当前位置:文档之家› 离心泵汽蚀原因分析及解决对策

离心泵汽蚀原因分析及解决对策

离心泵汽蚀原因分析及解决对策
离心泵汽蚀原因分析及解决对策

离心泵汽蚀原因分析及解决对策

撰稿人:刘步宇

化学品事业部机械动力部

2004年11月

目录

摘要---------------------------------------------------(1)

1、前言------------------------------------------------(1)

2、工艺流程与设备概况----------------------------------(1)2.1 工艺流程简介----------------------------------------(1)

2.2 离心泵参数------------------------------------------(3)

3、泵运行状况------------------------------------------(3)

4、汽蚀原因分析----------------------------------------(3)4.1 汽蚀现象-------------------------------------------(3)4.2 汽蚀成因分析---------------------------------------(4)

4.3 PP-65泵汽蚀原因确定--------------------------------(7)

5、汽蚀解决对策----------------------------------------(8)5.1 解决汽蚀方案的比选---------------------------------(8)5.2 解决汽蚀方案的确定--------------------------------(10)5.3 诱导轮的设计---------------------------------------(11)5.3.1 诱导轮的设计计算---------------------------------(11)5.3.2 安装诱导轮后的抗汽蚀性能计算---------------------(16)5.3.2.1诱导轮汽蚀余量----------------------------------(16)

5.3.2.2 加装诱导轮后主叶轮汽蚀性能分析-----------------(16)

6、实施效果---------------------------------------------(17)

7、结论-------------------------------------------------(18)

8、参考文献---------------------------------------------(18)

1

离心泵汽蚀原因分析及解决对策

摘要:本文通过对离心泵汽蚀原因进行分析,提出改善离心泵汽蚀性能的几个方案。经过比较并结合现场实际,在不影响正常生产的前提下,利用一些临时措施解决离心泵的汽蚀问题。主要进行诱导轮设计计算,通过加装诱导轮解决汽蚀问题。经改造后,取得很好效果,为今后解决汽蚀问题提供了宝贵经验。

关键词:离心泵汽蚀汽蚀余量诱导轮

1、前言

燕化公司化学品事业部苯酚丙酮装臵采用异丙苯法生产苯酚丙酮,设计能力为8万吨/年,为了降低消耗,提升技术水平,提高市场竞争力,于2003年对装臵进行了技术改造,设计能力扩大到16万吨/年。随着生产能力的扩大,工艺参数发生很大变化,大部分机泵进行了更新。由于设计、选型、操作条件变化等原因,在改造后开车过程当中,多台机泵发生了严重的汽蚀现象,这其中又以循环烃塔底液泵(PP-65A/B)、粗苯酚塔塔底泵(PP-35A/B)等最为严重。这些机泵在运转时,不仅振动剧烈、噪音大,而且泵效率明显下降,无法达到要求的流量和压力,严重影响装臵的正常开车生产,从而带来巨大的经济损失。因此,解决这一影响生产的实际问题就成为必然。

为了解决泵汽蚀问题,我们以循环烃塔塔底液泵(PP-65A/B)为例,分析研究汽蚀产生原因,制订解决对策。

2、工艺流程与设备概况

2.1 工艺流程简介

PP-65A/B泵是回收系统循环烃塔(PT-20)塔底液泵。由储罐(PTK-14)出来的油在聚结器(PZ-20)中分离,脱去油中所含的微量钠盐,供给PT-20。在PT-20中,采用真空操作。轻焦油中的丙酮2

3

组分从塔顶分离。脱除丙酮后的物料由塔釜液位控制,经塔底泵PP-65送到脱重塔(PT-21)。PT-21脱重塔主要是将异丙苯和α-甲基苯乙烯与重烃分离开来。该塔采用高真空操作,根据进料量调节加热量。塔顶馏分主要是比异丙苯轻的组分,采到储罐PTK-33,侧采主要是异丙苯和α-甲基苯乙烯作为加氢进料,塔釜采出重废烃由PP-119泵送去储罐,其中主要包含α-甲基苯乙烯和重芳烃。

PP-65泵进口管线从塔(PT-20)底出来经过几个弯头、三通后,与泵相连,两台泵并联布臵,PT-20塔为负压操作,泵进口管线无保温,泵入口管线无过滤器。

图1 工艺流程图

相关系统

控制点 单位 设计值 执行指标 PT-20

进料量

m 3/h 5.0 4.5~5.5 回流量

m 3/h 2.0 1.8~2.5 塔釜液位 % 50 30~80 塔釜温度 ℃ 135 130~140 尾压 mmHg 640 620~650 PT-21

进料量 m 3

/h 4.7 4.4~5.4 回流量

m 3/h 6.5 6.0~7.0 塔釜液位 % 50 30~80 塔釜温度 ℃ 180 175~185 尾压

mmHg

640

620~650

表1 岗位正常工艺控制条件

2.2 离心泵参数

PP-65A/B泵为单级单吸悬臂式流程泵,泵型号HYB25-315C,轴向吸入,叶轮经切割,叶轮直径D为302(mm)。泵参数见表2,性能实验记录见表3。

主要材质扬程

(m)

流量

(m3/h)

轴功率

(KW)

泵效率

(%)

比转数电机功

率(KW)

入口/出口

直径(mm)

转速

(r/min)

SUS304 115 11.5 14.5 25 20.8 15 50/25 2950

表2 泵参数

实验介质(17℃)入口压力

(Mpa)

出口压力

(Mpa)

总扬程

(m)

流量

(m3/h)

轴功率

(KW)

效率

(%)

水-0.013 1.10 116 8.05 13.6 19

水-0.013 1.10 116 11.5 14.5 25

水(-0.014 1.00 105 13.8 15.2 26

表3 泵性能实验记录单

3、泵运行状况

装臵改造后,水运过程中,PP-65泵运转平稳,无噪声,流量、扬程达到设计要求。开车过程中,初期未发生异常现象;当塔釜温度达到60℃时,开始有噪声出现,泵有轻微振动,流量、扬程出现波动,电流表指针摆动;当塔釜温度达到120℃时,噪声增大,泵振动加剧,流量、扬程出现较大波动,电流表指针大幅摆动;当塔釜温度达到150℃时,此现象不断加剧,流量、扬程无法控制,扬程下滑至零,泵剧烈振动,噪声很大,被迫停泵寻求解决对策。

4、汽蚀原因分析

4.1 汽蚀现象

由于叶轮叶片入口附近液体压力小于或等于液体输送温度下的饱和蒸汽压力时,液体便开始汽化,同时还可能有溶解在液体内的气

4

5

体逸出,形成大量气泡,气泡随液体流到叶道内压力较高处时又瞬时凝结溃灭,气泡周围的液体迅速冲入气泡凝失形成的空穴,形成强大的局部高频高压水击,产生振动和噪音,表明离心泵已开始汽蚀。长期在这种状态下运行,金属表面因疲劳而产生剥蚀,同时,由于活泼气体的存在以及气泡凝结时产生的局部高温,导致金属表面发生电化学腐蚀。上述这一过程称为汽蚀现象。

泵发生汽蚀的初生阶段,泵能继续工作,只是流量略有下降,严重的汽蚀会引起汽封,使泵中的液体大部分汽化,泵停止输送液体。泵不容易从汽封中恢复,因为泵为了继续输送液体,产生更多的热量,导致更多的气体形成,为了使泵重新工作,必须关闭泵,重新灌泵以驱逐气体。

对比分析发现:PP-65泵运行状况与离心泵发生汽蚀现象时的状况完全一致,由此,可断定PP-65泵发生了严重的汽蚀。

4.2 汽蚀成因分析

为了便于理解汽蚀产生的原因,我们引入装臵汽蚀余量(NPSHa )和必需汽蚀余量(NPSHr)的概念。

装臵汽蚀余量(NPSHa )又称有效汽蚀余量,是由吸入装臵决定的,与泵本身无关。它同进口管路、进液罐、进液罐液位和压力、液体的温度和汽化压力有关,也同流量、液体的比重、进口管路尺寸、进口管路粗糙度和直接关系到进口压力降的进口管路清洁度有关。NPSHa 的计算公式为:

g

V g P g P m NPSHa i

v 2)(2

0+-=

ρ

ρ

6

式中: ρg P 0-------泵进口压力(m ) ρ

g P v -------液体汽化压力(m )

g

V i

22

-------泵进口法兰处的速度头(m )

必需汽蚀余量(NPSHr )是由泵本身决定的,它数值大小的主要影响因素是泵吸入口、叶轮入口的几何形状以及泵运转时的转速及流量,而同吸入装臵无关。通常,由制造厂在一定条件下通过汽蚀实验取得。NPSHr 是为了保证泵不发生汽蚀,要求泵进口处单位重量液体所具有的超过汽化压力的富裕能量,即要求装臵提供的最小汽蚀余量。NPSHr 越小,要求装臵提供的NPSHa 越小,表示泵的抗汽蚀性能越好。离心泵开始发生汽蚀的界限见图2。

图2 泵性能曲线

由图2可得出泵汽蚀基本方程式为: NPSHa=NPSHr 泵汽蚀 NPSHa <NPSHr 泵严重汽蚀 NPSHa >NPSHr 泵无汽蚀

由此可以看出装臵汽蚀余量(NPSHa)小于必需汽蚀余量(NPSHr),是泵发生汽蚀的直接原因。

由PP-65泵设计资料查得,NPSH

a =0.75(m),NPSH

r

=0.6

(m),NPSHa>NPSHr,泵应不产生汽蚀。但在生产实际中,一些影响因素发生了变化,导致装臵汽蚀余量降低,当NPSHa<NPSHr时,泵将严重汽蚀。而引起装臵汽蚀余量降低的主要原因有如下四个方面:(1)大流量引起叶轮进口速度增加,从而引起泵进口至叶轮以及进口管路中的压力降增加。

当PP-65泵出口阀门开度过大时,导致流量大于正常流量,发生大流量汽蚀。

(2)非常低的流量造成液体不正常升温,液体从叶轮获得能量,以及泵内部间隙增大引起内部泄露增加,使液体获得附加能量,引起液体汽化。

小流量汽蚀通常不会发生,因为泵不允许在非常小的流量下运行,由图2可以看出泵在小流量(不包括非常小的流量)运行时,NPSHr 较低。当出口阀门关闭时,泵的汽蚀很明显,这是由于离心泵的出口阀们关闭引起泵壳中的液体迅速升温并汽化,很快引起汽封。

(3)系统的变化(液位下降或进口管路阻塞等)引起进口压力损失。它包括泵的吸入管路水力损失及安装高度等。泵的安装高度高或吸入管路阻力损失大,都会使泵低压区处的压力降低,从而使泵的汽蚀容易发生。

当PT-20塔内液位有变化,低于设计值(50%)时,会导致PP-65

7

泵入口压差过低;

PT-20塔内操作压力降低为540mmHg,低于设计值(640mmHg),也会使PP-65泵入口压力接近液体的汽化压力;

PP-65泵入口应无滤网,水运时为了除去焊渣等杂物,安装了临时进口滤网,正常开车后没有拆除,也导致入口管路阻力增大,降低入口压力。

(4)泵进口系统中液体被意外加温,引起泵进口液体汽化压力升高。它包括介质本身的性质及介质操作温度。液体的挥发性愈大,液流的温度愈高,则液体的饱和蒸气压愈高,泵就容易发生汽蚀。

PP-65泵进口管线应无保温,而现场观察泵进口管线全部保温,使进口管线无法散热,导致进口管路意外受热引起汽化压力升高;

由于循环烃塔处理能力偏小,在设计温度下操作,丙酮等轻组分未完全从塔顶蒸出,随塔釜液进入塔底泵,导致进泵液体汽化压力升高;为了提高丙酮等组分的蒸出量,需提高塔釜操作温度,并提高塔的真空度。实际塔釜操作温度为150℃,高于设计值135℃,从而引起泵抽送介质的温度升高,导致液体汽化压力升高。

由汽蚀成因分析可知,影响液体压力和饱和蒸汽压力的因素都会影响汽蚀的发生。除上述分析的影响因素外,泵进口的结构参数(包括叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位臵和前盖板形状等)会影响泵低压区的位臵和低压区处的压力,从而对泵必需汽蚀余量产生影响,进而影响汽蚀的发生。

4.3 PP-65泵汽蚀原因确定

8

根据汽蚀成因分析及生产实际,确定PP-65泵汽蚀的原因是:

(1)工艺操作条件不稳定,使泵的流量及塔内液位有较大波动。

(2)施工错误,使泵入口管线增加了滤网和保温,从而增大了入口管路阻力,提高了泵入口液体温度。

(3)循环烃塔(PT-20)处理能力偏小,在设计温度及压力下操作,丙酮不能完全从塔顶蒸出,夹带在塔釜液中的量较大,导致进泵液体汽化压力升高;为了提高丙酮的蒸出量,需提高塔釜操作温度、降低塔的操作压力(实际塔釜操作温度为150℃、操作压力为540mmHg),将导致泵抽送介质汽化压力升高。这些因素使得装臵汽蚀余量减小。根据生产实际,设计单位重新计算装臵汽蚀余量NPSH a'=0.43(m),已经小于泵必需汽蚀余量NPSH r=0.6(m),必然导致泵严重汽蚀。这是PP-65泵产生汽蚀的最主要原因。

5、汽蚀解决对策

5.1 解决汽蚀方案的比选

根据以上对汽蚀产生原因的分析,我们可以采取如下几个对策,提高装臵汽蚀余量(NPSHa),降低泵必需汽蚀余量(NPSHr ),解决离心泵汽蚀问题:

(1)优化工艺操作条件

避免泵在大流量下运行;泵发生汽蚀时,应把流量调小或降速运行;增加塔液位或压力等,可以避免汽蚀的发生。但由于工艺条件的限制,优化工艺操作条件具有很大的局限性,介质的操作温度、压力等参数必须满足生产的需要,不可降低,这时就要考虑采取其他方法

9

解决汽蚀问题。

(2)合理设计吸入管路及调整安装高度

增加管径,减少管路长度、弯头和附件,减小吸入损失;降低泵的安装高度。这些方法虽能彻底消除汽蚀问题,但因为调整泵的吸入管路及安装高度,工程量大、施工费用高,并且受施工环境的制约,只有在装臵停车或大检修时才能进行。在生产过程中,可以通过合理设计管线保温使吸入管线达到散热降温的作用,并可通过合理设计进口滤网防止吸入管线产生堵塞而增大吸入损失。

(3)改进泵入口的结构参数

增大叶轮入口直径,降低叶轮入口速度;增大叶片入口宽度,使叶轮入口相对速度减小;适当选择叶片数和冲角;在同样转速和流量下,采用双吸泵;对于苛刻条件下运行的泵,可使用耐汽蚀的材料。这一方案适于在离心泵的设计制造阶段,该方法在生产现场很少采用。

(4)在泵的吸入口加装诱导轮

当液体流过诱导轮时,诱导轮对液体做功,相当于对进入后面叶轮的液体起到增压作用,从而提高了液体压力。诱导轮属于轴流式叶轮,具有轴流式叶轮几何和汽蚀特性,不象离心式叶轮那样存在着促进液体和气泡分离的离心力作用。这样在诱导轮外缘(此处的相对速度最大)产生的气泡,在沿轴向向前运动的过程中,由于轮毂侧液体在离心力作用下,向外压的作用,使气泡被压控在外缘局部并在诱导轮内凝结。因此,不易造成整个流道的堵塞。其外特性的表现是,在10

汽蚀过程中性能下降缓慢,无明显的突然下降阶段。由此,诱导论可以在一定程度的汽蚀状态下工作,对性能并无严重影响。诱导轮产生的扬程,减小泵主叶轮的汽蚀余量,从而提高了主叶轮的抗汽蚀性能。离心叶轮和诱导轮合装后的汽蚀性能,不仅与诱导轮的设计好坏有关,而且与离心叶轮的设计好坏也有关。当离心叶轮比转速小于120时,加装诱导轮,对提高离心泵的抗汽蚀性能,解决汽蚀问题,效果很显著。诱导轮本身负荷不大、功率小,只要与主叶轮配合得当,能改善主叶轮进口的流动情况,不会降低泵的效率。而且诱导轮结构简单,易于制造安装,运行维修方便,造价低,在不影响生产的前提下即可进行安装调试。

5.2 解决汽蚀方案的确定

通过对以上几个方案的分析比较,在不影响正常生产的前提下,解决离心泵的汽蚀问题,应采取以下几个对策:

(1)优化工艺操作条件:严格控制泵的流量及扬程,使其在额定工况范围内工作;控制塔内液位,保证其达到设计要求。

(2)拆除泵入口滤网,降低入口管路阻力,增大入口压力;拆除泵管线保温,使管线起散热作用;同时,在泵入口蜗壳及管线上,加装冷水喷淋,冷却泵抽送介质,降低泵入口的液体汽化压力。待诱导轮安装后再拆除喷淋,从而保证诱导轮设计、制造、安装期间泵的正常运转。

(3)PP-65泵离心叶轮比转速为20.8,小于120,因此可加装诱导轮,降低泵必需汽蚀余量,提高泵汽蚀性能。

11

12 其中,措施(3)为最关键的措施。 5.3 诱导轮的设计

诱导轮是螺旋形的,螺旋外径处的螺旋角较小,内径处的螺旋角较大,以保证螺旋的导程相等。由于目前对于诱导轮的认识尚处于摸索阶段,对一些理论问题还没有统一的看法。因此,诱导轮的设计在很大程度上是根据经验。下面将结合PP-65A/B 泵的实际结构进行诱导轮的设计。

5.3.1 诱导轮的设计计算

由表2可知:流量Q=11.5(m 3/h ),扬程H=115(m ),

转速n=2950(r/min )。

由制造厂提供的泵汽蚀曲线可查:汽蚀余量=NPSH r

0.6(m )。

由设计单位提供的数据:实际装臵汽蚀余量NPSH a

'

=0.43(m )。

(1) 计算诱导轮外径为D 0

和轮毂直径为d h :

32

)

(015

.5n

Q h D d D

-

=

式中 D

d h 0

----诱导轮轮毂直径与外径之比,一般取D

d h 0

=0.33

诱导轮外径D 0

=

3

2

3600

29505.1115.533

.0?-=0.0598(m )

取诱导轮外径D 0

为60(mm )。

轮毂直径为d h =0.33D 0

=0.33*0.060=0.0198(m )

取轮毂直径为d h 为20(mm )。

(2)确定叶片数Z 和叶片外圆处间距t :

13

考虑到叶片的导流效果和排挤情况,取叶片数为Z=2,则叶片

外圆处间距为t=Z

D 0π

t=3.14*0.06/2=0.0942(m )

(3)确定外圆处叶片长度l w : 取4.1=t

l w ,则外圆处叶片长度为t l w 4.1=

l w

=1.4*0.0942=0.1319(m )

(4)确定外圆处叶片安放角βw :

u

w

m w

tg

νβ

=

'

式中 νm ----诱导轮前液体轴面速度,可按下式计算: )

(**422

0d

D h

m Q

-

=

πν

u w ----诱导轮外径处的圆周速度,可按下式计算:

60

**0n

D u

w

π=

则=-

=

)

(*14.33600/5.11*402

.006.02

2

νm 1.2716(m/s )

=

=

602950

*06.0*14.3u

w

9.263(m/s )

263

.92716.1'=

β

w

tg

=0.1372

取β'

w =80

;取冲角△β为40。 外圆处叶片安放角为=

βw

β'

w

+△β=120

(5)确定诱导轮外圆处叶片包角φw : 诱导轮外圆处叶片包角为D

l

w

w

w 0

cos

360

π

β

φ=

14 =

φ

w

06

.0*14.3cos *1319.0*36012

则φw 为2470。

(6)确定诱导轮叶片入口边形状:

一般取诱导轮入口边的平面投影为圆弧形,圆弧半径为: R=0.32D 0

=0.32*0.06

取R 为19(mm )。

(7)诱导轮外圆处叶片轴向长度h W :

诱导轮外圆处叶片轴向长度为==βw W W l h sin 0.1319*sin 120 则h W 为0.0274(m )。 (8)轮毂处叶片安放角βh :

由于诱导轮导程相等,轮毂处叶片安放角为:

)1202

.006.0(

)(0

0tg arctg tg

arctg

w

h

h

d

D ==β

β

取βh 为320

(9)计算轮毂处叶片长度l h :

β

?

π

h

h

h

h

d

l

cos

360=

式中 ?h -----轮毂处叶片包角,由平面投影图中量得为3870

0796

.0cos

*36002.0*14.3*38732

==

l

h

(m )。

(10) 计算轮毂处叶片轴向长度h h :

βh

h

h

l

h

sin

=

h h =0.0796*sin 320

=0.0422(m )

15

h h

取诱导轮出口边在垂直于轴心线的同一平面内。

根据以上计算结果,可绘制诱导轮投影图(见图3)。 (11)计算叶片最大厚度S max :

无论是在外圆或在叶片轮毂处,叶片最大厚度均在距离叶片入口

边为0.43l 处,轮毂处的叶片最大厚度S h max 可按下式选取:

S h

max =0.05l h

S

h

max =0.05*0.0796=0.004(m )

取S h max 为4(mm )。

外圆处的叶片最大厚度S w max 一般应小于S h max 。 取S w max 为3(mm )。 (12)叶片断面形状:

利用一定的经验规律,计算出相应处叶片厚度(见表4),并把叶片两端作成圆头,即可绘出叶片断面形状图(见图4)。

表中 R h

或R w

---入口边圆头半径,一般S

R h

h max 或S

R w

w max =10%

r h

或r w

---出口边圆头半径,一般

S r h h max 或S r w

w max

=8%

a) 轴面投影 b) 平面投影

图3 诱导轮投影图

16

a)沿φ60圆弧展开 b) 沿φ20圆弧展开

图4 叶片断面形状图

5.3.2 安装诱导轮后的抗汽蚀性能计算 5.3.2.1诱导轮汽蚀余量

诱导轮流量为q q Q Q i 21++=,其中Q q 04.01=为诱导轮外缘间隙泄漏量,Q q 023.02=为影响诱导轮流量的泵泄漏量,Q=11.5(m 3/h )。

则Q i =1.063*11.5=12.2 (m 3/h ) 诱导轮汽蚀比转速为[]

=

=--φ

φi

i D d C h i )(1)21(02

886

2

14

3

4437

其中u

w

m

i νφ==0.1456为进口流量系数,诱导轮前液体轴面速

度=

-

=

)

(422

0d

D Q

h

i

m πν 1.349(m/s ),诱导轮外径处的圆周速度

=

=

60

D u

n w

π9.263(m/s )。所以,诱导轮汽蚀余量为:

=

=

)

/62.5(3

4C Q n NPSH

i i i

0.13(m )

NPSH i <NPSH

a

',可判断在诱导轮本身内不发生汽蚀。

5.3.2.2 加装诱导轮后主叶轮汽蚀性能分析

17

一般诱导轮扬程系数06.0=?i ,则诱导轮实际产生的扬程为:

==g u

H

w

i

i /2'?

0.525(m )

在实际使用条件下,泵必需汽蚀余量NPSH r 与装臵汽蚀余量

NPSH a

'的差值为:0.6-0.43=0.17(m )

>

H

i

'NPSH r -NPSH

a

'

比较可知,诱导轮产生的扬程补偿了泵必需汽蚀余量NPSH r

与装臵汽蚀余量NPSH

a

'的差值,泵将不发生汽蚀。

PP-65A/B 泵未装诱导轮时,当流量为Q=11.5(m 3/h ),汽蚀余量为:=NPSH

r

0.6(m )

加装诱导轮后主叶轮的汽蚀余量为:

=

=

-H

NPSH NPSH i

r

r

''0.075m

<

NPSH

r

'NPSH

a

',表明加装诱导轮后,主叶轮不会发生汽蚀。

通过上述计算可以看出,在泵的吸入口加装诱导轮,可显著提高泵的抗汽蚀性能,阻止汽蚀现象的发生。 6、实施效果

结合现场实际,根据解决离心泵汽蚀的对策,在不影响正常生产的前提下,优化工艺操作,整改不合理施工,利用加喷淋等临时措施解决离心泵的汽蚀问题;同时,进行诱导轮设计、制造,通过在泵的吸入口加装诱导轮,显著提高了泵的抗汽蚀性能,阻止了汽蚀现象的发生。经改造后,取得很好效果。开工5个多月来,泵一直运行平稳,振动小,噪音低,电流波动小,流量及扬程满足工艺需要,提高了设备的运行周期,从而稳定装臵生产,降低设备的检维修费用,提高了

企业的经济效益。

7、结论

解决汽蚀问题主要应从吸入装臵的特性、泵本身的结构、所输送的液体性质三方面考虑,针对影响液体压力和饱和蒸汽压力的因素进行分析,消除产生汽蚀的条件,阻止汽蚀现象的发生。

加装诱导轮己成为提高离心泵抗汽蚀性能的重要措施之一,尤其是在生产现场中,这不仅是因为它效果显著、结构简单、易于制造安装,更重要的是它造价低、通用性强、维修方便。

参考文献

[1]《离心泵设计基础》编写组.离心泵设计基础[M].北京:机械工业出版社,1974

[2]关醒凡.泵的理论与设计[M].北京:机械工业出版社,1987

[3]高慎琴.化工机器.北京:化学工业出版社,1992

[4]《化学工程手册》编写组. 流体输送机械及驱动装臵.北京:化学工业出版社,1989

[5]北京燕化公司化学品事业部.苯酚丙酮装臵工艺技术规程(2003)

[6]北京燕化公司化学品事业部. HYB25-315C型泵随机技术资料

18

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下。 5、剧烈震动

离心泵产生气蚀现象的原因及防止措施

离心泵因其操作简易、运行平稳、性价比高及便于维修护理而受到多数使用客户的喜爱并广泛应用于工业领域和日常生活。但凡是机械设备,在经过长时间的持续工作状态下,难免会出现设备的损坏和故障问题,离心泵的气蚀现象就是离心泵的常见故障之一。泵一旦发生汽蚀,其流量和扬程性能不仅会下降,还会表现出噪声、振动明显偏高,严重时甚至会使泵中液流中断,不能正常工作。汽蚀还会对泵的过流部件产生破坏,甚至影响管路系统。产生气蚀现象的原因有很多,例如离心泵产品质量有问题,操作人员的使用不当等。产品在出厂前会经过多道程序的质量检测,所以人为因素的影响比例更大。在工作状态下,离心泵的工作环境及操作因素的影响,占到离心泵发生气蚀现象比例的绝大部分。下面深圳恒才具体为大家介绍下气蚀产生的原因。 气蚀原因: 离心泵在工作的时候,离心泵输送的液体压力,会随着泵内液体从入口到叶轮入口下降而下降。当叶片入口附近的液体压力达到最低的时候,叶轮开始对液体做功,液体压力开始上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就会发生汽化的现象。同时溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力突然增加。这样,不仅阻碍了离心泵输送的液体正常流动。而且当这些气泡在叶轮壁面附近破裂的时候,则液体就会连续不断地撞击离心泵的内壁表面。长期的撞击之下就会造成离心泵内壁的结构损坏和剥落。如果气泡内掺杂着一些化学气体例如氧气,这些气体就会借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击

离心泵大流量工况汽蚀现象分析及运行优化

离心泵大流量工况汽蚀现象分析及运行优化 发表时间:2018-05-28T09:47:19.547Z 来源:《电力设备》2018年第1期作者:赵英淳毛伟峰刘攀 [导读] 摘要:本文针对大型离心泵大流量工况下出现的汽蚀现象,基于离心泵汽蚀机理,分析了两个典型案例中离心泵发生汽蚀的原因,提出了采用改变离心泵的运行方式、改变泵出口管道阻力特性以及优化泵的再循环调阀的热工控制逻辑等三个方面的措施,解决了工程实际问题,为有效避免和预防大型离心泵大流量工况下汽蚀现象的发生,实现泵的安全稳定运行,提供参考。 (中国能源建设集团西北电力试验研究院有限公司西安 710032) 摘要:本文针对大型离心泵大流量工况下出现的汽蚀现象,基于离心泵汽蚀机理,分析了两个典型案例中离心泵发生汽蚀的原因,提出了采用改变离心泵的运行方式、改变泵出口管道阻力特性以及优化泵的再循环调阀的热工控制逻辑等三个方面的措施,解决了工程实际问题,为有效避免和预防大型离心泵大流量工况下汽蚀现象的发生,实现泵的安全稳定运行,提供参考。 关键词:离心泵;汽蚀;运行方式及控制逻辑优化 1. 概述 大型发电厂的凝结水泵及锅炉给水泵均采用多级离心泵。在电厂启动至带满负荷过程中,凝结水泵和给水泵流量变化范围大,机组通常设计两台甚至多台离心泵并联运行,以满足不同负荷、不同流量的运行要求。当离心泵在大流量工况下运行时,易出现汽蚀现象,损害设备的同时,严重危害机组运行安全,导致机组停炉停机[1]~[3]。 本文在对离心泵大流量工况下汽蚀机理分析基础上,结合两个典型案例,提出了相应工况下的几点运行优化建议。 2. 离心式水泵大流量工况汽蚀机理分析 离心水泵在运转过程中,当其通流部分液体的绝对压力下降到小于或等于当时温度下的汽化压力时,液体就会汽化,大量蒸汽及溶解在液体中的气体逸出,形成气泡。当气泡随液体从低压区移动到高压区时,气泡在高压作用下迅速凝结而破裂,其所占有的空间就会形成具有高真空的空穴,附近的液体在高压差的作用下以极高的速度流向形成的空穴,形成冲击力。由于气泡中的蒸汽和气体来不及在瞬间全部凝结和溶解,因此,在冲击力作用下又分成小气泡,如此反复。当上述过程在叶轮或叶片等流通部件表面发生,将对金属材料产生机械剥蚀。同时,气泡中逸出的氧气等活性气体也会对金属材料产生化学腐蚀。汽蚀过程发生后将会严重影响设备运行状态,缩短泵的使用寿命,甚至由于附带产生的振动等问题引起设备或人身安全问题[4]。 离心泵内最易发生汽蚀的部位为其通流部分的压力最低点,位于叶片进口端偏后的某一界面k处。当k点绝对压强pk小于或等于汽化压强pv时,即发生汽蚀。根据汽蚀基本方程式: (1) 式中:p1和c1分别为流体在泵入口界面处压强和速度;c0为流体在叶片进口边前的绝对速度;m为考虑流体在泵入口截面到临界截面间水力损失和液体绝对速度的不均匀性后引入的压降系数;ω0为流体在叶片进口处的相对速度;λ为流体绕流叶片端部所产生的压降系数。 引入有效汽蚀余量NPSHa和必需汽蚀余量NPSHr两个量。NPSHa表示液体到达泵进口处的能量扣除汽化压头所富裕的能量: (2) 当液体温度、吸入液面压强和泵的安装高度均保持不变情况下,由于吸入管路的流动损失与流量的平方成正比,所以NPSHa随液体流量变化为一条下降的抛物线。 NPSHr表示液体进入泵后压头下降程度: (3) 由于c0和ω0均与流量的增大而增大,所以NPSHr随流量的变化程一条上升的曲线。 NPSHa的曲线和NPSHr的曲线相交于临界流量点Qk,当泵内流量大于Qk时,NPSHa<NPSHr,即有效汽蚀余量提供的富裕能量不足以克服泵体进口液体的压头降时,泵将发生汽蚀[5]。 由离心泵汽蚀机理可知,控制泵入口流量是避免汽蚀的关键,实际工程中可从改变泵的运行曲线或泵出口管路的阻力特性入手,改变泵的工作点,使离心泵工作在小于临界流量Qk的稳定区域,避免和预防汽蚀。 3. 案例分析 3.1 机组锅炉跳闸后凝结水泵汽蚀案例分析及运行优化建议 3.1.1 案例过程 某300MW机组采用的是上海凯士比泵有限公司生产的型号为“NLT350-400x5”的凝结水泵,水泵额定参数:流量为907.3m3/h,扬程250m,转速1480rpm,NPSHr≤3.2m,轴功率756.4kW。 2015年12月20日,锅炉跳闸后的机组恢复过程中,出现了凝结水泵B出力不正常的现象,具体过程如下: 15:45:18,机组在高负荷运行过程中锅炉跳闸,此时凝泵B稳定运行,电流83.2A,泵出口母管压力2.22MPa,凝结水流量859t/h,除氧器上水调阀开度74.3%,凝泵再循环开度11.5%且处于自动控制状态; 15:49:27,由于给水流量迅速下降,除氧器上水调阀快速关至18.4%,凝泵B电流降至48.9A,泵出口母管压力升至2.84MPa,凝结水流量降至121t/h,凝泵再循环调阀超弛开至98.1%,该调阀切至手动控制; 15:50:32,手动打开除氧器上水调门至81.0%,凝泵B电流81.1A,出口母管压力1.29MPa,凝结水流量855t/h,再循环调阀开度98.1%; 15:51:22,除氧器上水调阀再度关小至4.1%,凝泵B电流74.9A,出口母管压力2.48MPa,凝结水流量677t/h,再循环调阀开度98.2%;该工况运行约7min,15:56:07,除氧器上水调阀再度关小至2.2%,凝泵B电流85.3A,出口母管压力2.17MPa,凝结水流量

离心泵的气缚与气蚀现象

离心泵的气缚与气蚀现象 为区分离心泵的“气缚”与“汽蚀”现象,有必要先简要了解离心泵的结构和理解其工作原理。 离心泵的外观是一个蜗牛状的泉壳,里面装有与泵轴相连的叶轮及泵的进出口阀门等构成。离心泵在开泵前,泵内必须充满液体。启动电机后,电机通过轴带动叶轮高速旋转。高速旋转的叶轮带动液体转动,因叶轮的特殊结构,在离心力的作用下使液体获得很高的能量,表现为流速、压力的增大。在泵壳中崮泵壳的蜗壳形状.流速会逐渐减小,而压力会进一步增大,最终以较高的压力从泵的出口排出。同时,当叶轮中心的液体被甩出后,在叶轮中心形成一定的真空度,而液面的压强比叶轮中心处要高,液面与叶轮中心形成一定压力差。在压差的作用下,液体被吸入泵内。通俗地说离心泵的工作过程是吸进来压出去。 “气缚”现象 离心泵运转时,如果泵内没有充满液体。或者在运转中泵内漏入了空气,由于空气很轻(密度很小),产生的离心力小,在吸入口处所形成的真空度低,不足以将液体吸入泵内。这时,虽然叶轮转动,却不能输送液体,这种现象称为“气缚”。 可见“气缚”现象是由于泵内存有气体而不能吸液的现象。没有液体的吸入,当然就没有液体的排出。如果泵安装在液面以上时,在

吸入管底部必须安装一个单向底阀。目的是为了不使泵内液体漏掉,以防“气缚”产生。 对于“气缚”现象,只要赶跑泵内空气,使泵内充满液,泵就能恢复正常运行。 “汽蚀”现象 “汽蚀”现象是由于泵的安装高度过高,泵内叶轮中心附近压力过低,当压力低到等于被输送液体的饱和蒸汽压时,入口处液体将在泵内汽化,产生大量汽泡,随同液体一起进入高压区,在高压区内便被周围高压液体压碎。瞬间内周围的高压液体以极高的速度打向原汽泡所占据的空间,类似于子弹打在这些点上。使叶轮或泵壳出现麻点和小的裂缝,久而久之,叶轮或泵壳将烂成海绵状,这种现象称为“汽蚀”。 简要地说,“汽蚀”现象是由于泵的安装高度过高,叶轮中心附近压力过低.液体在泵内汽化而损坏泵体的现象。当“汽蚀”现象发生时,其特征是泵体震动并发出噪音,泵的流量、扬程也明显下降。 可见“气缚”与“汽蚀”直接导因是不同的。“气缚”是由于泵内存有空气而产生,不会严重损坏泵体。“汽蚀”是由于液体在泵内汽化而产生.会严重损坏泵体。因此在使用中,应严禁“汽蚀”现象的发生。

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍 (一)、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 (二)、离心泵的安装高度Hg 1允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

离心泵气蚀的主要原因分析

离心泵气蚀的主要原因分析 影响离心泵气蚀的因素是设计与使用离心泵所必须考虑的问题,近年来国内外对其进行了大量的研究。但由于研究的侧重点不同,且大多都是针对影响离心泵气蚀的某一参数进行的研究,造成研究成果较为分散,且部分观点之间相互矛盾。本文综合国内外大量文献,对离心泵气蚀影响因素的相关研究结果进行比较、分析,得出目前较为全面的影响离心泵气蚀的主要因素。 1.流体物理特性方面的影响 流体物理特性对离心泵气蚀的影响主要包括:所输送流体的纯净度、pH值和电解质浓度、溶解气体量、温度、运动黏度、汽化压力及热力学性质。 (1)纯净度(所含固体颗粒物浓度)的影响流体中所含固体杂质越多,将导致气蚀核子的数量增多。从而加速气蚀的发生与发展。 (2)pH值和电解质浓度的影响输送极性介质的离心泵(如一般的水泵)与输送非极性介质的离心泵(输送苯、烷烃等有机物的泵),其气蚀机理是不同的。输送极性介质的离心泵的气蚀损伤可能包括机械作用、化学腐蚀(与流体PH值有关)、电化学腐蚀(与流体电解质浓度有关);而输送非极性介质的离心泵的气蚀损伤可能只有机械作用。 (3)气体溶解度的影响国外研究表明流体内溶解的气体含量对气蚀核子的产生与发展起到促进作用。 (4)气化压力的影响研究表明随着气化压力的增高,气蚀损伤先升高后降低。因为随着气化压力的升高,流体内形成的不稳定气泡核的数量也不断升高,从而引起气泡破裂数量的增多,冲击波强度增大,气蚀率上升。但如果气化压力继续增大,使气泡数增加到一定限度,气泡群形成一种“层间隔”的作用,阻止了冲击波行进,削弱其强度,气蚀的破坏程度反而会逐渐降低。 (5)温度的影响在流体中温度的改变将导致气化压力、气体溶解度、表面张力等其他影响气蚀的物理性质出现较大改变。由此可见,温度对气蚀的影响机制较为复杂,需结合实际情况进行判断。 (6)表面张力的影响当其他因素保持不变,降低流体表面张力可以减少气蚀损伤。因为随着流体表面张力的减小,气泡溃灭所产生冲击波的强度减弱,气蚀速率降低。 (7)液体黏度的影响流体黏度越大,流速越低,达到高压区的气泡数越少,气泡破灭所产生冲击波的强度就减小。同时,流体黏度越大,对冲击波削弱也越大。因此,流体的黏度越低,气蚀损伤越严重。 (8)液体的可压缩性和密度的影响随着流体密度的增加,可压缩性降低,气蚀损失增加。 2.过流部件材质特性方面的影响 由于泵的气蚀损伤主要体现为对过流部件材质的损坏。因此,过流部件的材料性能也将在一定程度上对离心泵的气蚀产生影响,采用抗气蚀性能良好的材料制造

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 1.减小几何吸上高度hg(或增加几何倒灌高度); 2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等; 3.防止长时间在大流量下运行; 4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5.泵发生汽蚀时,应把流量调小或降速运行; 6.泵吸水池的情况对泵汽蚀有重要影响; 7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 /Detail_289475_102102_%E4%BA%94%E9%87%91%E5%B8%B8%E8%AF%86.shtml 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是水泵自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:轴承损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧螺丝。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下0.5m。 5、剧烈震动 主要有以下几个原因:电动转子不平衡;联轴器结合不良;轴承磨损弯曲;转动部分的

离心泵的汽蚀原因及措施

离心泵的气蚀原因及采取措施 【摘要】:通过掌握离心泵的气蚀原因,我们在设计、安装、和生产中应如何预防与消除气蚀现象。 【关键词】:离心泵气蚀原因消除措施 离心泵的气蚀原理: 离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力p K最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力p K小于液体输送温度下的饱和蒸汽压力p v时,液体就汽化。同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的

综合现象称为气蚀。 离心泵最易发生气蚀的部位有: 1.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧; 2.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧; 3.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间 隙以及叶梢的低压侧; 4.多级泵中第一级叶轮。 提高离心泵本身抗气蚀性能的措施 (1)改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 (2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。 (3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 (4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。 (5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性

热油泵汽蚀原因及措施

热油泵汽蚀原因及措施 一、汽蚀原因 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。 二、抗气蚀措施 1、采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性越高,化学稳定性越好,抗气蚀的性能越强。 2、采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 3、改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 4、设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻

如何防止泵发生汽蚀现象

如何防止泵发生汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHaNPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施

如何解决水泵的气蚀现象

毕业论文 课程名称如何解决水泵的气蚀现象 学生姓名X X X 年级X X 专业X X X X 指导教师X X X

如何解决水泵的气蚀现象 摘要:离心泵以其转速高,体积小,重量轻,效率高,流量大,结构简单,性能平稳,容易操作和维修等优点,使其在输油生产中得到了广泛的应用,汽蚀现象也是离心泵在输油生产中常见的故障。 关键词:离心泵;汽蚀;汽蚀余量 一、气蚀现象含义 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡,把这种产生气泡的现象称为汽蚀。离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体做功,液体压力很快上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。同时,使原来溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高,于是金属表面因冲击疲劳而剥裂。如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量,产生电

解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。 二、水泵运行中产生气蚀现象的原因 液体的汽化程度与压力的大小、温度高低有关。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。吸入压力降低;吸入高度过高;吸入管阻力增大;输送液体粘度增大;抽吸液体温度过高等影响液体饱和蒸气压增加的现象都会影响汽蚀的发生,通常的因素有: (1)泵进口的结构参数,叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。 (2)泵的操作条件,泵的流量、扬程及转速等。 (3)泵的安装位置,泵的吸入管路水力损失及安装高度。 (4)环境因素,泵安装地点的大气压力以及输送液体的温度等。 三、水泵气蚀现象所产生的危害 水泵汽蚀是水泵损坏的重要原因,水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。运行中使水泵抽水的效率降低,显著减少了水泵的扬程和流量,也减少了水泵的使用寿命。汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动;

离心泵的汽蚀原因和故障诊断发展

离心泵的汽蚀原因和故障诊断发展 发表时间:2019-10-30T11:29:15.970Z 来源:《当代电力文化》2019年10期作者:顾生琴[导读] 发现离心泵在生产过程当中极容易出现故障,为此我们进行了分析,得出了导致离心泵出现故障的原因,并且针对这些原因进行了研究,提出了一些解决方法兰州理工大学技术工程学院甘肃兰州 730030摘要:随着社会的不断发展,科学技术也获得了巨大的进步。文章结合现阶段大型石油化工装置当中应用较广的离心泵出现的问题进行了 分析,详细探究了现阶段离心泵出现故障的主要因素,针对这些因素提出了对应的解决方式,同时对各种解决的方式进行了比较,也对未来离心泵的发展趋势做出了相应的展望。关键词:离心泵;故障原因;处理方法分析随着社会经济的不断发展,科学技术的发展得到了极大地推动,石油化工行业也出现了新的发展机遇。当前,在大型石油化工中采用较多的动力设备就是离心泵,通过离心泵来适应现阶段流量较大并且需要长期工作的实际生产要求。在日常的工作过程当中,我们发现离心泵在生产过程当中极容易出现故障,为此我们进行了分析,得出了导致离心泵出现故障的原因,并且针对这些原因进行了研究,提出了一些解决方法一、离心泵在使用过程当中产生故障的原因通常我们将离心泵出现故障的原因大致分为两种,一种是离心泵本身出现了机械故障,另外一种是由于泵与管道相关组成工艺系统当中存在缺陷。这两方面原因就是导致离心泵出现故障的主要原因。而在离心泵出现故障时,大多发生在离心泵的振动和噪声这两个方面。由于造成噪声故障的因素一般比较隐秘,不容易发掘,所以这个更应该提高人们在日常工作当中的重视。我们都知道离心泵产生故障的主要因素就是由于气体密度小于液体密度,从而导致气体在经过流道时获得的压力低于液体获得的压力,从而出现了不同的压力分布。由于压力分布不均,液体当中混有其他气体时,气泡就会在这种不均衡的压力之下首先膨胀接着压缩,进而造成了类似至于汽蚀的冲击,最后就会导致离心泵出现故障。离心泵的叶轮遭受到外力作用时,会出现较为强烈的振动,并且还会产生较大的杂声,泵的出口会有较大幅度的压力变化。在封闭的循环系统当中,由于系统中的气体处在一个封闭的环境当中,在环境当中液体可以与气体同时进行循环流动,也因此无法将气体排出系统之外。当系统当中存在的气体过多时就容易出现异常振动,从而给离心泵带来较大的压力,如果气体无法排出系统,那么就会使系统当中气体越来越多,对泵的压力也会越来越大。在我们日常使用离心泵的过程当中,由于密封系统就容易产生上面两种情况,就会造成离心泵系统内增加的气体越来越多,进而导致离心泵出现故障。在离心泵出现气体增多的情况时,应当及时排出系统内的原有气体,并且要判断性气体的来源,如果不能够杜绝气体排放的情况,就需要在离心泵系统内添加气液分离的装置,这样才能够减轻离心泵出现故障的可能性。 二、离心泵使用中产生故障相关诊断技术离心泵在发展过程当中,经历了三个不同的诊断阶段,我们要首先对这三个不同的阶段进行理解。首先,由于机械设备的设计还比较简单,因此在第一阶段离心泵的故障诊断主要是依靠相关的专业学者的平时经验以及一些简单的仪表来进行诊断。在科学技术不断发展的后期,出现了传感器和动态测试,在第二阶段的离心泵整段过程当中,虽然仍然是以人工作为主要诊断方式,但是已经更多的使用到了相关的器材。在20世纪80年代之后,离心泵的检测获得了较大程度的发展,离心泵的诊断也进入了第三个阶段。随着社会的发展和科学技术的进步,推动了机械化设备的应用和推广,也推进了故障诊断技术的发展。在进入第三阶段诊断之后,更多的摒弃了人为的因素,更多的依靠智能技术来进行诊断。通过调查发现,在实际运行过程当中,离心泵会出现一种异常的振动,这种振动会导致离心泵的正常使用受到影响。同时我们在离心泵的振动最好当中也发现了丰富的信息,为此,我们可以采用相关的措施来仔细的分析离心泵的振动信号,并且来对信号进行仔细的研究。在近几年的研究过程当中,一些外国的学者针对离心泵产生故障振动来进行研究,在振动分析的基础之上提出了一些较为切实可行的方式,比如说频谱分析、功率谱估计、粗糙集理论等。这些研究都是基于振动信号的分析结果所发现的,并且还采用了各种不同的技术对于离心泵的振动信号进行更为详细的分析,从而得出更为准确的结论。 三、基于信号处理的方式 3.1频谱分析方式频谱分析是在石油工业当中使用频率最高的方式之一,相关的科研人员可以通过这个方式仔细的研究离心泵故障的具体原因,并且针对原因采取更为有效的措施进行解决。在很多的科学文献当中就对离心泵的故障诊断进行了大量的据调查和研究,在文献当中对于离心泵的特点进行了详细的分析,并且将数据以频谱分析的方式仔细地记录了下来。通过对于数据的比较,我们就可以明确得出离心泵出现故障的原因,并且选择更为合适的方式进行解决。由于造成离心泵故障的原因较为多样,所以我们在使用频谱分析法的过程当中,要仔细的辨别故障是否真的存在,在一些无法辨别的时候,频谱分析只能作为参考存在。 3.2功率谱分析功率谱分析是按照功率谱的密度以及互功率谱的相关数据进行分析的,在领域当中分析与描述相关的信号并且考虑分布情况,采用一个简单的谐波就可以研究在测试过程当中比较复杂的工程信号。在使用过程中所采用的原理就是描述信号的频率结构,从而得到机器的具体动态型号。进而得出每个部分的工作情况。 3.3小波分析方法小波分析方法是根据信号处理的要求而不断发展的时频分布方法,在处理过程当中具有比较突出的局部化特征,可以实时检测离心泵的状态,从而分析离心泵出现故障的原因。结束语:在科学发展的今天,相关人员在离心泵的故障诊断方法方面已经有了新的突破,通过对于诊断方式的研究,我们可以更加轻松而准确地发现造成离心泵鼓掌的原因,并且针对这些原因采取方法进行调整。虽然现阶段我们在离心泵的故障诊断方面已经有了较大的突破,但是还是存在着很多问题,这就需要相关的科技人员针对出现的问题进行进一步的分析和探究,从而为下一阶段的研究提供更多的参考。 参考文献:

泵的汽蚀现象以及其产生原因

泵的汽蚀现象以及其产生原因 1、汽蚀 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。苏华泵业 2、汽蚀溃灭 汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。苏华泵业 3、产生汽蚀的原因及危害 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。苏华泵业 4、汽蚀过程 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。苏华泵业 什么是泵的特性曲线? 通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量、功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。苏华泵业

离心泵汽蚀原因分析

离心泵汽蚀原因分析 由专业技术人员为你解答一下为什么离心泵会出现这样的清情况呢。首先离心泵工作前,先将泵内充满液体,然后启动离心泵,叶轮快速转动,叶轮的叶片驱使液体转动,液体转动时依靠惯性向叶轮外缘流去,同时叶轮从吸入室吸进液体,在这一过程中,叶轮中的液体绕流叶片,在绕流运动中液体作用一升力于叶片,反过来叶片以一个与此升力大小相等、方向相反的力作用于液体,这个力对液体做功,使液体得到能量而流出叶轮,这时液体的动能与压能均增大。 离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。由于离心泵的作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸水池中的液体在液面压力的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。 离心泵的气缚离心泵启动时,若泵内存有空气,由于空气密度很低,旋转后产生的离心力因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 气蚀现象的危害 汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动,可能导致泵的性能下降;同时由于蒸汽的生成使得液体的表观密度下降,于是液体实际流量、出口压力和效率都下降,严重时可导致完全不能输出液体。 造成汽蚀的主要原因有:1进口管路阻力过大或者管路过细2输送介质温度过高;3流量过大,也就是说出口阀门开的太大;4安装高度过高,影响泵的吸液量;5选型问题,包括泵的选型,泵材质的选型等气蚀的解决方法 解决办法:1清理进口管路的异物使进口畅通,或者增加管径的大小;2降低输送介质的温度;3降低安装高度;4重新选泵,或者对泵的某些部件进行改进,比如选用耐汽蚀材料等等 一、D型卧式多级离心泵产品概述: D型卧式、单吸多级、分段式离心泵。具有效率高、性能范围广、运行安全平稳、噪音低、寿命长、安 装维修方便等特点。供输送清水或物理化学性质类似于水的其它液体。也可以通过改变泵过流部件材质、 密封形式和增加冷却系统用于输送热水、油类、腐蚀性或含磨粒的介质。产品执行JB/T1051-93《多级清 水自吸泵型式与基本参数》标准。 本司D型卧式多级离心泵全部采用计算机设计和优化处理,公司拥有雄厚的技术力量、丰富的生产经验 和完善的检测手段,从而保证产品质量的稳定可靠。 二、D型卧式多级离心泵产品特点: 1、水力模型先进,效率高,性能范围广。

针对热水泵汽蚀现象的分析和解决方法

针对热水泵汽蚀现象的分析和解决方法 摘要:在如今的很多化工生产过程中,对于管路输送需要伴热要求,在100℃以下的情况下,大多数会选择简单经济的热水循环系统。在温度要求比较高的时候,比如说高于95℃,热水循环泵经常会出现异常情况,表现在噪音和振动,以及输出流量和压力上。针对这种热水循环系统的异常现象,本文通过理论计算判断是泵出现了汽蚀现象。汽蚀轻则会造成系统压力不稳流量减少,重则会降低泵的使用寿命甚至造成泵的损坏。因此使用过程中我们需要想方设法避免汽蚀的出现。本文通过理论推算,将泵的吸入高度提高了3.5米。然后再通过现场整改后的观察验证了之前的分析,泵的运转回归了正常,从而保证了热水循环系统的稳定运行,进而满足了工厂生产条件,为公司和客户消除了一个生产隐患。 关键词:热水泵汽蚀;热水循环系统;热水泵故障分析 作者公司乳化产品工艺生产线的输送管路部分对介质的温度有较高的要求,因此输送管路要求伴热温度在95±3℃,伴热系统选择的是热水循环系统,整个系统由热水箱(采用蒸汽加热),管路、泵和阀门组成,目前这套系统已在十多条生产线上得到推广应用。但在实际生产使用过程中,我发现很多工厂在热水的温度超过95℃时,热水循环泵的运行状态出现不稳定,具体表现为振动和噪音加大,输出流量出现异常波动,输出压力降低等,根据这种现象初步判断为泵出现了明显汽蚀。根据掌握的知识,作者大致分析了汽蚀的发生过程:水汽化时的压力称为汽化压力(饱和蒸汽压力),它汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。可见,一定温度下的压力是促成液体汽化的外界因素。液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡。这种气泡会降低泵吸入端的压强,当泵吸入压强降到水的饱和蒸汽压以下时,液体又会产生气泡。气泡聚集在一起,会在泵腔内在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区。由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生疲劳和裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此需要极力避免和消除汽蚀现象。为了验证分析是否正确,我们通过以下计算来进行理论分析。 作者公司一直选用的热水泵型号为上海中耐制泵有限公司生产的IRG型单级单吸立式热水循环离心泵,适用于能源、冶金、化工、纺织、造纸,以及宾馆饭店等锅炉高温热水增压循环输送及城市采暖系统循环用泵,使用介质温度不超过120℃。1、吸入压力≤1.0MPa,或泵系统最高工作压力≤1.6MPa,即泵吸入口压力+泵扬程≤1.6MPa,泵静压试验压力为2.5MPa,整体采用铸铁结构,密封处为机械密封。

相关主题
文本预览
相关文档 最新文档