当前位置:文档之家› 信息论与编码理论-第3章信道容量-习题解答-071102

信息论与编码理论-第3章信道容量-习题解答-071102

信息论与编码理论-第3章信道容量-习题解答-071102
信息论与编码理论-第3章信道容量-习题解答-071102

第3章 信道容量

习题解答

3-1 设二进制对称信道的转移概率矩阵为2/3

1/31/3

2/3??

?

???

解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。

i i 2

i=1

3

311

H (X )=p(a )log p(a )log()log()0.8113(/)4444

bit -

=-

?-=∑

符号 111121*********

j j j=1

32117p(b )=p(a )p(b |a )+p(a )p(b |a )=4

34312311

25p(b )=p(a )p(b |a )+p(a )p(b |a )=

43

4

3

12

77

55H (Y )=p(b )log(b )=log(

)log(

)0.9799(/)

12

12

12

12

bit ?

+?=

?

+?

=

-

-

-=∑

符号

2

2

i

j j i j i j i ,H (Y |X )=p(a

,b )logp(b |a )p(b |a )logp(b |a )

2

211

log()log()0.9183(/)3333

i j

j

bit -

=-=-

?-?=∑∑符号

I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)

(2)求该信道的信道容量及其达到信道容量时的输入概率分布。

二进制对称信息的信道容量

H(P)=-plog(p)-(1-p)log(1-p)1

122

C =1-H(P)=1+

log()+log()=0.0817(bit/)3333

符 BSC 信道达到信道容量时,输入为等概率分布,即:{0.5,0.5} 注意单位

3-2 求下列三个信道的信道容量及其最佳的输入概率分布。

1b 2b 3b 3

a 2a 1a Y X 1

b 2b 3

a 2a 1a Y X 1

b 2b 2

a 1

a Y X 3

b 111

111

1

0.7

0.3

第一种:无噪无损信道,其概率转移矩阵为: 1 0 0P =0 1 00 0 1??

????????

信道容量:()

m ax (;)P X C I X Y bit/符号

()

()

()

()

m ax{(;)}m ax{()(|)}

(|)0

m ax{(;)}m ax{()}

p x p x p x p x C I X Y H X H X Y H X Y C I X Y H X ==-∴=∴==

离散无记忆信道(DMC)只有输入为等概率分布时才能达到信道容量,

C =log3=1.5850

bit /符号

输入最佳概率分布如下:111,,333??????

第二种:无噪有损信道,其概率转移矩阵为: 1 0P =0 10 1??

????????,离散输入信道,

()

()

()

()

m ax{(;)}m ax{()(|)}

(|)0

m ax{(;)}m ax{()}

p x p x p x p x C I X Y H Y H Y X H Y X C I X Y H Y ==-∴=∴==

H(Y)输出为等概率分布时可达到最大值,此值就是信道容量 此时最佳输入概率:123p(a )+p(a )=0.5,p(a )=0.5 信道容量:C =log(2)=1 bit /符号 第三种:有噪无损信道,由图可知:

()

()

()

()

m ax{(;)}m ax{()(|)}

(|)0

m ax{(;)}m ax{()}

p x p x p x p x C I X Y H X H X Y H X Y C I X Y H X ==-∴=∴==

输入为等概率分布时可达到信道容量,此时信道容量

p(x)

C=max {H(X)}=log(2)=1 bit /符号 输入最佳概率分布:11

,22??

???? 3-3 设4元删除信道的输入量{1,2,3,4}X ∈,输出量{1,2,3,4,}Y E ∈,转移概率为

(|)1(|)1-ε 0 0 0 ε0 1-ε 0 0 ε

P =0 0 1-ε 0 ε0 0 0 1-ε ε1-ε 0 0 0 ε0 1-ε 0 0

ε p1= p2=0 0 1-ε 0 ε0 0 0 1-ε εP Y i X i P Y E X i εε===-===??

???

?????????

??

?????

?????????????

??

其中1,2,3,4i =

1)该信道是对称DMC 信道吗? 2)计算该信道的信道容量;

3)比较该信道与两个独立并联的二元删除信道的信道容量。 (1)本通信过程的转移概率分布如下所示:

1-ε 0 0 0 ε0 1-ε 0 0 ε

P=0 0 1-ε 0 ε0 0 0 1-ε ε?????

???????

可以分解为两个矩阵:

1-ε 0 0 0 ε0 1-ε 0 0

ε p1= p2=0 0 1-ε 0 ε0 0 0 1-ε ε??

??

?????

?????????????

??

可以看出该信道不是对称DMC 信道,它是准对称DMC 信道。 (2)该信道的信道容量为:(直接套用准对称信道计算公式)

2log (|)log (|)log log (4)(1,)(1)log(1)log(4)

2(1)log(1)log()(1)log(1)log(4)1

2log()22(/)

4

j k j k s

s

j

s

C n p b a p b a N

M

H bit εεεεεεεεεεεεεεεε=+

-

=------=+--+----=+=-∑

∑符号 (3)两个独立并联的二元删除信道其转移概率如下:

1-ε ε 00 ε 1-ε??????

可以写成:1-ε 0 ε 0 1-ε ε ????

?

???

????

与的形式

独立并联的二元信道的信道容量为两个信道容量的和。

其信道容量为:1(1-ε,ε )(1-ε)log(1-ε)εlog(2ε)=1-εC H =--- bit /符号 两个独立并联和删除信道的信道容量=2C=22-ε bit /符号 本信道的信道容量与两个并联删除信道信道容量相等。

3-4 设BSC 信道的转移概率矩阵为

1

12

211Q εεεε-??

=?

?-??

1)写出信息熵()H Y 和条件熵(|)H Y X 的关于1()H ε和2()H ε表达式,其中

()log (1)log(1)H εεεεε=----。

2)根据()H ε的变化曲线,定性分析信道的容道容量,并说明当12εε=的信道容量。

解:(1)设输入信号的概率颁布是{p,1-p}

111121212

()()(|)()(|)(1)(1)p b p a p b a p a p b a p p =?+?=?-ε+-?ε212122212()()(|)()(|)(1)(1)

p b p a p b a p a p b a p p =?+?=?ε+-?-ε

11221212121212()()log ()()log ()

[(1)(1)]log[(1)(1)][(1)(1)]log[(1)(1)][(1)(1)]

H Y p b p b p b p b p p p p p p p p H p p =--=-?-ε+-?ε?-ε+-?ε-?ε+-?-ε?ε+-?-ε=?-ε+-?ε

2

,1

111222212(|)()(|)log (|)

[(1)log(1)1log()](1)[(1)log(1)log()]()(1)()

i j i j i i j H Y X p a p b a p b a p p p H p H ==-=-?-ε-ε+εε---ε-ε+εε=?ε+-?ε∑

(2)()H ε的变化曲线,是一个上凸函数,当输入等概率分布时达到信道

容量。

()

()

1212()

m ax{(;)}m ax{()(|)}

m ax{[(1)(1)]()(1)()}

p x p x p x C I X Y H Y H Y X H p p p H p H ==-=?-ε+-?ε-?ε+-?ε

由于函数H (ε)是一个凸函数,有一个性质:

1212((1))()(1)()f f f θ?α+-θ?α≥θ?α+-θ?α

可知:C ≥0

假设12εε==ε时此信道是一个二元对称信道,转移概率分布为:

11Q ε-εε??=?

-??

信道容量:

121-log -(1-)log(1-)1-()

C H εεε

εεεεε==== 3-5 求下列两个信道的容量,并加以比较。

1-p-εp-ε2εp-ε

1-p-ε

2ε??????

12010

2p p p p εεεε

ε

ε---??

?

?---??

第一个:可以写成:1-p-ε p-εp-ε 1-p-ε???

???与2ε2ε??

??

??

11(1-p-ε,p-ε,2ε)(12ε)log(12ε)2εlog(4ε)

C H =----- bit /符号

第二个:12010

2p p p p ε

εεε

ε

ε---???

?---??

??

????

1-p -ε p -εp -ε 1-p -ε与2ε 00 2ε??????两个对称形式 21(1-p-ε,p-ε,2ε,0)(12ε)log(12ε)2εlog(2ε)C H =-----bit /符号

122ε<0C C -=-

所以:信道一的信道容量大于信道二的信道容量,信道容量的不增性。

3-6设信道前向转移概率矩阵为

1000

10

1Q p p p

p ??

??=-????-??

1)求信道容量和最佳输入概率分布的一般表达式;

2)当0p =和1/2p =时,信道容量分别为多少?并针对计算结果做出说明。 (1)此信道为非对称信道,设输入概率分布为:

{}123123

p ,p , p p +p + p 1=

输出概率分布为:

{}123123

q ,q , q q +q + q 1=

[]111112123131231

2212122232312323331m ax (;)m ax[()(|)]

()()(|)()(|)()(|)100()()(|)()(|)()(|)0(1)(1)()()C I X Y H Y H Y X q p b p a p b a p a p b a p a p b a p p p p q p b p a p b a p a p b a p a p b a p p p p p p p p p

q p b p a ==-==?+?+?=?+?+?===?+?+?=?+?-+?=?-+?==?3123233312323(|)()(|)()(|)0(1)(1)

p b a p a p b a p a p b a p p p p p p p p p +?+?=?+?+?-=?+?-

3

,1

122332323(|)()(|)log (|)

1log 1(1)log(1)log log (1)log(1)

()(1)log(1)()log i j i j i i j H Y X p x p y x p y x p p p p p p p p p p p p p p p p p p p p p

==-=-??-?---??-?-?--=-+---+∑

[]12323m ax (;)m ax[()(|)]m ax[(,,)(,1)(,1)]

C I X Y H Y H Y X H q q q p H p p p H p p ==-=----

把C 对P 1,P 2,P 3 分别求导:

1

2

3

δC δC δC =0

=0

=0δp δp δp ,可得:

232323233232log(1)(1)log[(1)]log[(1)](,1)0

log(1)(1)log[(1)]log[(1)](,1)0

p p p p p p p p p p p p H p p p p p p p p p p p p p p H p p -----+-+---=??

-----+-+---=?

可得: P 2 = P 3 22log(12)log (,1)0p p H p p ----= 可以解得:23(,1)

12

2

H P P p p -==

+

最佳输入概率分布的表达式为:

(,1-)(,1-)(,1-)

2111,,222222H P P H P P H P P ??

-??+++??

设(,1)

2

2H P P N -+=则

123()

21 p =1 p =p =

N

N

m ax{()(|)}

22212(1)log(1)log

()

p x C H Y H Y X H p N

N

N

N N -

=-=--

-

-

-

(2)p=0

时,1

0001000

1Q ??

??

=??????

是一个对称信道,当输入等概率分布时可以达到信道容量,输入转移概率为111,,333??????

N=3,所以2

2

21(1)log(1)log

1.5850

3

3

33

C =----

= bit/符号

(3)p=1/2

时,100110

2211022Q ?????

???=????????

,可得N=4,

1111111

log

log

(

,)12

2242

22

C H =-

--= bit/符号

3-7设BSC 信道的前向转移概率矩阵为

0.980.020.02

0.98Q ??

=?

???

设该信道以1500个二元符号/秒的速度传输输入符号,现在一消息序列共

有14000个二元符号,并设在这消息中(0)(1)1/2P P ==,问从信息传输的角度来考虑,10秒钟内能否将这消息序列无失真地传输完。 解:BSC 信道,且输入为等概率,信道容量

1(0.98,0.02)0.8586

C H =-= bit/符号

14000个二元符号的信息量为:14000log2=14000?符比特

1500/100.8568/12852??=符秒秒比特符比特<14000比特

所以10秒内不能无失真的传输完。

3-8 有m 个离散信道,转移概率矩阵分别为12,,,m Q Q Q 。由这m 个离散信道组成一个新信道,称为和信道,其转移概率矩阵为:

1200000

m Q Q Q Q ??????=??????

设k C 是第k 个离散信道的信道容量。试证明:和信道的信道容量为

1

log 2

k

m

C k C ==∑

此时第k 个信道的使用概率为()

2

k C C k P -=。

解:m=2时,转移矩阵变为: 1

2Q 0Q =0 Q ??

????

,设两个信道的信道容量分别为:12,C C ,

信道的利用率分别为:1212p ,p p +p 1=并且,并行信道,有C=C 1+C 2

()

()

,1

111111()

1,11

112222222,21

22(|)m ax{(;)}m ax{()(|)log

}

()

(|)m ax{

()(|)log

()(|) ()(|)log

}

()

n

j i i j i p x p x i j j n

j i i j i p x i j j n

j i i j i i j j p y x C I X Y p x p y x p y p y x p p x p y x p p y p y x p p x p y x p p y ======+

∑∑

111

111()

1,11

1222

2222,21

211221212()

112212()

(|)m ax{()(|)log

()(|) ()(|)log

()

log log }

m ax{(;)2(;)(,)}

m ax{(,)}

n

j i i j i p x i j j n

j i i j i i j j p x p x p y x p p x p y x p y p y x p p x p y x p y p p p p p I X Y p I X Y H p p p C p C H p p ===+--=++=++∑

分别对C 1,C 2进行求导可得:

1

2

1122dC dC =0

=0

dp dp 1C logp =In2

1C logp =In2

??

??

???--可得:1122C logp =C logp --

令1122C logp =C logp m =--,可得:12C m

C m

1212p =2

,p =2

,p p 1+=--

12112212121212121

2

1

2

C m

C m

C m C m C m C m

12C m

C m

C m

C m

1212C m C m

12C C 12C C

C C

C C C C C

22

2log 22log 22

2

(C m )2(C m )2

(2

2

)(p p )p =2,p =2

2

2

1222

log(22

)

C

C

C C C C C m m m

C ??=++--??

=+--=+=+=∴+=→=+→=+------------------

依次类推,可得:k

k m

C C C

k k=1

C =log( 2

) p 2

=∑-

3-9 求N 个相同的BSC 级联信道的信道容量。 解:N 个相同BSC 级联,设11

00

1(1)10

110i Q ε

εεεεε-??

????

==-?+??

??

???-??????

级联后:111.....111Q ε

εεεε

εε

εε

εε

ε---??

????

=???

?????

---??????

1

1

0101(1)

10101

010 ...(1)0

10

1n

n n i n

n n

Q Q C C εεεε-????????==?+??-?????

??

???????

??

?

??????-????

????????

?

N 为偶数时:0 11

01 001n

Q ????==???

?????

N 为奇数时:0 10

11 01

0n

Q ????==???

?????

可知本信道等同于BSC 信道,可得出:(,1)C H p p =- bit/符号

3-10 电视图像由30万个像素组成,对于适当的对比度,一个像素可取10个可辨别的亮度电平,假设各个像素的10个亮度电平都以等概率出现,实时传送电视图像每秒发送30帧图像。为了获得满意的图像质量,要求信号与噪声的平均功率比值为30dB ,试计算在这些条件下传送电视的视频信号所需的带宽。 解:

i 1p(x )=

10

()log 10 3.32/I X bit ==像素

1秒内可以传送的信息量为:

3.3219/bit bit ????7

像素3010000像素30=2.989710 103

3

6

log(1),:10log (

)3010

log(110): 2.999510S S C B dB

N

N

S N B B H Z

=+=∴=?=+=?7

已知2.989710可得

3-11 一通信系统通过波形信道传送信息,信道受双边功率谱密度

8

0/20.510N -=?W /Hz 的加性高斯白噪声的干扰,信息传输速率

24

R =kbit/s ,信号功率1P =W 。

1)若信道带宽无约束,求信道容量;

解:带限的加性高斯白噪声波形信道的信道容量为

无带宽约束时:

00

08

lim lim

log(1)

log 1.442710/S S t w w S

S P N W P C C N P N W

P e bit s

N ->∞

->∞

==+

=

=?

2)若信道的频率范围为0到3KHz ,求信道容量和系统的频带利用率/R W (bps/Hz )(注:W 为系统带宽);对同样的频带利用率,保证系统可靠传输所需的最小0/b E N 是多少dB ? W=3KHZ

在最大信息速率条件下,每传输1比特信息所需的信号能量记为E b

S b P E =

C

04

8

8

4

0log(1)log(1)1

3000log(1) 4.507410110

3000

24/8/31

33.47110

4.507410

S b S P C W W SN R N W

bps

R kbit s bps H z

W K H z E P dB

N N C

--=+

=+=?+=???===

=

=???

3)若信道带宽变为100KHz ,欲保持与2)相同的信道容量,则此时的信噪比为多少dB ?信号功率要变化多数dB?

4

5

0005

8

3

3

1004.507410log(1)10log(1)

0.3667: 4.3654'0.366710100.366710

'0.366710

34.35691

S S S s s

W K H Z

P P bps W N W

N W

P SN R dB

N W

P s w

P dB

P ---=?=+

=+

==-=??=??==-10

10

即信号功率的变化为:10log 10log

信道容量的计算

§4.2信道容量的计算 这里,我们介绍一般离散信道的信道容量计算方法,根据信道容量的定义,就是在固定信道的条件下,对所有可能的输入概率分布)(x P 求平均互信息的极大值。前面已知()Y X I ;是输入概率分布的上凸函数,所以极大值一定存在。而);(Y X I 是r 个变量 )}(),(),({21r x p x p x p 的多元函数。并且满足1)(1 =∑=r i i x p 。所以可用拉格朗日乘子法来 计算这个条件极值。引入一个函数:∑-=i i x p Y X I )();(λ φ解方程组 0) (] )();([) (=∑?-???i i i i x p x p Y X I x p λ φ 1)(=∑i i x p (4.2.1) 可以先解出达到极值的概率分布和拉格朗日乘子λ的值,然后在解出信道容量C 。因为 ) () (log )()();(11 i i i i i r i s j i y p x y Q x y Q x p Y X I ∑∑=== 而)()()(1 i i r i i i x y Q x p y p ∑== ,所以 e e y p y p i i i i i y p x y Q i x p i x p l o g l o g ))(ln ()(log ) ()()() (==????。 解(4.2.1)式有 0log )()()()()()(log )(111=--∑∑∑===λe y p x y Q x y Q x p y p x y Q x y Q i i i i i r i s j i i i i s j i i (对r i ,,2,1 =都成立) 又因为 )()()(1j k k r k k y p x y Q x p =∑= r i x y Q s j i j ,,2,1,1)(1 ==∑= 所以(4.2.1)式方程组可以转化为 ),,2,1(log ) ()(log )(1r i e y p x y Q x y Q j i j s j i j =+=∑=λ 1)(1 =∑=r i i x p

实验三 信道容量计算

实验三信道容量计算 一、实验目的: 了解对称信道与非对称信道容量的计算方法。 二、实验原理: 信道容量是信息传输率的极限,当信息传输率小于信道容量时,通过信道编码,能够实现几乎无失真的数据传输;当数据分布满足最佳分布时,实现信源与信道的匹配,使得信息传输率能够达到信道容量。本实验利用信道容量的算法,使用计算机完成信道容量的计算。 实验采用迭代算法计算信道容量,即:设DMC的转移概率pyx(i,j),p(i)是任意给定的一组初始给定输入分布,开始为等概率分布,以后逐次迭代更新p(i)的取值。其所有分量P (i)均不为0。按照如下方法进行操作: 具体方法: 1、计算q(j)=∑ i j i pyx i p) ,( *)(,pyx(i,j)为信道转移概率 2、计算a(i) 先算中间变量d(i)=∑ j j q j i pyx j i pyx) ( /) ,( log( *) ,( 然后,a(i)=exp(d(i)) 3、计算中间变量U=∑ i i p i a)( *)( 4、计算IL=log2(u) 5、计算IU=log2(max(a(i)) 6、当IU-IL>ε(ε为设定的迭代精度)时,进入以下循环,否则输出迭代次数n,信道容量C=IU计算结果,最佳分布p(i)。 ①重新计算p(i)=p(i)*a(i)/U ②计算q(j),方法同1 ③计算a(i),方法同2 ④计算中间变量U=∑ i i p i a)( *)( ⑤计算IL=log2(u) ⑥计算IU=log2(max(a(i)) ⑦计次变量n=n+1

返回6判断循环条件是否满足。 四、实验内容: 假设离散无记忆二元信道如图所示,编程,完成下列信道容量的计算 2e 1. 令120.1e e p p ==和120.01e e p p ==,先计算出信道转移矩阵,分别计算该对称信道的信道容量和最佳分布,将用程序计算的结果与用对称信道容量计算公式的结果进行比较,并贴到实验报告上。 2. 令10.15e p =,20.1e p =和10.075e p =20.01e p =,分别计算该信道的信道容量和最佳分布; 四、实验要求: 在实验报告中给出源代码,写出信道对应的条件转移矩阵,计算出相应结果。并定性讨论信道容量与信道参数之间的关系。

信息论与编码理论习题答案

第二章 信息量和熵 2.2 八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的 信息速率。 解:同步信息均相同,不含信息,因此 每个码字的信息量为 2?8log =2?3=6 bit 因此,信息速率为 6?1000=6000 bit/s 2.3 掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。问各得到多少信 息量。 解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1} )(a p =366=6 1 得到的信息量 =) (1 log a p =6log =2.585 bit (2) 可能的唯一,为 {6,6} )(b p =361 得到的信息量=) (1 log b p =36log =5.17 bit 2.4 经过充分洗牌后的一副扑克(52张),问: (a) 任何一种特定的排列所给出的信息量是多少? (b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量? 解:(a) )(a p =! 521 信息量=) (1 log a p =!52log =225.58 bit (b) ???????花色任选 种点数任意排列 13413!13 )(b p =13 52134!13A ?=1352 13 4C 信息量=1313 52 4log log -C =13.208 bit

2.9 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的 点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、 ),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。 解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立, 则1x X =,21x x Y +=,321x x x Z ++= )|(Y Z H =)(3x H =log 6=2.585 bit )|(X Z H =)(32x x H +=)(Y H =2?( 361log 36+362log 18+363log 12+364log 9+365log 536)+36 6 log 6 =3.2744 bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ] 而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H =1.8955 bit 或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H =1.8955 bit ),|(Y X Z H =)|(Y Z H =)(X H =2.585 bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =1.8955+2.585=4.4805 bit 2.10 设一个系统传送10个数字,0,1,…,9。奇数在传送过程中以0.5的概 率错成另外一个奇数,其余正确接收,求收到一个数字平均得到的信息量。 解: 8,6,4,2,0=i √ );(Y X I =)(Y H -)|(X Y H 因为输入等概,由信道条件可知,

实验二 离散信道及其容量

实验二 离散信道及其容量 一、[实验目的] 1、理解离散信道容量的内涵; 2、掌握求二元对称信道(BSC )互信息量和容量的设计方法; 3、掌握二元扩展信道的设计方法并会求其平均互信息量。 二、[实验环境] windows XP,MATLAB 7 三、[实验原理] 若某信道输入的是N 维序列x ,其概率分布为q(x ),输出是N 维序列y ,则平均互信息量记为I(X ;Y ),该信道的信道容量C 定义为() max (X;Y)q x C I =。 四、[实验内容] 1、给定BSC 信道,信源概率空间为 信道矩阵 0.990.010.010.99P ??=???? 求该信道的I(X;Y)和容量,画出I(X;Y)和ω、C 和p 的关系曲线。 2 、编写一M 脚本文件t03.m ,实现如下功能: 在任意输入一信道矩阵P 后,能够判断是否离散对称信道,若是,求出信道容量C 。 3、已知X=(0,1,2);Y=(0,1,2,3),信源概率空间和信道矩阵分别为 求: 平均互信息量; 4、 对题(1)求其二次扩展信道的平均互信息I(X;Y)。 五、[实验过程 ] X P 0 1 0.6 0.4 = X Px 0 1 2 0.3 0.5 0.2 = 0.1 0.3 0 0.6 0.3 0.5 0.2 0 0.1 0.7 0.1 0.1 P=

每个实验项目包括:1)设计思路2)实验中出现的问题及解决方法; 1)设计思路 1、信道容量( ) max (X; Y) q x C = I ,因此要求给定信道的信道容量,只要知道该信道 的最大互信息量,即求信道容量就是求信道互信息量的过程。 程序代码: clear all,clc; w=0.6; w1=1-w; p=0.01; X P 01 = 0.6 0.4 p1=1-p; save data1 p p1; I_XY=(w*p1+w1*p)*log2(1/(w*p1+w1*p))+(w*p+w1*p1)*log2(1/(w*p+w1*p1))- ... (p*log2(1/p)+p1*log2(1/p1)); C=1-(p*log2(1/p)+p1*log2(1/p1)); fprintf('互信息量:%6.3f\n信道容量:%6.3f',I_XY,C); p=eps:0.001:1-eps; p1=1-p; C=1-(p.*log2(1./p)+p1.*log2(1./p1)); subplot(1,2,1),plot(p,C),xlabel('p'),ylabel('C'); load data1; w=eps:0.001:1-eps; w1=1-w; I_XY=(w.*p1+w1.*p).*log2(1./(w.*p1+w1.*p))+(w.*p+w1.*p1).*log2(1./(w.*p+w1.*p1))- . . .(p.*log2(1./p)+p1.*log2(1./p1)); subplot(1,2,2),plot(w,I_XY) xlabel('w'),ylabel('I_XY'); 实验结果:

信息论与编码理论课后习题答案高等教育出版社

信息论与编码理论习题解 第二章-信息量和熵 解: 平均每个符号长为:154 4.0312.032= ?+?秒 每个符号的熵为9183.03log 3 1 23log 32=?+?比特/符号 所以信息速率为444.34 15 9183.0=?比特/秒 解: 同步信号均相同不含信息,其余认为等概, 每个码字的信息量为 3*2=6 比特; 所以信息速率为600010006=?比特/秒 解:(a)一对骰子总点数为7的概率是 36 6 所以得到的信息量为 585.2)366(log 2= 比特 (b) 一对骰子总点数为12的概率是36 1 所以得到的信息量为 17.536 1 log 2= 比特 解: (a)任一特定排列的概率为 ! 521 ,所以给出的信息量为 58.225! 521 log 2 =- 比特 (b) 从中任取13张牌,所给出的点数都不相同的概率为 1352 13 13 521344!13C A =? 所以得到的信息量为 21.134 log 1313 52 2=C 比特. 解:易证每次出现i 点的概率为 21 i ,所以

比特比特比特比特比特比特比特398.221 log 21)(807.1)6(070.2)5(392.2)4(807.2)3(392.3)2(392.4)1(6,5,4,3,2,1,21 log )(26 12=-==============-==∑ =i i X H x I x I x I x I x I x I i i i x I i 解: 可能有的排列总数为 27720! 5!4!3! 12= 没有两棵梧桐树相邻的排列数可如下图求得, Y X Y X Y X Y X Y X Y X Y X Y 图中X 表示白杨或白桦,它有???? ??37种排法,Y 表示梧桐树可以栽 种的位置,它有???? ??58种排法,所以共有???? ??58*???? ??37=1960种排法保证没有 两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为1960log 27720log 22-= 比特 解: X=0表示未录取,X=1表示录取; Y=0表示本市,Y=1表示外地; Z=0表示学过英语,Z=1表示未学过英语,由此得

寻呼空口信道容量及信道容量计算

寻呼空口信道容量及FACH 信道 容量计算方法

目录 1寻呼容量计算方法 (2) 1.1现网理论容量计算 (2) 1.2实际网络环境下的容量计算 (3) 2寻呼容量扩容方案 (3) 2.1寻呼拥塞产生的原因 (3) 2.2寻呼容量预警机制 (4) 2.3现网容量评估 (4) 2.4空口寻呼扩容方案 (5) 2.4.1方案原理 (5) 2.4.2目标容量 (6) 3FACH信道容量评估 (7)

1寻呼容量计算方法 首先需要明确寻呼容量的单位是个/时间/小区,也就是说衡量一个RNC支持多大的寻呼量是以小区为标准的,比如某RNC支持的寻呼容量应为XX个/小时/小区或者XX个/秒/小区。 RNC设备支持的理论寻呼量为45万TMSI/小时/小区,实际每小区支持的寻呼容量则取决于空口的寻呼容量配置。 空口寻呼容量配置计算方法如下(以小区为参考单位): PCH寻呼能力计算公式为:Ntfs×RoundDown[(TBSize-7)/Lue]×Npch/(Nr×Tpbp) IMSI寻呼时, Ntfs×RoundDown[(TBSize-7)/72]×Npch/(Nr×Tpbp) TMSI/PTMSI寻呼时,Ntfs×RoundDown[(TBSize-7)/40]×Npch/(Nr×T pbp) 注:RoundDown为向下取整。 如果空口环境不好,存在大量重传的时候,则上面的公式需要再除以(1+Nr),寻呼容量减半,通常情况下不考虑重传。 1.1现网理论容量计算 除西安网络进行寻呼信道扩容外,现网目前各项空口寻呼信道参数配置如下表: 协议参数说明备注现网配置 Ntfs PCH传输格式中 240bit块的个数(一 个寻呼子信道承载) 传输块个数 一般配置为0、1。Ntf与PCH所在 的SCCPCH的码道数目相关。 1 Tbsize PCH传输块大小240 Npch 每个寻呼块配置的寻 呼子信道数目 协议规定Npch<=8 8 Nr 重复因子相同寻呼的重发次数 1 Tpbp PICH的寻呼周期重复周期/ Tpbp 640ms/320ms 640

4.信道及其容量

第4章 离散信道及其容量 4.1节 离散无记忆信道(DMC, Discrete Memoryless Channel ) 什么是 “信道”? 通信的基本目标是将信源发出的消息有效、可靠地通过“信道”传输到目的地,即信宿(sink )。但什么是“信道”? Kelly 称信道是通信系统中“不愿或不能改变的部分”。比如CDMA 通信中,设备商只能针对给定的频谱范围进行设备开发,而运营商可能出于成本的考虑,不愿意进行新的投资,仍旧采用老的设备。通信是对随机信号的通信,因此信源必须具有可选的消息,因此不可能利用一个sin(〃)信号进行通信,而是至少需要两个可供发射机进行选择。一旦选择了信息传输所采用的信号,信道决定了从信源到信宿的过程中信号所受到的各种影响。从数学上理解,信道指定了接收机接收到各种信号的条件概率(conditional probability),但输入信号的先念概念(prior probability )则由使用信道的接收机指定。 如果只考虑离散时间信道,则输入、输出均可用随机变量序列进行描述。输入序列X 1, X 2,……是由发射机进行选择,信道则决定输出序列Y 1, Y 2,……的条件概率。数学上考虑的最 简单的信道是离散无记忆信道。 离散无记忆信道由三部分组成: (1) 输入字符集A ={a 1, a 2, a 3,…}。该字符集既可以是有限,也可以是可数无限。其中每个 符号a i 代表发射机使用信道时可选择的信号。 (2) 输出字符集B={b 1, b 2, b 3,…}。该字符集既可以是有限,也可以是可数无限。其中每个 符号bi 代表接收机使用信道时可选择的信号。 (3) 条件概率分布P Y |X (〃|X ),该条件分布定义在B 上,其中X ∈A 。它描述了信道对输 入信号的影响。 离散无记忆的假设表明,信道在某一时刻的输出只与该时刻的输入有关,而与该时刻之前的输入无关。或者: 1111|(|,...,,,...,)(|)n n n Y X n n P y x x y y P y x --=,n =1,2,3…. Remark: (1) n x 在信道传输时受到的影响与n 时刻以前的输入信号无关。 (2) DMC 是时不变的,即|n n Y X P 与n 无关。因此|(|)n n Y X n n P y x 可简写为|(|)Y X n n P y x 。

一般离散无记忆信道容量的迭代计算

一般离散无记忆信道容量的迭代计算 信道容量的迭代算法 1信道容量的迭代算法的步骤 一、用了matlab 实现DMC 容量迭代的算法如下: 第一步:首先要初始化信源分布: .0deta 10,1,0,1)(>>=?==,选置,,k r i r P k i 即选取一个精度,本次中我选deta=0.000001。 第二步:}{,) ()()()(k ij i ji k i ji k i k ij t p p p p t 得到反向转移概率矩阵根据式子∑=。 第三步: 第四步: 第五步: 若a C C C k k k det )1() ()1(>-++,则执行k=k+1,然后转第二步。直至转移条件不成立, 接着执行下面的程序。 第六步:输出迭代次数k 和()1+k C 和1+k P ,程序终止。 2. Matlab 实现 clear; r=input('输入信源个数:'); s=input('输入信宿个数:'); deta=input('输入信道容量的精度: '); ()()()()(){}111]log exp[] log exp[+++==∑∑∑k i k i j ij k ji j ij k ji k i p P t p t p p 计算由式()()()()()()。C t p t P I C k r i s j k ij ji k k k 10011log exp log ,+==++????????????????==∑∑计算由式

Q=rand(r,s); %形成r行s列随机矩阵Q A=sum(Q,2); %把Q矩阵每一行相加和作为一个列矩阵A B=repmat(A,1,s); %把矩阵A的那一列复制为S列的新矩阵 %判断信道转移概率矩阵输入是否正确 P=input('输入信道转移矩阵P:')%从这句话开始将用下面两句代替可自动生成信道转移矩阵 [r,s]=size(P); for i=1:r if(sum(P(i,:))~=1) %检测概率转移矩阵是否行和为1. error('概率转移矩阵输入有误!!') return; end for j=1:s if(P(i,j)<0||P(i,j)>1) %检测概率转移矩阵是否负值或大于1 error('概率转移矩阵输入有误!!') return; end end end %将上面的用下面两句代替可自动生成信道转移矩阵 %disp('信道转移概率矩阵:') %P=Q./B 信道转移概率矩阵(每一个原矩阵的新数除以所在行的数总和) i=1:1:r; %设置循环首项为1,公差为1,末项为r(Q的行数)的循环 p(i)=1/r; %原始信源分布r个信源,等概率分布 disp('原始信源分布:')

实验二 离散信道及其容量

实验二离散信道及其容量 一、[实验目的] 1、理解离散信道容量的内涵; 2、掌握求二元对称信道(BSC)互信息量和容量的设计方法; 3、掌握二元扩展信道的设计方法并会求其平均互信息量。 二、[实验环境] windows XP,MATLAB 7 三、[实验原理] 若某信道输入的是N 维序列x ,其概率分布为q(x ),输出是N 维序列y ,则平均互信息量记为I(X ;Y ),该信道的信道容量C 定义为() max (X;Y)q x C I =。四、[实验内容] 1、给定BSC 信道,信源概率空间为 信道矩阵0.990.010.010.99P ??=???? 求该信道的I(X;Y)和容量,画出I(X;Y)和ω、C 和p 的关系曲线。 2、编写一M 脚本文件t03.m,实现如下功能: 在任意输入一信道矩阵P 后,能够判断是否离散输出对称信道。 3、对题1求其二次扩展信道的平均互信息I(X;Y)。 五、[实验过程] 每个实验项目包括: 1)设计思路 1、信道容量 ()max (X;Y)q x C I =,因此要求给定信道的信道容量,只要知道该信道的最大互信息量,即求信道容量就是求信道互信息量的过程。 程序代码: clear all,clc; w=0.6; w1=1-w; p=0.01;X P 0 10.60.4 =

p1=1-p; save data1p p1; I_XY=(w*p1+w1*p)*log2(1/(w*p1+w1*p))+(w*p+w1*p1)*log2(1/(w*p+w1*p1))-... (p*log2(1/p)+p1*log2(1/p1)); C=1-(p*log2(1/p)+p1*log2(1/p1)); fprintf('互信息量:%6.3f\n信道容量:%6.3f',I_XY,C); p=eps:0.001:1-eps; p1=1-p; C=1-(p.*log2(1./p)+p1.*log2(1./p1)); subplot(1,2,1),plot(p,C),xlabel('p'),ylabel('C'); load data1; w=eps:0.001:1-eps; w1=1-w; I_XY=(w.*p1+w1.*p).*log2(1./(w.*p1+w1.*p))+(w.*p+w1.*p1).*log2(1./(w.*p+w1.*p1))-.. .(p.*log2(1./p)+p1.*log2(1./p1)); subplot(1,2,2),plot(w,I_XY) xlabel('w'),ylabel('I_XY'); 实验结果: 互信息量:0.891 信道容量:0.919 I(X;Y)和ω、C和p的关系曲线图: C X 2、离散对称信道:当离散准对称信道划分的子集只有一个时,信道关于输入和输出对称。 离散准对称信道:若一个离散无记忆信道的信道矩阵中,按照信道的输出集Y 可以将信道划分成n个子集,每个子矩阵中的每一行都是其他行同一组元素的不同排列。

信道容量实验报告

湖南大学 信息科学与工程学院 实验报告 实验名称信道容量的迭代算法课程名称信息论与编码 第1页共9页

1.实验目的 (1)进一步熟悉信道容量的迭代算法; (2)学习如何将复杂的公式转化为程序; (3)掌握C 语言数值计算程序的设计和调试技术。 2、实验方法 硬件:pc 机 开发平台:visual c++软件 编程语言:c 语言 3、实验要求 (1)已知:信源符号个数r 、信宿符号个数s 、信道转移概率矩阵P 。 (2)输入:任意的一个信道转移概率矩阵。信源符号个数、信宿符号个数和每 个具体的转移概率在运行时从键盘输入。 (3)输出:最佳信源分布P*,信道容量C 。 4.算法分析 1:procedure CHANNEL CAPACITY(r,s,(ji p )) 2:initialize:信源分布i p =1/r ,相对误差门限σ,C=—∞ 3:repeat 4: 5: 6: C 221 1 log [exp(log )] r s ji ij r j p φ==∑∑ 7:until C C σ ?≤ 8:output P*= ()i r p ,C 9:end procedure 21 21 1 exp(log ) exp(log ) s ji ij j r s ji ij r j p p φφ===∑∑∑i p 1 i ji r i ji i p p p p =∑ij φ

5.程序调试 1、头文件引入出错 f:\visualc++\channel\cpp1.cpp(4) : fatal error C1083: Cannot open include file: 'unistd.h': No such file or directory ————#include 纠错://#include f:\visualc++\channel\cpp1.cpp(5) : fatal error C1083: Cannot open include file: 'values.h': No such file or directory ————#include 纠错://#include 2、变量赋值错误 f:\visualc++\channel\cpp1.cpp(17) : error C2065: 'ij' : undeclared identifier f:\visualc++\channel\cpp1.cpp(17) : error C2440: 'initializing' : cannot convert from 'int' to 'float ** ' Conversion from integral type to pointer type requires reinterpret_cast, C-style cast or function-style cast ————float **phi_ij=ij=NULL; 纠错:float **phi_ij=NULL; 3、常量定义错误 f:\visualc++\channel\cpp1.cpp(40) : error C2143: syntax error : missing ';' before 'for' ————for(i=0;iDELTA) f:\visualc++\channel\Cpp1.cpp(84) : error C2021: expected exponent value, not ' ' ————if(fabs(p_j)>=DELTA) f:\visualc++\channel\Cpp1.cpp(100) : error C2021: expected exponent value, not ' ' ————if(fabs(phi_ij[i][j])>=DELTA) f:\visualc++\channel\Cpp1.cpp(116) : error C2021: expected exponent value, not ' ' ————while(fabs(C-C_pre)/C>DELTA); 纠错:#define DELTA 0.000001; F:\visualc++\channel\Cpp1.cpp(68) : error C2065: 'MAXFLOAT' : undeclared identifier F:\visualc++\channel\Cpp1.cpp(68) : warning C4244: '=' : conversion from 'int' to 'float', possible loss of data ————C=-MAXFLOAT; 纠错:#define MAXFLOAT 1000000; 3、引用中文逗号 f:\visualc++\channel\cpp1.cpp(60) : error C2018: unknown character '0xa1' f:\visualc++\channel\cpp1.cpp(60) : error C2018: unknown character '0xb1' f:\visualc++\channel\cpp1.cpp(60) : error C2065: 'Starting' : undeclared identifier f:\visualc++\channel\cpp1.cpp(60) : error C2059: syntax error : '.'

正式实验报告二—信道容量的计算

一、实验目的 1.掌握离散信道的信道容量的计算方法; 2.理解不同类型信道的不同特点与不同的计算方法; 二、实验内容 1.进一步熟悉一般离散信道的信道容量计算方法; 2.进一步复习巩信道性质与实际应用; 3.学习如何将复杂的公式转化为程序。 三、实验仪器、设备 1、计算机-系统最低配置256M内存、P4 CPU; 2、MATLAB编程软件。 四、实现原理 信道容量是信息传输率的极限,当信息传输率小于信道容量时,通过信道编码,能够实现几乎无失真的数据传输;当数据分布满足最佳分布时,实现信源与信道的匹配,使得信息传输率能够达到信道容量。本实验利用信道容量的算法,使用计算机完成信道容量的计算。 实验采用迭代算法计算信道容量,即:设DMC的转移概率pyx(i,j),p(i)是任意给定的一组初始给定输入分布,开始为等概率分布,以后逐次迭代更新p(i)的取值。其所有分量P (i)均不为0。按照如下方法进行操作: 具体方法: 1、计算q(j)= i j i pyx i p) ,( *)(,pyx(i,j)为信道转移概率 2、计算a(i)

先算中间变量d(i)=∑ j j q j i pyx j i pyx) ( /) ,( log( *) ,( 然后,a(i)=exp(d(i)) 3、计算中间变量U=∑ i i p i a)( *)( 4、计算IL=log2(u) 5、计算IU=log2(max(a(i)) 6、当IU-IL>ε(ε为设定的迭代精度)时,进入以下循环,否则输出迭代次数n,信道容量C=IU计算结果,最佳分布p(i)。 ①重新计算p(i)=p(i)*a(i)/U ②计算q(j),方法同1 ③计算a(i),方法同2 ④计算中间变量U=∑ i i p i a)( *)( ⑤计算IL=log2(u) ⑥计算IU=log2(max(a(i)) ⑦计次变量n=n+1 返回6判断循环条件是否满足。 五、实验步骤 1、计算非对称信道的信道容量 运行程序

信道及信道容量

第5章 信道及信道容量 教学内容包括:信道模型及信道分类、单符号离散信道、多符号离散信道、多用户信道及连续信道 5.1信道模型及信道分类 教学内容: 1、一般信道的数学模型 2、信道的分类 3、信道容量的定义 1、 一般信道的数学模型 影响信道传输的因素:噪声、干扰。 噪声、干扰:非函数表述、随机性、统计依赖。 信道的全部特性:输入信号、输出信号,以及它们之间的依赖关系。 信道的一般数学模型: 2、 信道的分类 输出随机信号 输入、输出随机变量个数 输入和输出的个数 信道上有无干扰 有无记忆特性 3、信道容量的定义 衡量一个信息传递系统的好坏,有两个主要指标: 图5.1.1 一般信道的数学模型 离散信道、连续信道、半离散或半连续信道 单符号信道和多符号信道 有干扰信道和无干扰信道 有记忆信道和无记忆信道 单用户信道和多用户信道 速度指标 质量指标

速度指标:信息(传输)率R ,即信道中平均每个符号传递的信息量; 质量指标:平均差错率e P ,即对信道输出符号进行译码的平均错误概率; 目标:速度快、错误少,即R 尽量大而e P 尽量小。 信道容量:信息率R 能大到什么程度; )/()()/()();(X Y H Y H Y X H X H Y X I R -=-== 若信道平均传送一个符号所需时间为t 秒,则 ) ;(1 Y X I t R t =(bit/s ) 称t R 为信息(传输)速率。 分析: 对于给定的信道,总存在一个信源(其概率分布为* )(X P ),会使信道的信息率R 达到 最大。 ();(Y X I 是输入概率)(X P 的上凸函数,这意味着);(Y X I 关于)(X P 存在最大值) 每个给定的信道都存在一个最大的信息率,这个最大的信息率定义为该信道的信道容量,记为C ,即 ) ;(max max Y X I R C X X P P ==bit/符号 (5.1.3) 信道容量也可以定义为信道的最大的信息速率,记为 t C ?? ? ???==);(1max max Y X I t R C X X P t P t (bit /s ) (5.1.4) 解释: (1)信道容量C 是信道信息率R 的上限,定量描述了信道(信息的)最大通过能力; (2)使得给定信道的);(Y X I 达到最大值(即信道容量C )的输入分布,称为最佳输入(概率)分布,记为* )(X P ; (3)信道的);(Y X I 与输入概率分布)(X P 和转移概率分布)/(X Y P 两者有关,但信道容量 C 是信道的固有参数,只与信道转移概率)/(X Y P 有关。 4、意义: 研究信道,其核心问题就是求信道容量和最佳输入分布。根据定义,求信道容量问题就是求平均互信息量);(Y X I 关于输入概率分布)(X P 的最大值问题。一般来说,这是一个很困难的问题,只有对一些特殊信道,如无噪信道等,才能得到解析解,对于一般信道,必须借助于数值算法。

信息论与编码理论1(B卷答案)

2011-2012 信息论与编码理论1 B 卷答案 一、 单项选择题(每题3分,总计15分) 1.当底为e 时,熵的单位为( C )。 A 奈特 B 哈特 C 奈特/符号 D 哈特/符号 2.下列关系式中( B )正确。 A )();(X I Y X I ≥ B );(),(Y X I Y X H ≥ C )|()|(X Y H Y X H ≥ D );();(Y X H Y X I ≤ 3.下列( D )陈述是正确的。 A Shannon 编码是最优码 B LZ 编码是异字头码 C Huffman 编码可以不需要知道信源的分布 D 典型序列的数目不一定比非典型的多 ) 4.下列数组中( A )不满足二个字母上的Kraft 不等式。 A (1,1,1) B (2,2,2,2) C (3,3,3) D (4,4,4) 5.下列( D )是只对输出对称的。 A ????? ? ??316 12121613 1 B ????? ??2.04.04.04.02.04.04.04.02.0 C ??????? ? ??32313132 3231 D ??? ? ??2.04.04.04.02.02.0 二、填空题(每空2分,总计20分) 1.若二元离散无记忆中25.0)0(=p ,75.0)1(=p ,则当给出100比特的信源序列,其中有5个1,则其自信息为3log 52002-比特,整个序列的熵为)3log 4 3 2(1002- 比特/符号. 2.若某离散信道信道转移概率矩阵为?? ????????5.025.025.025.05.025.025.025.05.0,则其信道容量为5.13log 2-比 特/符号;转移概率矩阵为???? ? ?????25.05.025.05.025.025.025.025.05.0,则其信道容量为5.13log 2-比特/符号。 3. 两个相同的BSC 做级联信道,其信道转移矩阵分别为??? ? ??--p p p p 11 , 则级联信道的信道转移矩阵为??????+---+-22222212222221p p p p p p p p ,无穷多个级联后的矩阵为??? ???5.05.05.05.0。 4.若一个信道的输入熵为6.2)(=X H 比特/符号,输出熵为3.2)(=Y H 比特/符号,

信道容量及其一般计算方法

实验一信道容量及其一般计算方法 1.实验目的 一般离散信道容量的迭代运算 2.实验要求 (1)理解和掌握信道容量的概念和物理意义 (2)理解一般离散信道容量的迭代算法 (3)采用Matlab编程实现迭代算法 (4)认真填写实验报告。 3.源代码 clc;clear all; //清屏 N = input('输入信源符号X的个数N='); //输入行数 M = input('输出信源符号Y的个数M='); //输入列数 p_yx=zeros(N,M); //程序设计需要信道矩阵初始化为零 fprintf('输入信道矩阵概率\n') for i=1:N //从第一行第一列开始输入 for j=1:M p_yx(i,j)=input('p_yx='); //输入信道矩阵概率 if p_yx(i)<0 //若输出概率小于0则不符合概率分布 error('不符合概率分布') end end end for i=1:N //各行概率累加求和 s(i)=0; for j=1:M s(i)=s(i)+p_yx(i,j); end end for i=1:N //判断是否符合概率分布 if (s(i)<=0.999999||s(i)>=1.000001) //若行相加小于等于0.9999999或者大于等于1.000001 Error //('不符合概率分布') end end b=input('输入迭代精度:'); //输入迭代精度 for i=1:N p(i)=1.0/N; //取初始概率为均匀分布(每行值分别为1/N,)end for j=1:M //计算q(j) q(j)=0; for i=1:N q(j)=q(j)+p(i)*p_yx(i,j); //均匀分布的值乘上矩阵值后+q(j),然后赋值给q(j)实现求和

实验二 一般信道容量迭代算法

实验二 一般信道容量迭代算法 1. 实验目的 掌握一般离散信道的迭代运算方法。 2. 实验要求 1) 理解和掌握信道容量的概念和物理意义 2) 理解一般离散信道容量的迭代算法 3) 采用Matlab 编程实现迭代算法 4) 认真填写试验报告 3.算法步骤 ①初始化信源分布),,,,,(21)0(p p p p P r i ????=(一般初始化为均匀分布),置迭代计数器k=0,设信道容量相对误差门限为δ,δ>0,可设-∞=C )0(; ②∑= i k i ij k i ij k ji p p p p )()() (? s j r i ,??=??=,1;,,1 ③∑ ∑∑??????????????????????=+i k ji j ij k ji j ij k i p p p ?? )()() 1(ln exp ln exp r i ,,1??= ④?? ??????????????=∑∑+i k ji j ij k p C ?)()1(ln exp ln ⑤如果δ≤-++C C C k k k )1()()1(,转向⑦; ⑥置迭代序号k k →+1,转向②; ⑦输出p k i ) 1(+和C k )(1+的结果; ⑧停止。 4.代码P=input('转移概率矩阵P=') e=input('迭代精度e=') [r,s]=size(P); n=0; C=0; C_k=0; C_k1=0; X=ones(1,r)/r;

A=zeros(1,r); B=zeros(r,s);%初始化各变量 while(1) n=n+1; for i=1:r for j=1:s B(i,j)=log(P(i,j)/(X*P(:,j))+eps); if P(i,j)==0 B(i,j)=0; else end end A(1,i)=exp(P(i,:)*B(i,:)'); end C_k=log2(X*A'); C_k1=log2(max(A)); if (abs(C_0-C_1)

信道容量

当一个信道受到加性高斯噪声的干扰时,如果信道传输信号的功率和信道的带宽受限,则这种信道传输数据的能力将会如何?这一问题,在信息论中有一个非常肯定的结论――高斯白噪声下关于信道容量的山农(Shannon)公式。本节介绍信道容量的概念及山农定理。 1、信道容量的定义 在信息论中,称信道无差错传输信息的最大信息速率为信道容量,记为。 从信息论的观点来看,各种信道可概括为两大类:离散信道和连续信道。所谓离散信道就是输入与输出信号都是取值离散的时间函数;而连续信道是指输入和输出信号都是取值连续的。可以看出,前者就是广义信道中的编码信道,后者则是调制信道。 仅从说明概念的角度考虑,我们只讨论连续信道的信道容量。 2. 山农公式 假设连续信道的加性高斯白噪声功率为(W),信道的带宽为(Hz),信号功率为(W),则该信道的信道容量为 这就是信息论中具有重要意义的山农公式,它表明了当信号与作用在 信道上的起伏噪声的平均功率给定时,具有一定频带宽度的信道上,理论上单位时间内可能传输的信息量的极限数值。

由于噪声功率与信道带宽有关,故若噪声单边功率谱密度为(W/Hz),则噪声功率。因此,山农公式的另一种形式为 由上式可见,一个连续信道的信道容量受、、三个要素限制,只要这三个要素确定,则信道容量也就随之确定。 3. 关于山农公式的几点讨论 山农公式告诉我们如下重要结论: (1)在给定、的情况下,信道的极限传输能力为,而且此时能够做到无差错传输(即差错率为零)。这就是说,如果信道的实际传输速率大于值,则无差错传输在理论上就已不可能。因此,实际传输速率一般不能大于信道容量,除非允许存在一定的差错率。 (2)提高信噪比(通过减小或增大),可提高信道容量。特别是,若,则,这意味着无干扰信道容量为无穷大; (3)增加信道带宽,也可增加信道容量,但做不到无限制地增加。这是因为,如果、一定,有

相关主题
文本预览
相关文档 最新文档