当前位置:文档之家› 专题三角形中的最值与取值范围问题

专题三角形中的最值与取值范围问题

专题三角形中的最值与取值范围问题
专题三角形中的最值与取值范围问题

专题 三角形中的最值与取值范围问题

三角形中的边与角的最值与取值范围问题,是复习过程中的难点,在高考中考查形式灵活,常常在知识的交汇点处命题,与函数、几何、不等式等知识结合在一起。我们知道三角形只要满足三个条件,那么这个三角形就基本唯一确定了,而少于三个条件时,有些边角周长面积就可以变化,从而就有了求这些量的取值范围问题。这类问题的实质是将几何问题转化为代数问题,求解主要是充分运用三角形的内角和定理,正余弦定理,面积公式,基本不等式,三角恒等变形,三角函数的图像和性质来进行解题,非常综合,是解三角形中的难点问题。下面对这类问题的解法做下探讨。

类型一:已知一角+对边

例题1:在ABC 中,A=60°,

(1)ABC ?面积的最大值;

(2)b c +的取值范围;

(3)2b c +的最大值;

(4)BC 边上高的最大值。

类型二:已知一角+边的等量关系

例题2:在ABC 中,A=60°,1b c +=,求

(1)ABC S ?的最大值;

(2)a 的取值范围;

(3)周长的取值范围。

类型三:已知一角+面积

例题3:在ABC 中,A=60°,ABC S ?=

(1)b c +的最小值;

(2)a 的最小值。

(3)周长的最小值。

(4)

112b c

+的最小值。

类型四:已知角的等量关系

例题4:在ABC 中,A=2B ,则c b

的取值范围为

变式:在锐角ABC 中,A=2B ,则c b

的取值范围为 类型五:已知两边,求面积的最值

例题5:在ABC 中,已知1,2AB BC ==,求

(1)ABC S ?的最大值;

(2)角C 的取值范围。

类型六:已知一边+另两边的等量关系

例题6:在ABC 中,已知6,10BC AB AC =+

=,求ABC S ?的最大值。

变式:在ABC 中,已知6,BC AC ==,求ABC S ?的最大值。 类型七:三边的等量关系

例题7:在ABC 中,角A ,B ,C 所对的边分别为a,b,c,若2222a b c +=,求cos C 的最小值。

解三角形中的取值范围问题.docx

解三角形中的取值范围问题 1、已知a, b, c分别为ABC 的三个内角A, B,C 的对边,且2b cosC 2a c 。( 1)求角B的大小; ( 2)若ABC的面积为 3 ,求b的长度的取值范围。 解析:( 1)由正弦定理得2sin BcosC 2sin A sin C ,在ABC 中, sin A sin( B C )sin B cosC cos B sin C ,所以 sin C (2cos B1) 0 。 又因为 0 C, sin C0 1 ,而 0B,所以B ,所以 cos B 123 (2)因为 S ABC3, 所以ac4 ac sin B 2 由余弦定理得 b2a2c22acscos B a2c2 ac ac,即 b2 4 ,所以 b 2 2、在△ABC中 , 角A, B, C所对的边分别为a, b,c,已知cosC(cos A 3 sin A) cos B 0 . (1)求角 B的大小;(2)若 a+c=1,求 b 的取值范围 【答案】解:(1) 由已知得cos(A B)cos Acos B 3 sin A cos B0即有sin Asin B 3 sin Acos B 0因为 sin A0 ,所以 sin B 3 cosB0 ,又 cos B0 ,所以 tan B 3 ,又 0B, 所以B. 1113 (2) 由余弦定理 , 有b2a2c22ac cos B .因为 a c 1,cosB, 有b23(a)2. 1,于是有1 1 224 又 0 a b21,即有b1. 42 3、已知,满足. (I )将表示为的函数,并求的最小正周期; (II )已知分别为的三个内角对应的边长,若,且,求的取值范围. 4、已知向量ur x r x 2 x ur r ( 3 sin,,f (x)m n m,1)n(cos ,cos) 44g 4 (1)若 f ( x) 1 ,求 cos(x) 的值; 3 (2)在 ABC 中,角 A、B、C 的对边分别是 a、b、c ,且满足 a cosC 1 c b ,求函数 f ( B) 的取值范围. 2 【解析】 解:( 1) Q f x m n3sin x cos x cos2 x 3sin x 1cos x 1sin x 6 1, 4442222222

三角形中的最值与范围问题

在正余弦定理的运用中,有一类题目值得关注。这类题有一个相同的特点,即知道三 角形的一条边和边所对的角,求三角形面积(或周长)的最值(或范围) ,但在解题方法的 选择上有值得考究的地方。请先看两个例题: 1 例1( 13年重庆綦江中学)在:ABC 中,角A,B,C 的对边分别为a,b, c 且cosA 二丄,a = 4 . 4 (1) 若b ?c=6,且b < c ,求b,c 的值. (2) 求L ABC 的面积的最大值。 解 (1)由余弦定理 a 1 2 二 b 2 - c 2 — 2bccosA , 2 1 16 = (b c ) - 2bc bc 2 .bc =8 , 又 v b 亠 c = 6, b

二次函数专题训练(三角形周长最值问题)含问题详解

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式; (2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值; (3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.

2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E. (1)求直线AD的解析式; (2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值; (3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM 重合部分的面积是?APQM面积的时,求?APQM面积.

3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=. (1)求抛物线的解析式; (2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值; (3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.

解三角形中相关的取值范围问题

解决与三角形相关的取值范围问题 例1:在锐角ABC V 中,2A B =,则c b 的取值范围是 例2:若ABC V 的三边,,a b c 成等比数列,,,a b c 所对的角依次为,,A B C ,则sin cos B B +的取值范围是 例3:在ABC V 中,角,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列。(1)求B 的大小。 (2)若5b =,求ABC V 周长的取值范围。 例4:在ABC V 中,2222 3 a b c ab +=+,若ABC V ,则ABC V 的面积的最大值为

例5:(2008,江苏)满足 2,AB AC ==的ABC V 的面积的最大值是 例6:已知角,,A B C 是ABC V 三个内角,,,a b c 是各角的对边,向量 (1cos(),cos )2A B m A B -=-+u r ,5(,cos )82A B n -=r ,且98 m n ?=u r r (1)求tan tan A B ?的值。 (2)求 222 sin ab C a b c +-的最大值。 通过以上例题,我们发现与三角形相关的取值范围问题常常结合正弦定理、余弦定理、面积公式、数列、三角函数、基本不等式、二次函数、向量等知识综合考查。这一类问题有利于考查学生对知识的综合运用能力,是高考命题的热点。理顺这些基本知识以及技巧和方法可以提高我们解题的能力。希望本文能对同学们复习备考有所帮助。 巩固练习 1.在ABC V 中,2,1a c ==,则C ∠的取值范围为 2.若钝角三角形的三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的取值范围是

高考数学阶段复习试卷:三角形中的最值问题

高考数学阶段复习试卷:三角形中的最值问题 1. 在ABC ?中,a ,b ,c 分别为角A ,B ,C 所对的边长,已知:3C π= ,a b c λ+=(其中1λ>) (1)当2λ=时,证明:a b c ==; (2)若3AC BC λ?=,求边长c 的最小值. 2. 已知函数()4cos sin()3f x x x π=- (1)求函数()f x 在区间[,]42 ππ上的值域; (2)在ABC ?中,角,,A B C 所对的边分别是,,a b c 若角C 为锐角,()f C =,且2c =,求ABC ?面积的最大值。 3. 已知函数2()22cos f x x x m =+- (Ⅰ)若方程()0f x =在[0,]2x π ∈上有解,求m 的取值范围;(Ⅱ)在ABC ?中,,,a b c 分别是,,A B C 所对 的边,当(Ⅰ)中的m 取最大值,且()1f A =-,2b c +=时,求a 的最小值 4. 在ABC ?中,sin A a =. (1)求角B 的值;(2)如果2b =,求ABC ?面积的最大值. 5. 如图,扇形AOB ,圆心角AOB 等于60o ,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设AOP θ∠=,求POC ?面积的最大值及此时θ的值.

6. 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从匀速步行到C .假设缆车匀速直线运动的速度为130m /min ,山路AC 长为1260m ,经测量,12cos 13A =,3cos 5 C =. (1) 求索道AB 的长; (2) 问乙出发多少分钟后,乙在缆车上与甲的距离最短? (3) 为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 7. 如图,在等腰直角三角形OPQ ?中,90POQ ? ∠=,22OP =点M 在线段P Q 上. (1)若5OM =求PM 的长; (2)若点N 在线段MQ 上,且30MON ?∠=,问:当POM ∠取何值时,OMN ?的面积最小?并求出面积的最小值.

三角函数与解三角形中的范围问题含答案

文档 1.在锐角△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,且B=2A ,求的a b 取值范围 2.在△ABC 中,,,a b c 分别为角A ,B ,C 的对边,设22222 ()()4f x a x a b x c =---,(1)若(1)0f =,且B -C= 3 π ,求角C. (2)若(2)0f =,求角C 的取值范围.

3.在锐角ABC ?中,,,a b c 分别是角,,A B C 2sin ,c A = (1)确定角C 的大小; (2)若c =ABC ?面积的最大值.

文档 4.已知△ABC中,角A,B,C,所对的边分别是a,b,c,且2(a2+b2-c2)=3ab. (1)求cos C; (2)若c=2,求△ABC面积的最大值.

5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且ab b a c -+=222. (Ⅰ)若tan tan tan tan )A B A B -= +?,求角B ; (Ⅱ)设(sin ,1)m A =u r ,(3,cos 2)n A =r ,试求?的最大值.

文档 6.ABC ?的三个内角A B C ,,依次成等差数列. (1)若C A B sin sin sin 2 =,试判断ABC ?的形状; (2)若ABC ?为钝角三角形,且c a >,试求代数式2 12222 C A A sin cos -的取值范围. 7.在△ABC 中,内角A ,B ,C 所对边长分别为,,a b c ,8=?,BAC θ∠=,

(1)求b c ?的最大值及θ的取值范围; (2)求函数22()()2cos 4 f π θθθ=++-. 8.在ABC △中,1tan 4A =,3tan 5 B =. (1)求角 C 的大小; (2)若ABC △

动点问题最值三角形性质专练

动点问题最值三角形性质专练

————————————————————————————————作者: ————————————————————————————————日期:

动点问题三角形性质专练 三边能构成三角形,则必须满足性质:两边之和大于第三边,两边之差小于第三边! 1、如图,在直角梯形A BCD 中,AD∥BC,∠B=90°,A D=24c m,AB=8cm ,BC=26cm ,动:点P 从A 开始沿AD 边向D 以1cm/s 的速度运动;动点Q从点C 开始沿CB 边向B以3cm/s的速度运动.P、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t 为何值时,四边形P QCD 为平行四边形? (2)当t为何值时,四边形PQCD 为等腰梯形? (3)当t 为何值时,四边形PQC D为直角梯形? 2、如图,点A 的坐标为(-1,0),点B在直线y x =上运动,当线段A B最短时,点B 的坐标为【 】 A .(0,0) B.(21-,2 1 -) C.(22,22-) D.(22-,22-) 3、如图所示,在边长为2的正三角形A BC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .

4、菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),?=∠60DOB ,点P 是对角线OC 上一个动点,E (0,-1),当EP +BP 最短时,点P 的坐标为__________. 5、如图,在锐角三角形ABC 中,BC=24,∠ABC=45°, B D平分∠ABC,M、N 分别是BD 、B C 上的动点,则CM +MN 的最小值是 。 6、如图,在矩形ABCD 中,AB=4,AD=6,E 是A B的中点,F 是线段BC上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F,连接B ′D,则B ′D 的小值是( ) A . B.6 ? C. D.4 7、如图,菱形ABCD 中,AB=2,∠A=120°,点P,Q,K分别为线段B C,CD,BD 上的任意一点,则PK+QK 的最小值为【 】 A .?1? B.3 C. 2? D .3+1 8、如图,正方形AB CD 的边长为2,ABE ?是等边三角形,点E 在正方形ABCD 内,在对角线A C上有一点P ,使PD+PE的和最小,则这个最小值为( ) A 、2 ?B 、22 ?C 、2 ??D、6 9、点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角

三角形最值问题典型题

P为边长等于1的正△ABC内任意一点,设L=PA+PB+PC,求L的最值。几何最值问题归结为以下三个定理 ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; 分析:求最值则涉及最小值以及最大值. 先求最小值,如下 一、射影法 过点P分别作PD⊥BC于D,PE⊥AC于E,PF⊥AB于F. 过点A作AD’⊥BC于D’,过B作BE’⊥AC,过C作CF’⊥AB。 AP+PD>AD’① BP+PE>BE’② CP+PF>CF’③ ①+②+③,得, AP+BP+CP+PD+PE+PF AD’ +BE’ + CF’ = a 即AP+BP+CP+a a ∴AP+BP+CP a 二、旋转法 顺时针旋转△BPC60°,可得△PBE为等边三角形.得要使PA+PB+PC=AP+PE+EF′最小,只要AP,PE,EF′在一条直线上, 即如上图:∠ABF’=120°,可得最小L=a; C

三、面积法 作如图所示辅助线,则DEF的面积为, 又∵ ED?PB FD?PC EF?PA ∴?6a?(PA+PB+PC) ∴最小L= a 下面求其最大值,这要考虑到三角形的三边关系,如下图 过P点作BC的平行线交AB,AC于点D,F. 由于∠APD>∠AFP=∠ADP, 推出AD>AP① 又∵BD+DP>BP② 和PF+FC>PC③ 又∵DF=AF④ 由①②③④可得:最大L<2; 相关知识链接:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小。即A F

在ABC内求一点P,使 PA+PB+PC之值为最小,人们称这个点为“费马点”。

解三角形中的取值范围问题

解三角形中的取值范围问题 1、已知a,b,c 分别为ABC ?的三个内角,,A B C 的对边,且2cos 2b C a c =-。 (1)求角B 的大小; (2)若ABC ?b 的长度的取值范围。 解析:(1)由正弦定理得2sin cos 2sin sin B C A C =-,在ABC ?中, sin sin()sin cos cos sin A B C B C B C =+=+,所以sin (2cos 1)0C B -=。 又因为0,sin 0C C π<<>,所以1 cos 2 B =,而0B π<<,所以3B π= (2)因为1 sin 2 ABC S ac B ?= = 所以4ac = 由余弦定理得2 2 2 2 2 2scos b a c ac B a c ac ac =+-=+-≥,即2 4b ≥,所以2b ≥ 2、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos (cos )cos 0C A A B +=. (1) 求角B 的大小;(2)若a +c =1,求b 的取值范围 【 答 案 】 解 :(1) 由 已 知 得 cos()cos cos cos 0 A B A B A B -++= 即有 s i n n 3s i n c o s A A B = 因为sin 0A ≠,所以sin 0B B =,又cos 0B ≠,所以tan B =又0B π<<,所以3 B π =. (2)由余弦定理,有2 2 2 2cos b a c ac B =+-. 因为11,cos 2a c B +==,有2 2113()24 b a =-+. 又01a <<,于是有 21 14 b ≤<,即有112b ≤<. 3、已知(2cos 23sin ,1),(cos ,)m x x n x y =+=-,满足0m n ?=. (I )将y 表示为x 的函数()f x ,并求()f x 的最小正周期; (II )已知,,a b c 分别为ABC ?的三个内角,,A B C 对应的边长,若3)2 A ( =f ,且2a =,求b c +的取值范围.

三角形内的最值问题

三角形内的最值问题 我们知道,求一条直线上的点,要求该点到直线外两点的距离和 最小,若两点在直线的异侧,则所求点就是两点连线与已知直线的交点;若两点在直线的同侧,则作其中一点关于已知直线的对称点,对称点与另外一点的连线与已知直线的交点。(右图)那么求一平面上的点,要求该点到平面上三点的距离和最小,这个点又怎么求呢? 在平面几何中,有一个以费尔马为名的“费尔马点”。即:在 △ABC所在平面上找一点,它到三个顶点的距离之和相等。(如图4) 以AB、BC、CA为边向形外作正三角形BCD、ACE、ABK,作此三个三角形的外接圆。设⊙ABK、⊙ACE除A外的交点为F,由A、K、B、F四点共圆知∠AFB=120°。同理∠AFC=120°于是∠BFC=120°。故⊙BCD边过点F,即⊙ABK,⊙BCD,⊙CAE共点F。 由∠AFB=120°,∠BFD=60°,知A、F、D在一条直线上。 在FD上取点G,使FG=FB,则△FBG为正三角形。由BG=BF,BD=BC,∠DBG=∠CBF=60°-∠GBC,故△DBG≌△CBF。于是GD=FC,即AD=FA+FB+FC。 对于平面上任一点P,以BP为一边作等边△PBH(如图4),连HD,同样可证△BHD≌△BPC。于是AP+PH+HD=PA+PB+PC。但PA+PH+HD≥AD=FA+ FB+FC。这就是说,点F为所求点。这点称为△ABC的费尔马点。 以上情况只考虑△ABC的三个内角都小于120°的情况,当△ABC有某一内角≥120°,例如∠A≥120°,则点A即为所求点。 在三角形中,还有很多最值问题。下面介绍在三角形三边取三点连接成的三角形中,周长最小的三角形的求法。 在△ABC中,AD、BE、CF分别为三边上的高,△ DEF称为△ABC的垂足三角形,可以证明△ABC的垂心H是△DEF的内心。(图2) 证明过程如下: 因为∠AHE=∠BHD AC垂直于BE AD垂直于BC 所以∠CAD=∠EBC 所以sin∠CAD=sin∠EBC 所以CE/BC=CD/AC 在△CDE与△CAB中 ∠ECD=∠BCA 所以△CDE与△CAB相似 所以∠CDE=∠CAB 同理可得∠BDF=∠CAB 所以∠CDE=∠BDF

解三角形中的取值范围问题

解三角形中的取值范围问题 1、已知a ,b ,c 分别为ABC ?的三个内角,,A B C 的对边,且2cos 2b C a c =-。 (1)求角B 的大小; (2)若ABC ?b 的长度的取值范围。 解析:(1)由正弦定理得2sin cos 2sin sin B C A C =-,在ABC ?中, sin sin()sin cos cos sin A B C B C B C =+=+,所以sin (2cos 1)0C B -=。 又因为0,sin 0C C π<<>,所以1cos 2B = ,而0B π<<,所以3B π= (2)因为1sin 2ABC S ac B ?= = 所以4ac = 由余弦定理得222222scos b a c ac B a c ac ac =+-=+-≥,即2 4b ≥,所以2b ≥ 2、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos (cos )cos 0C A A B +-=. (1) 求角B 的大小;(2)若a +c =1,求b 的取值范围 【答案】解:(1)由已知得cos()cos cos cos 0A B A B A B -++= 即有sin sin cos 0A B A B = 因为sin 0A ≠,所以sin 0B B -=,又cos 0B ≠,所以tan B =, 又0B π<<,所以3B π= . (2)由余弦定理,有2222cos b a c ac B =+-. 因为11,cos 2a c B +== ,有22113()24b a =-+. 又01a <<,于是有 2114b ≤<,即有112 b ≤<. 3、已知,满足. (I )将表示为的函数,并求的最小正周期; (II )已知分别为的三个内角对应的边长,若,且,求的取值范围. 4、已知向量,1)4x m =u r ,2(cos ,cos )44 x x n =r ,()f x m n =u r r g (1)若()1f x =,求cos()3x π +的值; (2)在ABC ?中,角A B C 、、的对边分别是a b c 、、,且满足1cos 2a C c b + =,求函数()f B 的取值范围. 【解析】 解:(1)()2111cos cos cos sin ,4442222262 x x x x x x f x m n π??=?=+=++=++ ???Q

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

解三角形——求取值范围问题

解三角形求取值范围问题 类型1:正弦定理+外接圆半径+三角函数 1.在ABC ?中,若3 sin 4 B =,10b =,则边长c 的取值范围是( ) A. 15 (,)2 +∞ B. (10,)+∞ C. 40(0,]3 D. (0,10) 2.在△ABC 中,C=,AB=3,则△ABC 的周长为( ) A . B . C . D . 3.在△ABC 中,,则△ABC 的周长为( ) A . B . C . D . 4.在ABC ?中,c b a ,,分别为内角C B A ,,所对的边,若3=a ,3 π = A ,则c b +的最大值为 ( ) A .4 B . 33 C. 32 D .2 5.在ABC ?中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3a =,tan 21tan A c B b +=,则b c +的最大值为___6____. 6.在锐角△ABC 中, a ,b ,c 分别为角A ,B ,C 所对的边,且 3a =2c sin A . (1)确定角C 的大小;(2)若c =3,求△ABC 周长的取值范围. 解:(1)已知a ,b ,c 分别为角A ,B ,C 所对的边, 由 3a =2c sin A ,得 3sin A =2sin C sin A ,又sin A ≠0,则sin C =32 , ∴C = π3或C =2π3,∵△ABC 为锐角三角形,∴C =2π3舍去,∴C =π3 . (2)∵c =3,sin C = 32,∴由正弦定理得:a sin A =b sin B =c sin C =3 3 2 =2,

即a =2sin A ,b =2sin B ,又A +B =π-C =2π3,即B =2π 3-A , ∴a +b +c =2(sin A +sin B )+ 3 =2???? ??sin A +sin ? ????2π3-A + 3 =2? ????sin A +sin 2π3cos A -cos 2π3sin A + 3 =3sin A +3cos A + 3 =23? ????sin A cos π6+cos A sin π6+3=23·si n ? ?? ??A +π6 +3, ∵△ABC 是锐角三角形,∴ π6<A <π2,∴32<sin ? ????A +π6≤1, 则△ABC 周长的取值范围是(3+3,3 3 ]. 7. 在锐角△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,且c=2,∠C=60°,求a +b 的取值范围. 解:由正弦定理知 ,则a= ,b= ,而C=60°, 所以a+b= =4sin (A+30°) 因为锐角△ABC ,C=60°,则30°<A <90°,所以a+b ∈(2,4] ∴a+b 的取值范围为(2 ,4]. 8.已知角A 、B 、C 为△ABC 的三个内角,其对边分别为a 、b 、c ,若a 2=b 2+c 2+bc ,且a =23. (Ⅰ)若△ABC 的面积S =3,求b +c 的值; (Ⅱ)求b +c 的取值范围. 【解析】 (1)∵a 2 =b 2 +c 2 +bc ,∴2221 cos 22 b c a A bc +-= =-,即cosA =-12, 又∵A ∈(0,π),∴A =2π3. 又由S △ABC =1 2bcsinA =3,所以bc =4, 由余弦定理得:12=a 2=b 2+c 2-2bc·cos 2π 3=b 2+c 2+bc ,∴16=(b +c)2,故b +c =4. (2)由正弦定理得:b sinB =c sinC =a sinA =23sin 2π3=4,又B +C =π-A =π3, ∴b +c =4sinB +4sinC =4sinB +4sin(π3-B)=4sin(B +π 3), ∵0<B <π3,则π3<B +π3<2π3,则32<sin(B +π 3)≤1,即b +c 的取值范围是(23,4].

三角形中最值问题

第42课 三角形中的最值问题 考点提要 1.掌握三角形的概念与基本性质. 2.能运用正弦定理、余弦定理建立目标函数,解决三角形中的最值问题. 基础自测 1.(1)△ABC 中,cos A A =,则A 的值为 30° 或90° ; (2)△ABC 中,当A= 3 π 时,cos 2cos 2B C A ++取得最大值 32 . 2.在△ABC 中,m m m C B A 2:)1(:sin :sin :sin +=,则m 的取值范围是 2 1 >m . 解 由m m m c b a C B A 2:)1(:::sin :sin :sin +==, 令mk c k m b mk a 2,)1(,=+==,由b c a c b a >+>+,,得2 1>m . 3.锐角三角形ABC 中,若A=2B ,则B 的取值范围是 30o<B <45o . 4.设R ,r 分别为直角三角形的外接圆半径和内切圆半径,则 r R 1. 5.在△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,若23b ac =,则B 的取值范围是 0°<B ≤120° . 6.在△ABC 中,若A>B ,则下列不等式中,正确的为 ①②④ . ①A sin >B sin ; ②A cos B 2sin ; ④A 2cos B ?a >b A R sin 2?>B R sin 2?A sin >B sin ,故①正确; A cos < B cos ?)2sin(A -π<)2 sin(B -π ?A>B ,故②正确(或由余弦函 数在(0,)π上的单调性知②正确); 由A 2cos B sin ?A>B ,故④正确. 知识梳理 1.直角△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,C=90°,若内切圆的半径为r ,则2 a b c r +-= . 2.在三角形中,勾股定理、正弦定理、余弦定理是基础,起到工具性的作用.它们在处

解三角形最值问题

三角形最值问题 课前强化 1.在△ABC 中,已知0 45,2,===B cm b xcm a ,如果利用正弦定理解三角形有两解,则x 的取值范围是 ( ) A.222 <x< B.222≤<x C.2x > D.2x < 2.△ABC 中,若sinA :sinB :sinC=m :(m+1):2m, 则m 的取值范围是( ) A.(0,+∞) B.( 2 1,+∞) C.(1,+∞) D.(2,+∞) 3.在△ABC 中,A 为锐角,lg b +lg(c 1)=lgsin A =-lg 2, 则△ABC 为( ) A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形 4.在△ABC 中,根据下列条件解三角形,则其中有两个解的是( ) A.0 075,45,10===C A b B.080,5,7===A b a C.060,48,60===C b a D.045,16,14===A b a 5.△ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,) p a c b =+ (,)q b a c a =-- ,若//p q ,则角C 的大小为 (A)6π (B)3π (C) 2π (D) 23 π 6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 最值范围问题: 7、在ABC ?中,角所对的边分别为且满足(I )求角的大小;(II )求)cos(sin 3C B A +-的最大值,并求取得最大值时角的大小. ,,A B C ,,a b c sin cos .c A a C =C ,A B

三角函数解三角形中的最值问题

1.已知ABC ?中,,,a b c 分别是角,,A B C 的对边,且 222 3sin 3sin 2sin sin 3sin ,B C B C A a +-==AB AC ? 的最大值. 2. 在ABC ?中,角,,A B C 所对的边分别为,,a b c ,向量(1,cos ),(cos 21,2)m A n A λλ==--- ,已知//m n (1)若2λ=,求角A 的大小; (2)若b c +=,求λ的取值范围. 3. 设ABC ?的内角所对的边分别为,,a b c ,且1cos 2 a C c b += (1)求角A 的大小; (2)若1a =,求ABC ?周长的取值范围. 4. 已知ABC ?是半径为R 的圆的内接?且222(sin sin ))sin R A C b B -=- (1)求角C ; (2)求ABC ?面积的最大值. 5. 已知向量(2,1),(sin ,cos())2 A m n B C =-=+ ,角,,A B C 分别为ABC ?的三边,,a b c 所对的角, (1)当m n ? 取得最大值时,求角A 的大小; (2)在(1)的条件下,当a =22b c +的取值范围. 6.已知(2cos ,1)a x x =+ ,(,cos )b y x = 且//a b (1)将y 表示成x 的函数()f x ,并求()f x 的最小正周期; (2)记()f x 的最大值为,,,M a b c 分别为ABC ?的三个内角A B C 、、对应的边长,若(),2A f M =且2a =,求bc 的最大值. 7. 在锐角ABC ?中,,,a b c 分别为内角,,A B C 的对边,设2B A =,求b a 的取值范围.

解三角形中的最值问题

解三角形中的最值问题 1、在ABC ?中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,求cos C 的最小值。 【解析】由余弦定理知2 14242) (21 2cos 2222222 2 2 =≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C , 2、在ABC ?中,60,3B AC ==o ,求2AB BC +的最大值。 3、在ABC ?中,已知角,,A B C 的对边分别为a ,b ,c ,且,sin 32sin a b A A B ≥+=。 (1)求角C 的大小;(2)求 a b c +的最大值。 解析:(1)由sin 32sin A A B +=得2sin 2sin 3A B π?? + = ?? ?,则sin sin 3A B π? ?+= ??? ,因为,a b ≥则A B ≥,所以3 A B π π+ =-,故2,33 A B C ππ+= =。 (2)由正弦定理及(1)得sin sin =sin sin 3cos 2sin sin 363a b A B A A A A A c C ππ++???? ?=+++=+ ? ??????? 所以当3 A π = 时, a b c +取得最大值2. 4、△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (1)求B ;(2)若2b =,求△ABC 面积的最大值. 【答案】

5、在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++ (1)求A 的大小;(2)求sin sin B C +的最大值. 解: 6、在ABC ?中,角A B C 、、的对边分别为,,a b c ,且满足2)a c BA BC cCB CA -?=?u u u r u u u r u u u r u u u r 。 (1)求角B 的大小;(2)若||6BA BC -=u u u r u u u r ,求ABC ?面积的最大值。 答案:(1)2)cos cos a c B b C -=,由正弦定理得(2sin )cos sin cos ,A C B B C -=

(完整)初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

专题 三角形中的最值与取值范围问题

专题 三角形中的最值与取值范围问题 三角形中的边与角的最值与取值范围问题,是复习过程中的难点,在高考中考查形式灵活,常常在知识的交汇点处命题,与函数、几何、不等式等知识结合在一起。我们知道三角形只要满足三个条件,那么这个三角形就基本唯一确定了,而少于三个条件时,有些边角周长面积就可以变化,从而就有了求这些量的取值范围问题。这类问题的实质是将几何问题转化为代数问题,求解主要是充分运用三角形的内角和定理,正余弦定理,面积公式,基本不等式,三角恒等变形,三角函数的图像和性质来进行解题,非常综合,是解三角形中的难点问题。下面对这类问题的解法做下探讨。 类型一:已知一角+对边 例题1:在?ABC 中,A=60°,,求 (1)ABC ?面积的最大值; (2)b c +的取值范围; (3)2b c +的最大值; (4)BC 边上高的最大值。 类型二:已知一角+边的等量关系 例题2:在?ABC 中,A=60°,1b c +=,求 (1)ABC S ?的最大值; (2)a 的取值范围; (3)周长的取值范围。 类型三:已知一角+面积 例题3:在?ABC 中,A=60°,ABC S ?= (1)b c +的最小值; (2)a 的最小值。 (3)周长的最小值。 (4) 112b c +的最小值。 类型四:已知角的等量关系 例题4:在?ABC 中,A=2B ,则 c b 的取值范围为

变式:在锐角?ABC 中,A=2B ,则c b 的取值范围为 类型五:已知两边,求面积的最值 例题5:在?ABC 中,已知1,2AB BC ==,求 (1)ABC S ?的最大值; (2)角C 的取值范围。 类型六:已知一边+另两边的等量关系 例题6:在?ABC 中,已知6,10BC AB AC =+ =,求ABC S ?的最大值。 变式:在?ABC 中,已知6,BC AC ==,求ABC S ?的最大值。 类型七:三边的等量关系 例题7:在?ABC 中,角A ,B ,C 所对的边分别为a,b,c,若2222a b c +=,求cos C 的最小值。

文本预览