转速无静差,空载起动到额定转速时的转速超调量10%iσ=,并检验转速超调量的要求能否得到满足。 1.设计电流调节器 1)确定时间常数 ①整流装置滞后时间常数s T。三相桥式电路的平均失控时间s

T=0.0017s。②电流滤波时间常数oi T。取oi T=0.002s。 ③电流环小时间常数之和£i T。按小时间常数近似处理,取£i s oi T T T=+=0.0037s。 2)选择电流调节器结构 根据设计要求10%iσ=,并保证稳态电流无差,可按典型I型系统设计电流调节器。电流环控制对象是双惯性的,因此可用PI型电流调节器,其传递函数为 (1)()i i ACR i K s W s s ττ+=检查对电源电压的抗扰性能: £i l T T=0.030.0037s s=8.11,由表1可知,各项指标都是可以接受的。 电流调节器超前时间常数:i l Tτ==0.03s。 电流环开环增益:要求10%iσ=时,根据表2可知,£i I K T =0.5,因此 1£i0.50.5135.10.0037I K s T s -===于是,ACR的比例系数为 £i135.10.030.5 1.013400.05 I i i K R K Tτ??===?4)校验近似条件

利用Matlab实现Romberg数值积分算法----系统建模与仿真结课作业

利用Matlab 实现Romberg 数值积分算法 一、内容摘要 针对于某些多项式积分,利用Newton —Leibniz 积分公式求解时有困难,可以采用数值积分的方法,求解指定精度的近似解,本文利用Matlab 中的.m 文件编写了复化梯形公式与Romberg 的数值积分算法的程序,求解多项式的数值积分,比较两者的收敛速度。 二、数值积分公式 1.复化梯形公式求解数值积分的基础是将区间一等分时的Newton —Cotes 求积公式: I =(x)[f(a)f(b)]2 b a b a f dx -≈ +? 其几何意义是,利用区间端点的函数值、与端点构成的梯形面积来近似(x)f 在区间[a,b]上的积分值,截断误差为: 3" (b a)()12 f η-- (a,b)η∈ 具有一次的代数精度,很明显,这样的近似求解精度很难满足计算的要求,因而,可以采用将积分区间不停地对分,当区间足够小的时候,利用梯形公式求解每一个小区间的积分近似值,然后将所有的区间加起来,作为被求函数的积分,可以根据计算精度的要求,划分对分的区间个数,得到复化梯形公式: I =1 1 (b a)(b a) (x)dx [f(a)f(b)2(a )]2n b a k k f f n n -=--≈+++∑? 其截断误差为:

2" (b a)h ()12 R f η--= (a,b)η∈ 2.Romberg 数值积分算法 使用复化的梯形公式计算的数值积分,其收敛速度比减慢,为此,采用Romberg 数值积分。其思想主要是,根据I 的近似值2n T 加上I 与2n T 的近似误差,作为新的I 的近视,反复迭代,求出满足计算精度的近似解。 用2n T 近似I 所产生的误差可用下式进行估算: 12221 ()3 n n n I T T T -?=-=- 新的I 的近似值: 122 n n j T T -=?+ j =(0 1 2 ….) Romberg 数值积分算法计算顺序 i=0 (1) 002T i=1 (2) 102T (3) 012T i=2 (4) 202T (5) 112T (6) 022T i=3 (7) 302T (8) 212T (9) 122T (10) 032T i=4 (11) 402T (12) 312T (13) 222T (14) 132T … … … … 其中,第一列是二阶收敛的,第二列是四阶收敛的,第三列是六阶收敛的,第四列是八阶收敛的,即Romberg 序列。

ANSYS与ansoft电机仿真步骤

A N S O F T建模 1、在ANSOFT软件中建立电机模型 第一步、在ANSOFT绘制电机模型 第二步、选择“Modeler”菜单下的“Export”项会出现下面的窗口 选择保存为“step”格式的文件。这时可以退出ANSOFT软件。 ANSYS仿真 一、稳态温度仿真 第一步创建稳态温度仿真模型 第二步、添加材料及属性,属性主要为“导热系数” 选择“Engineering data”→”Edit” 开始添加材料 第三步、添加完材料后,导入在ANSOFT下创建的电机模型,选择“Geometry”按下面选项选择 选择ANSOFT下保存的“step”格式的电机模型 第四步、导入模型后,给模型添加材料。选择“Model”→”Edit” 进入下面的窗口,按下面的步骤给电机的各个部分选择对应的材料。 第五步、添加完材料后,返回主窗口,更新修改后的工程文件 如果没有问题, 会变为 第六步、添加热载荷 首先添加自由度,在温度场分析中选择为温度,按下面窗口选择。 接下来,编辑温度,并选择应用区域,这儿定义整个模型的初始温度相同。 下面添加热载荷,按下面的窗口选择,这里选择“热生成率”。 编辑添加的热生成率数值,并选择应用区域,这儿选择所有的绕组。 添加完载荷后,更新一下工程文件,通过后,可以选择“Solve”进行求解。 如果求解成功后,左边的窗口会变成右边的窗口。 第七步、查看仿真结果。按下面的窗口选择观察变量。 二、瞬态温度仿真 第一步、建立瞬态温度分析模型 第二步、添加材料及属性,方法与稳态时相同。但材料的属性不同,这里需要添加材料的“密度”、“导热系数“、“比热容”。“Toolbar”窗口如下。 按照各个选项添加数据。 除了添加载荷不同,接下来的步骤与稳态时相同。 设置仿真步数为多步。 按下窗口设置载荷数据,设置为“阶梯数据”。 1 / 1

系统建模与仿真课后作业

、系统、模型和仿真三者之间具有怎样的相互关系 答:系统是研究的对象,模型是系统的抽象,仿真通过对模型的实验以达到研究系统的目的。 、通过因特网查阅有关蒲丰投针实验的文献资料,理解蒙特卡罗方法的基本思想及其应用的一般步骤。 答:蒲丰投针实验内容是这样的:在平面上画有一组间距为a的平行线,将一根长度为L(L

(1)实体流图

(2)活动循环图 、以第二章中图2-5所示的并行加工中心系统为对象,建立Petri 网模型。 3214所示Petri 网模型的运行过程,并将分析结果同例3-5相比较。

、任取一整数作为种子值,采用第三题中得到的随机数发生器生成随机数序列的前200项数据,并对其统计性能进行检验。 解:由第3题可得到一个随机数发生器: a=5 b=9 c=3 m=512 取种子值,生成的随机数序列前200项数据如下: n n 5000032458 4 t t P t P P P P t P (2)t3发 生后 t t P t P P P P t P (3)t2发 生后 (4)t1不能 发生 t t P t P P P P t P (5)t4发 生后

电磁场仿真作业ansoft

电磁场ansoft软件应用作业 ——静电场部分 TYP 电气0906 09291183

一、题目 单心电缆有两层绝缘体,分界面为同轴圆柱面。已知,R1=10mm,R2=20mm,R3=30mm,R4=31mm,内导体为copper,外导体为lead,中间的介质ε1=5ε0, ε2=3ε0, ,内导体U=100V,外导体为0V 求 1用解析法计算电位,电场强度,电位移随半径的变化,计算单位长度电容和电场能量。 2用ansfot软件计算上述物理量随半径的变化曲线,并画出电压分布图,计算出单位长度电容,和电场能量

二、解答 1、解析法: 在介质中取任意点P ,设它到电缆中心距离为r 。过P 点作同轴圆柱面,高为l 。该面加上上下两底面作为高斯面S 。 D rl S d D S )2(π=?? ε 1 1D E = ε 2 2D E = ??+=R R dr R R dr U E E 322121 将方程联立,代入数据解得: m V r E /05.731≈ ,m V r E /75 .1212≈ 所以 12 9 2 1158.8573.05 3.23/1010D C r r m E ε--???=?== 电位 r R R R dr dr l d E r r E E ln 05.7341.236232211 --=?+?=?=??? ∞ ? V r R dr l d E r r E ln 75.12192.426322 --=?=?=?? ∞ ? V 电场能量 9 7 2 11 3.23 1.181173.05221010e D r r E r ω--??=?=??=3 J m 9 7 2 22 3.23 1.9711121.752210 10e D r r E r ω--??=?=??=3 J m 单位长度电场能量 231277632 12 12 222(1.18ln 1.97ln ) 1.02101010e e e R R rdr rdr J m R R R R W R R πππωω---=+=???+??=???单位长度电容 6 1022 22 1.0210 2.0410100e W C F m U --??===?

同轴电缆电场的仿真---2D仿真器

同轴电缆电场的仿真---2D仿真器同轴电缆电场的 仿真---2D仿真器 目录 同轴电缆电场的仿真---2D仿真器同轴电缆电场的仿真---2D仿真器 (1) 1.题目概述 (2) 1.1题目:同轴电缆电场的仿真---2D仿真器 (2) 1.2 设计目的: (2) 1.3设计作用: (2) 1.4 Maxwell软件环境: (3) 2.设计与仿真 (3) 2.1绘制过程与参数设置: (4) 2.2仿真过程 (8) 2.2.1电位,电场强度,电位移分布 (8) 2.2.2计算电容 (15) 2.2.3计算电场能量 (17) 3.计算结果处理分析 (18) 4. 设计总结和体会 (19) 5.参考文献 (19)

1.题目概述 1.1题目:同轴电缆电场的仿真---2D仿真器 同轴电缆描述:单心电缆有两层绝缘体,分界面为同轴圆柱面。已知 R 1=10mm,R 2 =20mm,R 3 =30mm,R 4 =31mm,内导体为copper,外导体为lead,中间的介质ε 1 =5ε 0, ε 2 =3ε 0, , 内导体外导体的电位分别为:内导体U=380V,外导体为-380V。 求: 1用解析法计算电位,电场强度,电位移随半径的变化,计算单位长度电容和电场能量。 2用Ansoft Maxwell软件计算上述物理量随半径的变化曲线,并画出电压分布图,计算出单位长度电容,和电场能量 图1.1 同轴电缆 1.2 设计目的: 电磁场与电磁波课程理论抽象、数学计算繁杂,将Maxwell软件引入教学中,通过对典型电磁产品的仿真设计,并模拟电磁场的特性,将理论与实践有效结合,强化学生对电磁场与电磁波的理解和应用,提高教学质量。 1.3设计作用: 总体要求:熟练使用Ansoft Maxwell 仿真软件,对电场、磁场进行分析,了解所做题目的原理。利用Ansoft Maxwell软件仿真简单的电场以及磁场分布,画出电场矢量E 线图、磁感应强度B线图,并对仿真结果进行分析、总结。将所做步骤详细写出,并配有相应图片说明。

2016年《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验

2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用MATLAB仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题

目录 一、电磁场仿真软件——Matlab的使用入门......... (4) 二、............................................................ 单电荷的场分布 1O 三、........................................................ 点电荷电场线的图像 12- 四、................................................................ 线电荷产生的电位............................................................. : ..... 14 - 五、....................................................................... 有限差分法处理电磁场问题17…

ANSYS电磁场仿真实验报告

电磁场仿真实验报告

求平行输电线周围的电位和电场分布 一、报告要求:该生学号尾号为1,建立3条垂直排布的导线。电位由下到上分别为1V,2V,3V,如下图所示: 二、模型说明:静电场计算,求解区域为模型的5倍,截断边界条件。最下方导线对地高度为10米,导线半径为0.01米,导线之间间距为5米。 (即:H1=10m,H2=15m,H3=20m,U1=1V,U2=2V,U3=3V,R0=0.01m,求解区域为一半圆,题目要求求解区域为模型的5倍,模型尺寸认为是40m,故取半圆半径L=200m。) 如下图所示:

三、实验步骤: 1、确定文件名,选择研究范围。 点击Utility Menu>File>Change Title,输入你的文件名。 例如“姓名_学号”(ZLM_2012301530051) 点击Main Menu>Preferences,选择Electric。 点击Main Menu>Preprocessor>,进入前处理模块 (command: /TITLE,ZLM_2012301530051 /COM,Preferences for GUI filtering have been set to display: /COM, Electric /PREP7 ) 2、定义参数 点击Utility Menu>Parameters>Scalar Parameters,在下面“Selection”空白区 域填入参数: H1=10 H2=15 H3=20 R0=0.01 U1=1 U2=2 U3=3 每一个参数输入完毕,点击“Accept ”按钮,输入的参数就导入上方“Items”指示的框中,等参数导入完毕后,点击“close”按钮关闭对话框。(command: *SET,H1,10 *SET,H2,15 *SET,H3,20 *SET,R0,0.01 *SET,U1,1 *SET,U2,2 *SET,U3,3) 3、定义单元类型 点击Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现单元类型 对话框“Element Types”,点击Add,弹出单元类型选择库对话框“Library of ElementTpes”选择Electrostatic 和2D Quad 121(二维四边形单元plane121)。点 击ok,关闭单元类型选择库对话框,此时在单元类型对话框中显示所添加的单元类型“Type 1 PLANE121”,表示单元类型添加成功,点击Close 按钮,关闭对 话框。 (command: ET,1,PLANE121)

PSCAD的电力系统仿真大作业

电力系统分析课程报告姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef 与Tm均为定常值,且发电机空载。当运行至时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约)。pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=)。 图3 同步发电机模型参数Ta对应位置

1)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=发生短路If波形 2)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=发生短路If波形 短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=时发生三相短路,三相短路电流波形如图7所示。 图7 t=时三相短路电流波形 2)当在t=时发生三相短路,三相短路电流波形如图8所示。 图8 t=6时三相短路电流波形 Xd、Xd`、Xd``对短路电流的影响 1) Xd的影响 Pscad中对于Xd的设置如图9所示: 图9 Pscad对于D轴同步电抗Xd的设置 下面验证不同Xd时A相短路电流的稳定值。 i.Xd=(标幺制,下同)时,仿真波形如图10所示 图10 Xd=时A相短路电流波形 ii.Xd=10时,仿真波形如图11所示 图11 Xd=时A相短路电流波形 2)Xd`的影响 在Pscad中暂态电抗Xd`的设置如图13所示: 图13 Pscad对于暂态电抗Xd的设置 下面验证不同Xd`时A相短路电流的暂态过程。 i.Xd`=时A相短路电流的波形如图14所示: 图14 Xd`=时A相短路电流波形 ii.Xd`=1时A相短路电流的波形如图15所示: 图15 Xd``=1时A相短路电流波形 3)Xd``的影响 这里次暂态电抗Xd``与暂态电抗Xd`相似,Xd``影响的是短路后的次暂态过程。

电磁场大作业

电磁场大作业

一、画出线极化、圆极化、椭圆极化平面波图形 1.线极化 Y X Y clc;clear;close; t=0:0.01:4*pi; z=0:0.01:4*pi; Exm=1;Eym=3; w=2;k=1;Fy=pi; %%线极化 subplot(1,2,1) Ex=Exm*cos(w*t-k*z+Fy); Ey=Eym*cos(w*t-k*z+Fy); plot3(Ex,z,Ey) title('?????ˉ') grid Xlabel('X') Ylabel('Z') Zlabel('Y') subplot(1,2,2) Ex=Exm*cos(w*t+Fy); Ey=Eym*cos(w*t+Fy); plot(Ex,Ey) title('?????ˉ') grid Xlabel('X') Ylabel('Y') 2.圆极化 Y X Y

clc;clear;close; t=0:0.01:4*pi; z=0:0.01:4*pi; Em=2; w=2;k=1;Fy1=pi;Fy2=2*pi; %%圆极化ˉ subplot(1,2,1) Ex=Em*cos(w*t-k*z+Fy1); Ey=Em*sin(w*t-k*z+Fy2); plot3(Ex,z,Ey) grid Xlabel('X') Ylabel('Z') Zlabel('Y') subplot(1,2,2) Ex=Em*cos(w*t+Fy1); Ey=Em*sin(w*t+Fy2); plot(Ex,Ey) grid Xlabel('X') Ylabel('Y') 3.椭圆极化 Y X Y clc;clear;close; t=0:0.01:4*pi; z=0:0.01:4*pi; Emx=2;Emy=3; w=2;k=1;Fy1=3;Fy2=4; %%椭圆极化 subplot(1,2,1) Ex=Emx*cos(w*t-k*z+Fy1); Ey=Emy*sin(w*t-k*z+Fy2); plot3(Ex,z,Ey) grid Xlabel('X') Ylabel('Z') Zlabel('Y') subplot(1,2,2) Ex=Emx*cos(w*t+Fy1); Ey=Emy*sin(w*t+Fy2); plot(Ex,Ey) grid Xlabel('X') Ylabel('Y')

电磁场仿真软件简介

电磁场仿真软件简介 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为维电磁仿真软件。例如,Agilent公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS (HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST 的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS(定名为Ansoft HFSS )中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS 是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉及的任意形状三维电磁场仿真方面不如HFSS更专业、更理想。实际上,ANSYS软件的优势并不在电磁场仿真方面,而是结构静力/动力分析、热分析以及流体动力学等。但是,就其电磁场部分而言,它也能对任意三维结构的电磁特性进

相关主题
文本预览
相关文档 最新文档