当前位置:文档之家› 高一数学对数函数经典题及详细答案

高一数学对数函数经典题及详细答案

高一数学对数函数经典题及详细答案
高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题

一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1、已知32a =,那么33log 82log 6-用a 表示是( )

A 、2a -

B 、52a -

C 、2

3(1)a a -+ D 、 2

3a a -

答案A 。

∵3a =2→∴a=log 32

则: log 38-2log 36=log 323

-2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2

2、2log (2)log log a a a M N M N -=+,则

N

M

的值为( ) A 、41

B 、4

C 、1

D 、4或1

答案B 。

∵2log a (M-2N )=log a M+log a N ,

∴log a (M-2N)2=log a (MN ),∴(M-2N)2

=MN ,

∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2

-5n m +4=0,设x=n m

→x 2-5x+4=0→(x 2

???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0

∴n m =1答案为:4

3、已知2

2

1,0,0x y x y +=>>,且1

log (1),log ,log 1y a a

a x m n x

+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1

2

m n -

答案D 。

∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n

→loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

∴2loga(y)=m-n

4. 若x 1,x 2是方程lg 2x +(lg3+lg2)lgx +lg3·lg2 = 0的两根,则x 1x 2的值是( ). (A).lg3·lg2 (B).lg6 (C).6 (D).

61

答案D

∵方程lg 2x+(lg2+lg3)lgx+lg2lg3=0的两根为1

x 、2x ,[注:lg 2x 即(lgx)2,这里可把lgx 看成能用X ,这是二次方程。]

∴lg 1x +lg 2x = -a b

= -(lg2+lg3)→ lg (1x ×2x )= -lg (2×3)

→∴lg (1x ×2

x

)= -lg6=lg 61 →∴1x ×2x =61 →则x1?x2的值为6

1

。 5、已知732log [log (log )]0x =,那么1

2

x -等于( )

A 、

1

3 B 、23 C 、22 D 、33

答案C

∵log 7【log 3(log 2X)】=0→∴log 3(log 2x)=1→log 2x=3→x=8

x

2

1-=8

2

1-=2

)(32

1-?=2

2

3

--=232

1

=3

2

1=221

=

4

2

6.已知lg2=a ,lg3=b ,则

15

lg 12

lg 等于( ) A .

b

a b

a +++12

B .

b

a b

a +++12

C .

b

a b

a +-+12

D .

b

a b

a +-+12

答案C

lg12=lg3*2*2=lg3+lg2+lg2= 2a+b

lg15=lg 230=lg30-lg2=lg3*10-lg2=lg3+1-lg2=b-a+1 (注:lg10=1) ∴比值为(2a+b)/(1-a+b) 7、函数(21)log 32x y x -=- )

A 、()2,11,3??+∞

???

B 、()1,11,2??

+∞

???

C 、2,3??+∞

??? D 、1,2??+∞ ???

答案A

(21)

log x y -=1,111201202332

2132≠>→??

???????

?≠→≠->→>->→>-x x x x x x x x ∴答案为:()2,11,3??

+∞

???

8、函数212

log (617)y x x =-+的值域是( )

A 、R

B 、[)8,+∞

C 、(),3-∞-

D 、[)3,+∞ 答案为:C ,y=(-∞,-3]

∵x 2

-6x+17=x 2-6x+9+8=(x-3)2+8≥8,∵log

2

1

= log

2

11

-=(-1) log 2= - log 2 (∴-

log 2x 单调减→ log 2

1x 单调减→ log 2

1[(x-3)2+8] 单调减.,为减函数

∴x 2

-6x+17=(x-3)2+8 ,x 取最小值时(x-3)2+8有最大值→ (x-3)2+8=0最小,x=3, 有最大值8, →log 2

1[(x-3)2+8]= log 2

18= - log 28= -3, ∴值域 y ≤-3∴y=(-∞,-3][注:

Y=x

2

-6x+17 顶点坐标为(3,8),这个Y 为通用Y]

9、若log 9log 90m n <<,那么,m n 满足的条件是( )

A 、 1 m n >>

B 、1n m >>

C 、01n m <<<

D 、01m n <<< 答案为:C

{对数函数的定义:一般地,我们把函数y=logax (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞),值域是R 。对数函数的解析式: y=logax (a >0,且a ≠1)。对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值。但是,根据对数定义:log 以a 为底a 的对数;如果a=1或=0那么log 以a 为底a 的对数就可以等于一切实数(比如log 11也可以等于2,3,4,5,等等)】}分析:根据对数函数的图象与性质可知,当x=9>1时,对数值小于0,所以得到m 与n 都大于0小于1,又log m 9

∵log

m 9<0,log n 9<0,得到0<m <1,0<n <1;又log m 9<log n 9,得到m >n , ∴m .n 满足的条件是0<n <m <1.

a,c 均大于零且不等于1】

10、2

log 13

a <,则a 的取值范围是( ) A 、()20,

1,3?

?+∞ ???

B 、2,3??+∞ ???

C 、2,13?? ???

D 、220,,33????

+∞ ? ?????

答案为:A. ①0

→则loga(x)是减函数, 1=loga(a),∵2

log

13

a

<,即loga(2/3)a 此时上面有0

②a>1时→则loga(x)是增函数, loga(2/3)<1(即log a

a ) →∴2/31综述得取a>1有效。→∴01

11、下列函数中,在()0,2上为增函数的是( ) A 、12

log (1)y x =+ B 、22

log 1y x =-C 、2

1log y x = D 、2

2

log (45)y x x =-+ 答案为:D 。

A 、 x+1在(0,2)上是增函数 以21

为底的对数就是一个减函数 ∴复合函数y 就是个减

函数。 B 、

12-x 在(0,2)上递增,但又不能取<1的数,x<1不在定义域(0,2)内 ∴不对。

这种情况虽然是增,但(0,2)内含有<1的。

C 、x 1

是减函数,以2为底的对数是个增函数,∴y 为减函数

D 、与A 相反,x 2-4x+5=(x-2)2+1,对称轴为2,在(0,2)上递减,以21

的对数也是递减,所以复合函数是增函数

12.已知函数y =log 2

1 (ax 2

+2x +1)的值域为R ,则实数a 的取值范围是( )

A .a > 1

B .0≤a < 1

C .0<a <1

D .0≤a ≤1

答案为:C 。

(注:对数函数定义底数则要>0且≠1 真数>0)∵函数y=log 2

1(ax +2x+1)的值域为R

∴ax 2+2x+1恒>0,令g(x)=ax 2+2x+1,显然函数g(x)=ax 2+2x+1是一个一元二次函数(抛物线),要使g(x)(即通用的Y )恒>0, ①必须使抛物线开口向上,即a >0

②同时必须使△>0(保证抛物线始终在x 轴上方,且与x 轴没有交点,这也是△不能为0的原因)(注:如△<0, 抛物线可在x 轴下方,且与x 轴有交点) 即b 2-4ac=4-4a >0,解得a <1。∴则实数a 的取值范围是0<a <1。

说明:答案是0<a <1,而不是0≤a ≤1。 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13计算:

100

1

e 3log 122+ .

答案为:

【注:自然常数e (约为2.71828)是一个无限不循环小数。是为超越数。ln 就是以e 为底的对数。ln1=0,lne=1。 设23

12og =x →则由指数式化为对数式可得: log 2x= (log 23) →∴x=3

∵2

3

12og =x, 又∵ x=3, →∴2

3

12og =3.】

100

1

e 3

log 122

+ log 2.5

()2

5.2+

lg103

-+ lne

2

1+21

?2

3

12og

=2+(-3)+21

+23=2-3+2

1

+6=

2

15。 【注:假如是23

112og +-,则

2

3

112og +-=23

log 2log 212+

-=2

3

2log 12?-=2

3log 2

12?=2

2

3

2log =23

14、函数

(-1)log (3-)x y x =的定义域是 。

答案为:

(2)要使原函数有意义,则真数大于0,底数大于0,底数不等于1 。

→≠??

???<

????

≠→≠->→>->→>-2,31211101303x x x x x x x x ∴函数的定义域为(1,2)∪(2,3)。

15、2

lg 25lg 2lg 50(lg 2)++= 。

lg25+lg2·lg50+(lg2)2

答案为:∵lg2+lg5=1 ,lg10=1 lg25+lg2*lg50+(lg2)2

=lg52

+lg2*lg50+lg2*lg2→=2lg5+lg2(lg50+lg2) →=2lg5+lg2lg(50*2) → =2lg5+lg2*lg100→=2lg5+lg2*lg102

→=2lg5+lg2*2lg10→ =2lg5+2lg2→=2(lg5+lg2) →=2lg10→=2

16、函数)

()lg f x x =是 (奇、偶)函数。

答案为:

第①种解:∵f(-x)=lg(12+x +x)=lg (12+x +x )*

x x x

x -+-+1122

=lg x

x x x x x -+-+?++1)

1()1(222=lg

x

x x x -+-+1)

1(222

2=lg

x

x x x -+-+1)1(222

= lg

x

x -+11

2=lg(

12+x -x)1-= -lg (12+x -x )= -f(x), f(-x) = -f(x)∴是奇函数

第②种解:

∵f (-x )+f (x )= lg(12+x +x)+ lg (12+x -x )= lg[(12+x +x)?(12+x -x )]= lg (x 2

+1-x 2

)= lg1=0, f(-x)-f (x)=0,∴f(-x)与f (x)互为正负数

∴f(-x)= -f(x),∴f (x )为奇函数. 三、解答题:(本题共3小题,共36分,解答应写出文字说明,证明过程或演算步骤.) 17已知y =log a (2-ax )在区间{0,1}上是x 的减函数,求a 的取值范围.

答案为:【对数函数含义:一般地,如果a (a>0,且a≠1)的y 次幂等于x ,那么数y 叫做以a 为底x 的对数,记作log a x=y ,其中a 叫做对数的底数,x 叫做真数。y 叫对数(即是幂)。注意:负数和0没有对数。

底数a 则要>0且≠1,真数x>0。并且,在比较两个函数值时: 对于不同大小a 所表示的函数图形:关于X 轴对称:

以上要熟记】

解题:∵y =log a (2-ax )在区间{0,1}上是x 的减函数,∵a>0,真数(2-ax )已经是减函数了,然后要使这个复合函数是减函数,那么对数底a 要是增函数,∵增减复合才得减,∴由函数通用定义知要使函数成增函数必a>1。 又∵函数定义域:2-ax >0得ax <2, ∴x <a 2

又∴a 是对数的底数

a >0且a ≠1。∵[0,1]区间内2-ax 递减,∴当

??

??????=取最大时取最大时a x )(1→ 即-ax 最大时,2-ax 取得最小值,为2-a 。

∵x=1∵x <a 2

可得a 2

>1,∴a <2. ∴a 的取值范围1

18、已知函数22

2(3)lg 6

x f x x -=-,

(1)求()f x 的定义域;(2)判断()f x 的奇偶性。

解题:【注:定义域没有与原点对称的函数是非奇非偶函数。

如果定义域是全体实数,

那肯定就是关于原点对称了,那就可能或奇或偶函数、既奇又偶函数。

如果定义域不是全体实数,比如是全体正实数,那定义域在x 轴的负半轴上都不能取值,当然更谈不上是对称了。

再比如定义域是全体负实数,那定义域在x 轴正半轴也不能取值,所以定义域也不是关于原点对称。

再举个例子:f (x )=x 的偶次方根,此题的定义域是x 非负,x 非负这个取值,关于原点的对称区间是x 非正(没有)。

所以两个例子中的定义域都不是关于原点对称的。】 解题:(即Y 值的取值方向固定)

(1)设x 2

-3= t (t >-3),∵()()2222233(3)lg lg 633

x x f x x x -+-==---,∴f(t)=lg 33-+t t ,又由06

2

2

>-x x →

33

-+t t >0,∴t>3→233x ->(注:这里x 2非负),

∴ ()f x 的定义域为()3,+∞。

(2)∵()f x 的定义域不关于原点对称(x 2

非负),∴()f x 为非奇非偶函数。

19、已知函数232

8()log 1

mx x n

f x x ++=+的定义域为R ,值域为[]0,2,求,m n 的值。 解题: ∵f (x )=lo

g 3

1

822+++x n x mx 的定义域为R ,∵x 2+1>0,∴mx 2

+8x+n >0恒成立. 令y= 1822+++x n x mx ,∵函数f (x )的值域(即log 31

822+++x n

x mx )为[0,2], ∴ 1≤y (即1

822+++x n

x mx )≤9 。 y(x 2+1)=mx 2+8x+n →yx 2+y -mx 2

-8x-n=0→(y-m )

?x 2-8x+y-n=0 成立。

∵x ∈R ,可设y-m ≠0,∴方程的判别式△=64-4(y-m )(y-n )≥0

→-16 +(y-m )(y-n )≤0→即 y 2-(m+n )y+mn-16≤0.

∵y=1和y=9是方程 y 2-(m+n )y+mn-16=0的两个根,

∴y 1+y 2= -a b

=m+n=10,y 1?+y 2=mn-16=9。→m=10-n,

→ (10-n) n-16=9→10n-n

2

-25=0→ n 2-10n +25=0

→(n-5)2=25→m=n=5。

若y-m=0,即y=m=n=5 时,对应的x=0,符合条件。综上可得,m=n=5。

大值和最小值。(换元法是必须要有的)求多种方法。 解题:

第①种解:设

2a 2

+ 7a + 3 ≤ 0

∴(a + 3) (2a + 1) ≤ 0→???????-≤≤?

??-???-≤→≤+-≥→≥+????

?

?

-≥→≥+-≤→≤+2

121213012303012303a a a a a a a a a 无解

∴ -3 ≤

a ≤ -2

1→∴-3 ≤-21

→-3 ≤-log

2

x ≤-

2

1

→3log log log log 3log

322

1

21221222

≤≤??

?????

?≥→-≤-≥→-≤-x x x x x ∴21 ≤ log 2x ≤ 3。

解以上不等式的所有方法中,“因式分解法”较为简便

.

= (log 2x -log 24) × (log 2x -log 22)

=(log 2x -2) × (log 2x -1) 设 m = log 2x ,

∵21 ≤ log 2x ≤ 3 (已证)

∴ m ∈ [21,3 ]

于是问题转化为:

求函数y = f(x) = ( m - 2 ) × ( m -1 ) 的最大值和最小值. 这是典型的“闭区间上的二次函数求最值”问题. y = f(x) = ( m - 2 ) × ( m -1 )

y = f(x) = m 2 - 3m + 2 = m 2-26m+49-41

→y = f(x) = (m -

2

3

)2-41 其中m ∈ [21

,3 ]

考察二次函数y = f(x) = (m -23)2-41

开口向上、对称轴为 m = -a b

2=

2

3

、最小值为-41、关键是定义域为m ∈[21

,3 ].

画出二次函数y = f(x) = (m -2

3)2

-41 的图像, 由图知:对称轴在定义域范围之内,

故当m =2

3 时,函数y = f(x) 取到最小值-41; 当m = 3 时,函数y = f(x) 取到最大值,把m = 3 代入二次函数表达式求得该最大值为:

(3 -2

3)2-41=(26-23

)2

-41=49-41=2. 第②种解:设 a = log 2

1x

则原不等式 2log

2

1

x 2

+7log 2

1x +3≤0可化为:

2a 2 + 7a + 3 ≤ 0(这种基本化解要熟) ∴(a + 3) (2a + 1) ≤ 0 ∴ -3 ≤ a ≤ -21

(同上化得) ∴-3 ≤log

2

1x ≤ -2

1

(同上化得)

∴21

≤log 2x ≤ 3

→log

2221

≤log 2x ≤log 22322

1

≤ x ≤ 23

→∴

2≤ x ≤ 8∴x ∈[2,8]

=(log 2x -log 24) ×(log 2x -log 22)

= (log 2x -2) × (log 2x -1)= (log 2x )2- 3 log 2x + 2

= (log 2x -23)2- 49+2= (log 2x -23

)2-41

∵x ∈[2,8] 而 对称轴3/2在定义域[2,8]之内。∴当x = 23时,f(x)有最小值-41;

当x = 8时,f(x)有最大值,

最大值为:(log 28 -23)2-41 =(3 -23 )2-41 = 2.。

21. 已知x>0,y ≥0,且x+2y=1,求g=log 2

1(8xy+4y 2

+1)的最小值

解题:

第①种解由x+2y=1,得: 2y=1-x,

∴8xy+4y 2+1=4x *2y+(2y)2+1=4x(1-x)+ (1-x)2+1 =4x-4x 2+1-2x+x 2+1

= -3x 2+2x+2= -3(x = -3(x-3

1)2+37, 当x=31时,有最大值:37,

而y=log 2

1x 在定义域上是减函数,

∴当x=31,y=31时,

log 2

1(8xy+4y 2+1)有最小值:log 2

1

3

7

=-log 27 - log 23

1

-=log 23-log 27.

第②种解∵x+2y=1,

∴8xy+4y 2+1= x 2+4xy+4y 2+4xy-x 2+1=(x+2y)2+4xy-x 2+1=1+4xy -x 2+1 = -x 2

+4xy+2= -x 2

+4x(21-2

1

x)+ 2= -x 2+ 2x -2x 2+2

=-3x 2

+2x+2= -3(x = -3(x-31)2+37

,

当x=31时,有最大值:37

,

而y=log 2

1x 在定义域上是减函数,

∴当x=31,y=31

时,

log 2

1(8xy+4y 2+1)有最小值:log 2

1

3

7

=-log 27 - log 231-=log 23-log 27.

22. 已知函数f(x)=x

x x

x --+-10

101010。 (1)判断f(x)的奇偶性与单调性; (2)求x f

1

-

【注:反函数一般地,设函数y=f(x)(x ∈A)的值域是C ,若找得到一个函数g(y)在每一处g(y)都等于x ,这样的函数x= g(y)(y ∈C)叫做函数y=f(x)(x ∈A)的反函数,记作y=f 1-(x) 。反函数y=f 1-(x)的定义域、值域分别是函数y=f(x)的值域、定义域。

一般地,如果x 与y 关于某种对应关系f (x )相对应,y=f (x ),则y=f (x )的反函数为x=f 1-(y)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"?1"指的并不是幂。

在微积分里,f )(n (x )是用来指f 的n 次微分的。

若一函数有反函数,此函数便称为可逆的(invertible )。

简单的说,就是把y 与x 互换一下,比如y=x+2的反函数首先用y 表示x 即x=y-2,把x 、y 位置换一下就行那么y=x+2反函数就是y=x-2。在函数x=f

1

-(y)中,y 是自变量,x 是函数,

但习惯上,我们一般用x 表示自变量,用y 表示函数,为此我们常常对调函数x=f 1

-(y)中

的字母x,y ,把它改写成y=f 1

-(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种

经过改写的形式。

函数及其反函数的图形关于直线y=x 对称】

解题:

∵已知函数f(x)=x x x x --+-10101010,∴f(-x)=)()

(10101010x x x x

------+-= x x x x 10101010+---= -x

x x

x --+-10101010- f(x),

∴是奇函数。

令a=10x ,则,a>0。

∴y=f(x)=

a

a

a a 1

1

+- ,上下同?a

1122+-a a =12

122

+-+a a =112

2++a a -122+a =1-122+a

设a 1,a 2∈(-∞,+∞),且a 2> a 1,

则f(a 2) -f(a 1) =1-1222+a -(1-1221+a )=-1222+a +1221

+a

=)1)(1()

1(2)1)(1()1(221

222

221

222

1+++++++-a a a a a a =

)

1)(1()

1(2)1(22122212

2+++-+a a a a =)1)(1(2221222

122++-a a a a

∵a=10x >0,∴a 2>0,a 2

+1>1。)1)(1(2

12

2++a a >0 ,∵a 2>a 1

→∴2

1

22

22a a

->0,

∴)1)(1(2221222

122++-a a a a >0

→ f(a

2

) -f(a 1)>0, ∴f (x )为增函数。

∵f(x)= 1-122

+a 。设y=1-1

2

2

+a →y-1= -1

2

2

+a →1-y=12

2

+a →2

1y -=112+a

y

-12=1

2

+a

→2

a

=y -12

-1→

a 2

=y y ---1)1(2

a 2

=y y -+11。∵a=10x ,a 2

=10x 2∴10x 2=y

y -+11→

2x=lg y

y -+11→x=21lg y y

-+11

→即y=21lg x x

-+11,∴

x f 1-=21lg x x

-+11。

高一数学 反函数 重难点解析 人教版

数学 反函数 【重点难点解析】 1.本单元知识结构 2.了解互为反函数的两个函数间的关系(定义域、值域、运算反映的映射法则及图象),会求函数的反函数(如果有的话). 3.判断一个函数是否有反函数及求反函数运算时解不惟一,此时如何确定谁是所求的反函数等. 【考点】 1.求已知函数的反函数与已知函数的性质(单调性、奇偶性、图象特征等)从而确定反函数的性质. 2.求函数的值域是数学中的难点也是考点,而利用求反函数的定义域来求函数的值域,在解题时常有使用. 【典型热点考题】 例1 求下列函数的反函数: (1)y =f(x)=2x -1; (2)3 x 1x 2)x (f y -+= =. 思路分析 求函数y =f(x)的反函数)x (f y 1-=,需先对函数的解析式按运算律要求逐步实施逆运算求得)y (f x 1-=,然后再交换x 、y ,就可求得反函数.一般如不特别给出函数的定义域,则解得的解析式即为所求,不必再另注明反函数的定义域(函数的值域),如题目指明要求,则应计算函数的值域(反函数的定义域). 解: (1)∵y =2x -1 ∴2x =y +1 2 1y 21x += ∴反函数21x 21)x (f y 1+= =-. (2)∵3 x 1x 2y -+=(x ≠3且x ∈R) ∴xy -3y =2x +1 xy -2x =3y +1 (y -2)x =3y +1 当y -2≠0,即y ≠2时 有2 y 1y 3x -+=(y ≠2) ∴反函数2 x 1x 3)x (f y 1-+==-(x ≠2). 例2 求下列函数的反函数: (1)1x y 2-=(x ≤0); (2)7x 4x y 2+-=(x ≥2); (3)x y =(x ≥1).

高中数学对数函数教案

高中数学对数函数教案 数学对数函数教案【教学目标】 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个 函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想, 注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 数学对数函数教案【教学建议】 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生 已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故 是对上述知识的应用,也是对函数这一重要数学思想的进一步认识 与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加 完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关 自然科学领域中实际问题的重要工具,是学生今后学习对数方程, 对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图 象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又

是建立在指数与对数关系和反函数概念的基础上,故应成为教学的 重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题 都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已 知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过 对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数 图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多 选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找 出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这 条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他 们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣. 数学对数函数教案【教学设计示例】 一.引入新课 一.对数函数的概念 1.定义:函数的反函数叫做对数函数. 由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的 认识是什么? 教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故 有着相同的限制条件. 在此基础上,我们将一起来研究对数函数的图像与性质.

高一数学反函数的概念

4.5反函数的概念 一、教学内容分析 “反函数”是《高中代数》第一册的重要内容.这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为今后反三角函数的教学做好准备,起到承上启下的重要作用. 二、教学目标设计 (1)理解反函数的概念,并能判定一个函数是否存在反函数; (2)掌握求反函数的基本步骤,并能理解原函数和反函数之间的内在联系; (3)通过反函数概念的引入;函数及其反函数图像特征的主动探索,初步学会自主地学习、 独立地探究问题;掌握观察、比较、分析、归纳等数学试验研究的方法;体验探索中挫折的艰辛与成功的快乐,激发学习热情. 三、教学重点与难点: 反函数的概念及求法;反函数的图像特征;反函数定义域的确定. 四、教学流程设计 五、教学过程设计 1、设置情境,引出概念 引例:在两种温度度量制摄氏度(C )和华氏度(F )相互转化时会发现,有时两人选 用相同的数据,如下表,所建立的函数关系和作出的图像完全不同,这是为什么呢?

教师点拨:指导学生观察上面两个函数的异同,引出反函数的定义.介绍反函数的记号 )(1 x f y ;了解)(1 x f 表示反函数的符号,1 f 表示对应法则. 2、 探索研究,深化概念 ①探求反函数成立的条件. 例1(1)2 x y (R x )的反函数是 (2)2 x y (0 x )的反函数是 (3)2 x y (0 x )的反函数是 学生活动:讨论函数反函数成立的条件(理论根据为函数的定义):对值域A 中任意一个y 值,在定义域D 中总有唯一确定的x 值与它对应,即x 与y 必须一一对应. ②探求求反函数的方法.(课本例题) 例2.求下列函数的反函数: (1)24 x y (2)13 x y (3))0(12 x x y (4))2 1 ,(2413 x R x x x y [说明]:学生分四组完成,教师巡视,把典型错误及正确解法投影. 学生活动:探求求反函数的方法. (1) 变形:解方程,)(x f y 得)(1 y f x ; (2) 互换:互换y x ,的位置,得)(1 x f y ; (3)写出定义域:注明反函数的定义域. ③观察反函数的图像,探讨互为反函数的两个函数的关系.

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

高中数学必修1基本初等函数常考题型幂函数

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y=xα叫做幂函数.其中x是自变量,α是常数. 2.常见幂函数的图象与性质 (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数. 特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴;当x趋于+∞时,图象在x轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念 【例1】(1)下列函数:①y=x3;②y= 1 2 x ?? ? ?? ;③y=4x2;④y=x5+1;⑤y=(x-1)2; ⑥y=x;⑦y=a x(a>1).其中幂函数的个数为() A.1B.2

C .3 D .4 (2)已知幂函数y =( ) 22 23 1m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y =() 2 223 1m m m m x ----为幂函数, ∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,m 2-2m -3=-3,则y =x - 3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0. 故所求幂函数的解析式为y =x - 3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法 判断一个函数是否为幂函数的依据是该函数是否为y =x α (α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反之,若一个函数为幂函数,则该函数应具备这一形式,这是我们解决某些问题的隐含条件. 【对点训练】 函数f(x)=( ) 22 3 1m m m m x +---是幂函数,且当x ∈(0,+∞)时,f(x)是增函数,求f(x)的 解析式. 解:根据幂函数的定义得 m 2-m -1=1.解得m =2或m =-1. 当m =2时,f(x)=x 3在(0,+∞)上是增函数; 当m =-1时,f(x)=x -3 在(0,+∞)上是减函数,不符合要求. 故f(x)=x 3. 题型二、幂函数的图象 【例2】 (1)如图,图中曲线是幂函数y =x α 在第一象限的大致图象,已知α取-2,-12,1 2,2四个值,则相应于曲线C 1,C 2,C 3,C 4 的α的值依次为( ) A .-2,-12,1 2 ,2 B .2,12,-1 2 ,-2

高一数学幂函数知识点总结

高一数学幂函数知识点总结 一、一次函数定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数 的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通 过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的 表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……② (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 一、高中数学函数的有关概念 1.高中数学函数函数的概念:设A、B是非空的数集,如果按照 某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从函数A 到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x 的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.

(完整版)幂函数与指数函数练习题教师版.doc

.. 2016-2017 学年度高一必修一指数函数与幂函数练考卷考试范围:基本不等式;考试时间:100 分钟;命题人:聂老师 题号一二三总分 得分 第 I 卷(选择题) 评卷人得分 一、选择题 1.化简的结果为() A. 5B.C.﹣D.﹣5 【答案】 B 【解析】=== 故选 B 2 .函数 f x a x 0 a 1 在区间 [0 , 2] 上的最大值比最小值大3 ,则a的值为 () A. 1 7 2 B. C. D. 4 3 2 2 2 2 【答案】 C 【解析】试题分析:结合指数函数的性质,当0 a 1 ,函数为减函数.则当 x 0 时, o 1 ,当 x 2 时,函数有最小值 2 2 3 函数有最大值 f (0) a f (2) a ,则1 a , 4 解得 a 2 (负舍) . 2 考点:指数函数的性质. 3.指数函数 f ( x) (a 1)x在R上是增函数,则 a 的取值范围是() A.a 1 B. a 2 C. 0 a 1 D. 1 a 2 【答案】 B 【解析】 试题分析:对于指数函数 x 1 时,函数在R上是增函数,当 0 a 1时,y a ,当 a 函数在 R上为减函数 . 由题意可知:a 1 1 即, a 2 . 考点:指数函数的性质 . 4.若函数f (x) (2m 3)x m23是幂函数,则m的值为()A.1 B.0 C.1 D.2 【答案】 A Word 完美格式

【解析】 试题分析:由题意,得 2m 3 1 m 1 ,解得 . 考点:幂函数的解析式. 5.若幂函数 y (m 2 3m 3) x m 2 的图象不过原点,则( ) A . 1 m 2 B . m 1 m 2 或 C . m 2 D . m 1 【答案】 B 【解析】 试题分析: y (m 2 3m 3)x m 2 是幂函数,则必有 m 2 3m 3 1,得 m 1 1, m 2 2 , 又函数图象不过原点,可知其指数 m 2 0 , m 1 1, m 2 2 均满足满足,故正确选项 为 B. 考点:幂函数的概念 . 【思路点睛】首先清楚幂函数的形式 f (x) x a , a 为常数,说明幂的系数必须为 1,即 可得含有 m 的方程;其次幂函数的图象不过原点,说明指数为负数或者零,即可得含 有 m 的不等式 . 在此要注意, 00 是不存在的, 也就是说指数为零的幂函数图象不过原点 . 6.设 2, 1, 1 ,1,2,3 ,则使幂函数 y x a 为奇函数且在 (0, ) 上单调递增的 a 2 值的个数为 ( ) A . 0 B . 1 C . 2 D . 3 【答案】 C 【解析】 试题分析:因为 a y x 是奇函数,所以 a 应该为奇数,又在 (0, ) 是单调递增的,所 以 a 0 则只能 1,3 .考点:幂函数的性质 . 7.已知函数 ,若 ,则实数 ( ) A . B . C . 2 D . 9 【答案】 C 【解析】因为 , 所以 .

人教版高一数学对数函数教案

有关高一数学对数函数的概念以及一些常见的解题方法和延伸,基本的知识点及简单的例题,希望对高中生们有帮助。 1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaM/N=logaM-logaN. (3)logaM^n=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下:

①若a<0,则N的某些值不存在,例如log- ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④ (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:aN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:①12-4=16. ②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;

高一数学指对幂函数习题(含答案与解析)

指对幂函数试卷四 一、选择题 1.设的大小关系是、、,则,,c b a c b a 243.03.03log 4log -=== 0的x 的集合是 . 3. )2log (2)9(log )(91-==-f f x x f a ,则满足函数的值是_____. ? 4.函数 1e 1e +-=x x y 的反函数的定义域是_________.

反函数

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x)。则y=f(x)的反函数为y=f (x)^-1。 存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的) 【反函数的性质】 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数。关于y 轴对称的函数一定没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2) [编辑本段]⒈反函数的定义一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= f(y). 若对于y在C中的任何一个值,通过x= f(y),x在A中都有唯一的值和它对应,那么,x= f(y)就表示y是自变量,x是自变量y的函数,这样的函数x= f(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f^-1(y). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 说明:⑴在函数x=f^-1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f^-1(y)中的字母x,y,把它改写成y=f^-1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式. ⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f^-1(x),那么函数y=f^-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f^-1(x)互为反函数. ⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f^-1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f^-1(x)的值域;函数y=f(x)的值域正好是它的反函数y=f^-1(x)的定义域(如下表): 函数y=f(x) 反函数y=f^-1(x) 定义域A C 值域C A ⑷上述定义用“逆”映射概念可叙述为: 若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f^-1(x)就叫做函数y=f(x)的反函数. 反函数x=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.

高一数学对数函数教案

高一数学对数函数教案 教学目标 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个 函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想, 注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 教学建议 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生 已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故 是对上述知识的应用,也是对函数这一重要数学思想的进一步认识 与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加 完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关 自然科学领域中实际问题的重要工具,是学生今后学习对数方程, 对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图 象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又

是建立在指数与对数关系和反函数概念的基础上,故应成为教学的 重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题 都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已 知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过 对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数 图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多 选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找 出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这 条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他 们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.看过"高一数学对数函数教案"的还 看了:

指数函数对数函数幂函数练习题大全(答案)

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是 ( ) A .71 7 7)(m n m n = B . 33 39= C .4 343 3 )(y x y x +=+ D .31243)3(-=- 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 9- B .a - C .a 6 D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确... 的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)]([+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0 ,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数 C .奇函数,在R 上为减函数 D .偶函数,在R 上为减函数

2020-2021年高一数学反函数一 新课标 人教版

2019-2020年高一数学反函数一新课标人教版教学目标 1.使学生了解反函数的概念; 2.使学生会求一些简单函数的反函数; 3.培养学生用辩证的观点观察、分析解决问题的能力。 教学重点 1.反函数的概念; 2.反函数的求法。 教学难点 反函数的概念。 教学方法 师生共同讨论 教具装备 幻灯片2张 第一张:反函数的定义、记法、习惯记法。(记作A); 第二张:本课时作业中的预习内容及提纲。 教学过程 (I)讲授新课 (检查预习情况)

师:这节课我们来学习反函数(板书课题)§2.4.1 反函数的概念。 同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法? 生:(略) (学生回答之后,打出幻灯片A)。 师:反函数的定义着重强调两点: (1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x= φ(y); (2)对于y在c中的任一个值,通过x= φ(y),x在A中都有惟一的值和它对应。 师:应该注意习惯记法是由记法改写过来的。 师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢? 生:一一映射确定的函数才有反函数。 (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。 师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y 是自变量,x是函数值。) 在y= f(x)中与y= f –1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)由此,请同学们谈一下,函数y= f(x)与它的反函数y= f –1(x)两者之间,定义域、值域存在什么关系呢?

(完整word)高中数学必修一对数函数.doc

2.3 对数函数 重难点:理解并掌握对数的概念以及对数式和指数式的相互转化,能应用对数运算性质及换 底公式灵活地求值、化简;理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用. 考纲要求:①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数 或常用对数;了解对数在简化运算中的作用;②理解对数函数的概念;理解对数 函数的单调性,掌握函数图像通过的特殊点;③知道对数函数是一类重要的函数 模型; ④了解指数函数与对数函数互为反函数. 经典例题:已知 f( logax ) =,其中a>0,且a≠1. (1)求 f( x);(2)求证:f(x)是奇函数;(3)求证:f(x)在R上为增函数. 当堂练习: 1.若,则() A . B .C.D. 2.设表示的小数部分,则的值是() A . B .C.0 D . 3.函数的值域是() A .B. [0,1] C. [0, D . {0} 4.设函数的取值范围为() A .(- 1,1)B.(- 1,+∞)C.D. 5.已知函数,其反函数为,则是() A .奇函数且在( 0,+∞)上单调递减B.偶函数且在( 0,+∞)上单调递增C.奇函数且在( - ∞, 0)上单调递减 D .偶函数且在( -∞, 0)上单调递增 6.计算=.

7.若 2.5x=1000,0.25y=1000, 求. 8.函数 f(x) 的定义域为 [0,1], 则函数的定义域为. 9.已知 y=loga(2 -ax)在[ 0, 1]上是 x 的减函数,则 a 的取值范围是. 10 .函数图象恒过定点,若存在反函数,则 的图象必过定点. 11.若集合 {x , xy, lgxy} ={0 , |x|, y} ,则 log8 ( x2+ y2)的值为多少. 12. (1) 求函数在区间上的最值. (2) 已知求函数的值域. 13.已知函数的图象关于原点对称.(1)求 m 的值; (2)判断 f(x) 在上的单调性,并根据定义证明. 14.已知函数 f(x)=x2 - 1(x ≥1) 的图象是 C1,函数 y=g(x) 的图象 C2 与 C1 关于直线 y=x 对称. (1) 求函数 y=g(x) 的解析式及定义域M ; (2) 对于函数y=h(x) ,如果存在一个正的常数a,使得定义域 A 内的任意两个不等的值x1 ,x2 都有 |h(x1) - h(x2)| ≤ a|x1-x2|成立,则称函数y=h(x) 为 A 的利普希茨Ⅰ类函数.试证明: y=g(x) 是 M 上的利普希茨Ⅰ类函数. 参考答案:

高一数学幂函数题型复习总结

第二课:幂函数a x y = 知识点一、幂的运算法则 初中知识点:(1)=?n m a a _______ =n m a a _______ =-n a _______ (2)() =n m a _______ =?m m b a _______ 指数幂与根式的互化:=n m a _______ =n m a 1 _______ 练习:_______3 1=x _______5 2 =x _______ 3 2=-x _______1 4 3 =x 例:计算 练习:

知识点二、幂函数图象 画图注意事项 (1)定义域:偶次方根被开方数0≥,奇次方根被开方数R ∈,分母0≠. (2)奇偶性:判断) f相等?相反数? (x f-与)(x (3)闲着描描点!极限情况靠想象!快快慢慢!增增减减!秒悟! 1、初级练场:常见幂函数图象: y= 请在同一个坐标系中漂亮的画出以下简单幂函数:a x 2、中级练场:看图说话 总结:R ?,图象一定过第()象限!一定过点(,)! a∈ (1)a的大小不同,图象高低有序!

(2)a 的符号不同,图象增减有别! _______________________________________________________________________ (3)有的象限永无缘! _________________________________ (4)定点是谁要分清! —————————————————————————— 3、高级练场:驴?马?溜溜! 以下9个幂函数图象轮廓各不重样,你能画几个? (1)3-=x y (2)3 1x y = (3)5x y = (5)2 -=x y (5)32x y = (6)4x y = (7)2 1-=x y (8)4 1x y = (9)2 3x y =

{高中试卷}高一上数学各知识点梳理:反函数[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点: 监考老师: 日期:

7、反函数 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.设函数f (x)=1-2x 1-(-1≤x ≤0),则函数y =f -1(x )的图象是( B. - -1 O x 2.函数y =1-1-x (x ≥1)的反函数是 ( ) A .y =(x -1)2+1,x ∈R B .y =(x -1)2-1,x ∈R C .y =(x -1)2+1,x ≤1 D .y =(x -1)2-1,x ≤1 3.若f (x -1)= x 2-2x +3 (x ≤1),则f - 1(4)等于 ( ) A .2 B .1-2 C .-2 D .2-2 4.与函数y=f (x)的反函数图象关于原点对称的图象所对应的函数是 ( ) A .y=-f (x ) B .y= f -1(x ) C .y =-f -1(x ) D .y =-f -1(-x ) 5.设函数()[]() 242,4f x x x =-∈,则()1f x -的定义域为 ( ) A .[)4,-+∞ B .[)0,+∞ C .[]0,4 D .[]0,12 6.若函数()y f x =的反函数是()y g x =,(),0f a b ab =≠,则()g b 等于 ( ) A .a B .1 a - C . b D .1 b - 7.已知函数()1 3 ax f x x += -的反函数就是()f x 本身,则a 的值为 ( ) A .3- B .1 C .3 D .1- 8.若函数()f x 存在反函数,则方程()()f x c c =为常数 ( ) A .有且只有一个实数根 B .至少有一个实数根 C .至多有一个实数根 D .没有实数根 9.函数f (x )=- 2 2 ·12-x (x ≤-1)的反函数的定义域为 ( ) A .(-∞,0] B .(-∞,+∞) C .(-1,1) D .(-∞,-1)∪(1,+∞) 10.若函数f (x )的图象经过点(0,-1),则函数f (x +4)的反函数的图象必经过点 ( ) A .(-1,4) B .(-4,-1) C .(-1,-4) D .(1,-4)

高一数学对数函数及其性质完美版

高一数学对数函数及其性质(一)说课稿 一、教材分析 “对数函数”的内容出现在人教课标版高一数学第二学期第五章§5.9节,它是在学过对数与常用对数,反函数以及指数函数的基础上,以类比的方法进行学习,这有利于学生加深和巩固对函数、反函数以及对数函数和指数函数的认识与函数性质的理解;同时对数函数作为常用数学模型在解决社会生活中的实例(统计、规划等)有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。本节内容安排两课时,第一课时是理解对数函数的意义及图像与性质的掌握;第二课时是对数函数图像、性质的应用,本节课是第一课时。 二、学生情况分析 进校时大部分学生数学基础较差,表现在理解能力,运算能力,思维能力等方面较差,学习缺乏主动性,有一部分学生对学好数学的信心不足,有畏难情绪。 三、教学目标的确定: 根据教学大纲,对数函数及其相关知识历来是高考的考点。它的具体要求是能在学习指数函数的基础上,利用反函数的思想来研究对数函数的定义、图象及其性质。根据教材要求,学生的认知结构,学生情况及年龄特点,确定教学目标如下: 1、知识与技能:(1)理解对数函数的概念,理解指数函数与对数函数的内在关系; (2)掌握对数函数的概念、图象和性质,以及初步应用。 (3)培养学生自主学习、综合归纳、数形结合的能力。 2、过程与方法:培养学生用类比方法探索研究数学问题及其反思学习的素养 3、情感态度与价值观:(1)培养学生对待知识的科学态度、勇于探索和创新的精神。 (2)在民主、和谐的教学气氛中,促进师生的情感交流,树立学生学好 数学的自信心。 教学重点、难点: 重点:对数函数的概念、图象和性质; 难点:由指数函数的图象和性质得到对数函数的图象和性质; 四、教学方法和手段: 1、本节课采用建构式教学法,流程是:创设情景、提出问题---合作交流、联想类比---数形结合、加深理解---练习反馈、巩固提高---归纳小结、布置作业。 教学过程是教师和学生共同参与的过程,是学生在已具备对数、反函数以及指数函数的一定的情境背景下,以学生为主体,教师为主导,充分发挥学生的主动性、积极性和首创精神,最终在学习过程中达到帮助学生很好地掌握对数函数的概念、图象和性质,并对指数函数与对数函数的内在关系达到较深刻的理解的意义建构的目的。 2、教学手段:计算机多媒体教学 (1)通过动画课件让学生直观、深刻的了解指数函数和对数函数这对反函数的图象之间的关系。 (2)通过列表,对比指数函数与对数函数的性质以达到对对数函数的意义建构的目的。 (3)通过多媒体教学,加大教学容量,提高教学质量和教学效率。

2014高一数学幂函数练习题

高中数学幂函数同步练习 知识梳理: 1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常 用幂函数的图象. 2. 观察出幂函数的共性,总结如下: (1)当0α>时,图象过定点 ;在(0,)+∞上 是 函数. (2)当0α<时,图象过定点 ;在(0,)+∞上 是 函数;在第一象限内,图象向上及向右都与坐标轴无限趋近. 3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数 . y 轴和直线1x =之间,图象由上至下,指数α . 诊断练习: 1. 如果幂函数()f x x α=的图象经过点2 ,则(4)f 的值等于 2.函数y =(x 2 -2x ) 2 1- 的定义域是 3.函数y =5 2x 的单调递减区间为 4.函数y = 2 21 m m x --在第二象限内单调递增,则m 的最大负整数是_______ _. 范例分析: 例1比较下列各组数的大小: (1)1.53 1,1.73 1,1; (22 3 2- ,(- 107 )3 2,1.1 3 4- ; (3)3.83 2-,3.95 2,(-1.8)5 3; (4)31.4,51.5 . 例2已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且 2()m y x m Z -=∈的图象关于y 轴对称,求m 的值. 例3幂函数2 7323 5 ()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.

相关主题
文本预览
相关文档 最新文档