当前位置:文档之家› 如何保持和降低棚内温度及湿度

如何保持和降低棚内温度及湿度

如何保持和降低棚内温度及湿度

如何保持和降低棚内温度及湿度

众所周知,大棚保温被是用于温室大棚种植蔬菜保温的必备保温产品,大棚保温被这种节能型生产设施因其建造成本低、保温效果好等特征,已经被许多农业生产者应用于生产中,想必大家对其也有一定的了解,为了大家更好地了解使用它,小编具体为大家介绍一下大棚保温被如何保持和降低棚内温度及湿度,感兴趣的朋友可以看一下下面文章:

1、需要保持大棚内的温度,首先应该保持草苫或者是大棚保温被的干燥。其次是一旦大棚内的温度低于6摄氏度的时候,就需使用烧火炉进行加温。

2、需要有效的降低大棚内的湿度,在冬季天气骤冷,植株的生长速度一般都会比较缓慢,植物的根系活动力相对较小,所以植株的需水量小,那么农户就应该尽量不要浇水,如果需浇水的话也要在膜下浇水,不要浇大水,追肥也要追速溶性肥料,且浓度要低。

以上就是小编为大家介绍的关于大棚保温被如何保持和降低棚内温度及湿度,希望对大家会有所帮助!更多关于产品知识尽在我们网站中,大家可以前来咨询!淄博厚城橡塑保温材料有限公司专业研制、生产加工温被等,同时供应大棚保温被材料,大棚保温被原料,受国内外客户好评。

相对湿度与露点对照表

室内温度25℃时露点与相对湿度对照表相对湿度露点相对湿度露点0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -2 4.49 1 5.0% -3.02 2.2% -24.02 1 6.0% -2.25 2.3% -23.57 1 7.0% -1.15 2.4% -23.14 1 8.0% -0.83 2.5% -22.73 1 9.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

空气温度湿度对照表

空气绝对湿度与空气相对湿度这两个物理量之间并无函数关系。例如,温度越高,水蒸发得越快,于是空气里的水蒸汽也就相应地增多。所以在一天之中,往往是中午的绝对湿度比夜晚大。而在一年之中,又是夏季的绝对湿度比冬季大。但由于空气的饱和水汽压也随着温度的变化而变化,所以又可能是中午的相对湿度比夜晚的小。由于在某一温度时的饱和水汽压可以从“不同温度时的饱和水汽压”表中查出数据,因此只要知道当前气温,算出当前空气中的水汽压,即可求出空气相对湿度来。 前言:空气有吸收水分的特征,PCB主料和辅料有相当部分也是对湿度十分敏感的材料,它们遇到空气中的相对湿度比工艺条件高或低时会吸湿或缩水造成自身形体变化,如黑菲林、重氮片、半固化片等。造成制程中不稳定的质量缺陷。今天我们来谈谈空气一个状态的参数——相对湿度。 生产中的相对湿度是由工业除湿机组和超声波加湿器自动调节的,当生产过程相对湿度局部出现小偏差,我们可以通过局部加减湿度来满足生产需求。例如直接喷水、开启超声波雾化加湿器设备、煮开水来增加空气湿度、开启除湿机及抽湿机,升温可以降低空气湿度。 湿度的概念是空气中含有水蒸气的多少。它有三种表示方法: 第一是绝对湿度,它表示每立方米空气中所含的水蒸气的量,单位是克/立方米;

第二是含湿量,它表示每千克干空气所含有的水蒸气量,单位是克/千克·干空气; 第三是相对湿度,表示空气中的绝对湿度与同温度下的饱和绝对湿度的比值,得数是一个百分比。(也就是指在一定时间内,某处空气中所含水汽量与该气温下饱和水汽量的百分比。) 相对湿度用RH表示。相对湿度的定义是单位体积空气内实际所含的水气密度(用d1 表示)和同温度下饱和水气密度(用d2 表示)的百分比,即RH(%)= d1/ d2 x 100%;另一种计算方法是:实际的空气水气压强(用p1 表示)和同温度下饱和水气压强(用p2表示)的百分比,即RH(%)= p1/ p2 x 100%。 前两种湿度表示它的计算结果是一个量化,并未能满足空气可利用的工艺状态,而我们工艺生产条件更注重空气状态,所以相对湿度是我们最常用衡量空气湿度的一种指标。饱和空气:一定温度和压力下,一定数量的空气只能容纳一定限度的水蒸气。当一定数量的空气在该温度和压力下最大限度容纳水蒸气,这样的空气称饱和空气;未能最大限度容纳水蒸气,这样的空气称未饱和空气。假如空气已达到饱和状态,人为的把温度下降,这时的空气进入一个过饱和状态,水蒸气开始以结露的形式从空气中分离出来变成液态水,这就是我们抽湿机的工作原理。

室内温度25℃时露点与相对湿度对照表 文档

时露点与相对湿度对照表 ℃时露点与相对湿度对照表 25℃ 室内温度25 相对湿度 露点 相对湿度 露点 0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -24.49 15.0% - 3.02 2.2% -24.02 16.0% -2.25 2.3% -2 3.57 17.0% -1.15 2.4% -2 3.14 18.0% -0.83 2.5% -22.73 19.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

空气温度湿度对照表

单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。它实际上就是水汽密度。它是大气干湿程度的物理量的一种表示方式。通常以1立方米空气内所含有的水蒸汽的克数来表示。单位为克/立方米或克/立方厘米。水蒸汽的压强是随着水蒸汽的密度的增加而增加的,所以,空气里的绝对湿度的大小也可以通过水汽的压强来表示。由于水蒸汽密度的数值与以毫米高水银柱表示的同温度饱和水蒸汽压强的数值很接近,故也常以水蒸汽的毫米高水银柱的数值来计算空气的干湿程度。空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的“相对湿度”。空气的干湿程度和空气中所含有的水汽量接近饱和的程度有关,而和空气中含有水汽的绝对量却无直接关系。例如,空气中所含有的水汽的压强同样等于1606.24pa(12.79毫米汞柱)时,在炎热的夏天中午,气温约35℃,人们并不感到潮湿,因此时离水汽饱和气压还很远,物体中的水分还能够继续蒸发。而在较冷的秋天,大约15℃左右,人们却会感到潮湿,因这时的水汽压已经达到过饱和,水分不但不能蒸发,而且还要凝结成水,所以我们把空气中实际所含有的水汽的密度ρ1与同温度时饱和水汽密度ρ2的百分比ρ1/ρ2×100%叫做相对湿度。也可以用水汽压强的比来表示露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。所以露

点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。湿球温度的定义是在定压绝热的情况下,空气与水直接接触,达到稳定热湿平衡时的绝热饱和温度。

露点与相对湿度对照表

露点与相对湿度对照表(室内温度25℃时)相对湿度露点相对湿度露点0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -24.49 15.0% - 3.02 2.2% -24.02 16.0% -2.25 2.3% -2 3.57 17.0% -1.15 2.4% -2 3.14 18.0% -0.83 2.5% -22.73 19.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31

绝对湿度与相对湿度对照表

5%10%15%20%25%30%35%40%45%50%55% 60%65%70%75%80%85%90%95%100%5℃0.340.68 1.02 1.36 1.70 2.04 2.38 2.72 3.06 3.40 3.73 4.07 4.41 4.75 5.09 5.43 5.77 6.11 6.45 6.7910℃0.470.94 1.41 1.88 2.35 2.82 3.29 3.76 4.23 4.70 5.16 5.63 6.10 6.577.047.517.988.458.929.3915℃0.64 1.28 1.92 2.56 3.21 3.85 4.49 5.13 5.77 6.417.057.698.338.979.6210.2610.9011.5412.1812.8220℃0.86 1.73 2.59 3.45 4.32 5.18 6.04 6.917.778.649.5010.3611.2312.0912.9513.8214.6815.5416.4117.2725℃ 1.15 2.30 3.45 4.60 5.75 6.908.059.2010.3511.5112.6613.8114.9616.1117.2618.4119.5620.7121.8623.0130℃ 1.52 3.03 4.55 6.067.589.0910.6112.1213.6415.1616.6718.1919.7021.2222.7324.2525.7627.2828.7930.3135℃ 1.98 3.95 5.937.909.8811.8513.8315.8017.7819.7621.7323.7125.6827.6629.6331.6133.5835.5637.5339.5140℃ 2.55 5.107.6510.2012.7515.3017.8520.4022.9525.5028.0530.6033.1535.7038.2540.8043.3545.9048.4551.0045℃ 3.26 6.529.7813.0416.3019.5622.8226.0829.3432.6135.8739.1342.3945.6548.9152.1755.4358.6961.9565.2150℃ 4.138.2712.4016.5320.6624.8028.9333.0637.1941.3345.4649.5953.7257.8661.9966.1270.2574.3978.5282.6555℃ 5.1910.3915.5820.7825.9731.1736.3641.5646.7551.9557.1462.3367.5372.7277.9283.1188.3193.5098.70103.8960℃ 6.4812.9519.4325.9132.3938.8645.3451.8258.2964.7771.2577.7284.2090.6897.16103.63110.11116.59123.06129.5465℃8.0216.0324.0532.0640.0848.0956.1164.1272.1480.1588.1796.18104.20112.21120.23128.24136.26144.27152.29160.3070℃9.8519.6929.5439.3949.2459.0868.9378.7888.6298.47108.32118.16128.01137.86147.71157.55167.40177.25187.09196.9475℃12.0224.0336.0548.0660.0872.0984.1196.12108.14120.16132.17144.19156.20168.22180.23192.25204.26216.28228.29240.3180℃14.5729.1343.7058.2772.8387.40101.97116.53131.10145.67160.23174.80189.36203.93218.50233.06247.63262.20276.76291.3385℃17.5535.1052.6570.2087.75105.29122.84140.39157.94175.49193.04210.59228.14245.69263.24280.78298.33315.88333.43350.9890℃21.0242.0463.0584.07105.09126.11147.13168.14189.16210.18231.20252.22273.23294.25315.27336.29357.31378.32399.34420.3695℃25.0350.0675.09100.12125.15150.18175.21200.24225.27250.30275.33300.36325.39350.42375.45400.48425.51450.54475.57500.60100℃ 29.65 59.30 88.94 118.59 148.24 177.89 207.54 237.18 266.83 296.48 326.13 355.78 385.42 415.07 444.72 474.37 504.02 533.66 563.31 592.96 绝对湿度与相对湿度对应表(大气压:1bar) 相对湿度 (RH) 绝对湿度 g/m 3 温度

露点和相对湿度

露点的原始定义一般说来是:湿度一定压力一定的被测量气体被降温,当降到一个特定的温度时出现结露现象,此时这个特定温度就是这个压力条件下的露点温度。所以才出现了从原始定义出发测量露点的镜面式露点仪,GE的测量镜面采用铂铑合金。 相对湿度是被测量气体的水蒸气分压与相同压力、温度条件下净水表面饱和水蒸气分压的比值。范围0-100% 单位RH,无量纲单位。 露点的测量环境要根据测量仪器的不同而定,镜面式露点仪一般要求流量,基本都为0.25升/分钟至5升/分钟之间,流量过大或过小都将导致测量不准确。探头式的在线露点仪也要求流量条件,它的流量性质准确的称为流速,不同压力下流速允许范围因传感器不同而异。GE的金基三氧化二铝传感器有许多种,种种不同,根据测量条件内置针阀式采样器的可测量更大压力气体的露点,MMY35典型的流速允许为 1bar 基本是常压了,可达50米/秒。但在10bar压力条件下,只有5米/秒的最大流速。 相对湿度基本没碰到过有什么要求,一般常见的是在相对湿度含量很低的情况下用露点表示,或者直接用含水PPM表示,因为你不能用小数点以后几个零的数字来表示,那样没有意义。高温下也一般已经不存在相对湿度的概念,因为水已经被完全汽化,根本不存在含水量的概念(高压下例外)。无论是高温还是高温高压下,现在的相对湿度传感器基本都是通过采样气体测量常温湿度,然后反推得出的。 结论:如果空气相对湿度达到100%RH,那么此时的空气温度就是露点温度,这个结果不难得出。 而且现在的计量单位,从一级到二级站基本都已经将镜面露点仪作为相对湿度的最高标准。 什么是相对湿度? 在相同温度下,空气中水汽含量与饱和水汽含量之间的比例。 详细解释:压力为P,温度为T的湿空气的相对湿度是指给定的湿空气中,水汽的摩尔分数怀同一温度T和压力P下纯水表面的饱和水汽的摩尔分数之比,用百分数表示。相对湿度是两个压强值之比: %RH = 100 x p/ps 在这里p 是周围环境中水蒸汽的实际部分压强值;ps是周围环境中水的饱合压强值. 相对湿度传感器通常是在标准室温情况下校准的(高于0度),相应的,通常认为这种传感器可以指示在所有温度条件下的相对湿度(包括在低于0度的情况).

温度与相对湿度要点

温度与相对湿度、绝对湿度、饱和湿度的关系 绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l 立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。 ②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 2 5 4P su x =? (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg ,12℃时的饱和蒸汽压为lO.52mmHg 。则此时:空气的绝对湿度p=10.52mmHg , 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。 ②露点的测定,在农业上意义很大。由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。知道了露点,可以预报是否发生霜冻,使农作物免受损害。 ⑨气温和露点的差值愈小,表示空气愈接近饱和。气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。人体感到适中的相对湿度是60~70%。 ④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。

相对湿度 、露点温度转换的计算公式

相对湿度、露点温度转换的计算公式 湿度研究对象是气体和水汽的混合物。 无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 1、压力为P,温度为T 的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T 和压力P 下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 2、实际水汽压与同一温度条件下的饱和水汽压的比值 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。 但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的(在湿度论坛中,本人给出了温度to 饱和水汽压的简化公式以及计算程序,可下载)。 上面说道:饱和水汽压是与温度相关的量。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to 饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to 饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压 实际水汽压除以饱和水汽压,就可以得到相对湿度。

干湿球温度计的相对湿度对照表

相对湿度对照表 本表格不太全,精度也有限,适合要求不高的场合。 如要求较高,另有以下选择: 1。根据干湿球温度的相对湿度计算程序(汇编)50元: 环境条件:风速:0.4m/s 0.8m/s 2.5m/s三种可选 大气压:110,100,90,80kPa四种可选 干球温度范围:0~100摄氏度 干湿球温度差:不限 程序入口:干球温度(精确到0.1度) 湿球温度(精确到0.1度) 程序出口:相对湿度(精确到1%) 2.相对湿度对照表(JPG文件)100kPa 0.8m/s 干球温度范围:15~100摄氏度 30元。 请联系wt9405@https://www.doczj.com/doc/ae5171855.html, ;--------------------------相对湿度表 ;干球温度 0 ~ 40 度, ;每度16档温差:0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,.....14.0, 14.5, 15.0 ;温差0.0档应为100,为了只用一字节十进制表示,100用99代 SD_TAB:DB 99H,91H,83H,75H,67H,61H,54H,48H,42H,37H,31H,27H,22H,18H,14H,10H DB 07H,04H,01H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H _1:DB 99H,91H,83H,76H,69H,62H,50H,44H,39H,34H,30H,25H,21H,17H,14H,10H DB 07H,04H,01H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H _2:DB 99H,92H,84H,77H,70H,64H,58H,52H,47H,42H,37H,33H,28H,24H,21H,17H DB 14H,11H,08H,05H,02H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H _3:DB 99H,92H,85H,78H,72H,65H,60H,54H,49H,44H,39H,35H,31H,27H,23H,20H DB 17H,14H,11H,08H,06H,03H,01H,00H,00H,00H,00H,00H,00H,00H,00H,00H _4:DB 99H,93H,86H,80H,74H,68H,63H,57H,53H,48H,44H,40H,36H,32H,29H,25H DB 22H,19H,17H,14H,12H,10H,07H,05H,03H,02H,00H,00H,00H,00H,00H,00H _5:DB 99H,93H,86H,80H,74H,68H,63H,57H,53H,48H,44H,40H,36H,32H,29H,25H DB 22H,19H,17H,14H,12H,10H,07H,05H,03H,02H,00H,00H,00H,00H,00H,00H _6:DB 99H,93H,87H,81H,75H,69H,64H,59H,54H,50H,46H,42H,38H,34H,31H,28H DB 25H,22H,19H,17H,15H,12H,10H,08H,06H,05H,03H,01H,00H,00H,00H,00H _7:DB 99H,93H,87H,81H,75H,69H,64H,59H,54H,50H,46H,42H,38H,34H,31H,28H DB 25H,22H,19H,17H,15H,12H,10H,08H,06H,05H,03H,01H,00H,00H,00H,00H _8:DB 99H,94H,88H,82H,76H,71H,66H,62H,57H,53H,49H,46H,42H,39H,35H,32H DB 29H,27H,24H,22H,19H,17H,15H,13H,11H,10H,08H,06H,05H,04H,02H,02H 第 1 页

相对湿度对照表-1

干湿通风表湿度对照表 干湿温差 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 干球温度相对湿度(%) 50 97 94 92 89 87 84 82 79 77 74 72 70 68 66 63 61 49 97 94 92 89 86 84 81 79 77 74 72 70 67 65 63 61 48 97 94 92 89 86 84 81 79 76 74 71 69 67 65 62 60 47 97 94 92 89 86 83 81 78 76 73 71 69 66 64 62 60 46 97 94 91 89 86 83 81 78 76 73 71 68 66 64 62 59 45 97 94 91 88 86 83 80 78 75 73 70 68 66 63 61 59 44 97 94 91 88 86 83 80 78 75 72 70 67 65 63 61 58 43 97 94 91 88 85 83 80 77 75 72 70 67 65 62 60 58 42 97 94 91 88 85 82 80 77 74 72 69 67 64 62 59 57 41 97 94 91 88 85 82 79 77 74 71 69 66 64 61 59 56 40 97 94 91 88 85 82 79 76 73 71 68 66 63 61 58 56 39 97 94 91 87 84 82 79 76 73 70 68 65 63 60 58 55 38 97 94 90 87 84 81 78 75 73 70 67 64 62 59 57 54 37 97 93 90 87 84 81 78 75 72 69 67 64 61 59 56 53 36 97 93 90 87 84 81 78 75 72 69 66 63 61 58 55 53 35 97 93 90 87 83 80 77 74 71 68 65 63 60 57 55 52 34 96 93 90 86 83 80 77 74 71 68 65 62 59 56 54 51 33 96 93 89 86 83 80 76 73 70 67 64 61 58 56 53 50 32 96 93 89 86 83 79 76 73 70 66 64 61 58 55 52 49 31 96 93 89 86 82 79 75 72 69 66 63 60 57 54 51 48 30 96 92 89 85 82 78 75 72 68 65 62 59 56 53 50 47 29 96 92 89 85 81 78 74 71 68 64 61 58 55 52 49 46 28 96 92 88 85 81 77 74 70 67 64 60 57 54 51 48 45 27 96 92 88 84 81 77 73 70 66 63 60 56 53 50 47 43 26 96 92 88 84 80 76 73 69 66 62 59 55 52 48 46 42 25 96 92 88 84 80 76 72 68 64 61 58 54 51 47 44 41 24 96 91 87 83 79 75 71 68 64 60 57 53 50 46 43 39 23 96 91 87 83 79 75 71 67 63 59 56 52 48 45 41 38 22 95 91 87 82 78 74 70 66 62 58 54 50 47 43 40 36 21 95 91 86 82 78 73 69 65 61 57 53 49 45 42 38 34 20 95 91 86 81 77 73 68 64 60 56 52 58 44 40 36 32 19 95 90 86 81 76 72 67 63 59 54 50 56 42 38 34 30 18 95 90 85 80 76 71 66 62 58 53 49 44 41 36 32 28 17 95 90 85 80 75 70 65 61 56 51 47 43 39 34 30 26 16 95 89 84 79 74 69 64 59 55 50 46 41 37 32 28 23 15 94 89 84 78 73 68 63 58 53 48 44 39 35 30 26 21 14 94 89 83 78 72 67 62 57 52 46 42 37 32 27 23 18 13 94 88 83 77 71 66 61 55 50 45 40 34 30 25 20 15 12 94 88 82 76 70 65 59 53 47 43 38 32 27 22 17 12 11 94 87 81 75 69 63 58 52 46 40 36 29 25 19 14 8 10 93 87 81 74 68 62 56 50 44 38 33 27 22 16 11 5 9 93 86 80 73 67 60 54 48 42 36 31 24 18 12 7 1 8 93 86 79 72 66 59 52 46 40 33 27 21 15 9 3 7 93 85 78 71 64 57 50 44 37 31 24 18 11 5 6 92 85 7 7 70 63 55 4 8 41 34 28 21 13 3 5 92 84 7 6 69 61 53 46 36 28 24 16 9 4 92 83 7 5 67 59 51 44 3 6 28 20 12 5 3 91 83 7 4 66 57 49 41 33 2 5 1 6 7 1 2 91 82 7 3 6 4 5 5 4 6 38 29 20 12 1 1 90 81 7 2 62 5 3 43 3 4 2 5 1 6 8 0 90 80 71 60 51 40 30 21 12 3

空气温度湿度对照表

空气温度湿度对照表 相对湿度:空气中实际水汽压与同温度饱和水汽压之比值,称为相对湿度.其公式为f=e/E e为当时空气中的水汽压,E为当时干球温度下的饱和水汽压。 用于测定空气温度和湿度的一对并列装置的温度表,由两支规格相同的水银温度表或酒精温度表组成.其中一支球部扎有润湿纱布的称湿球温度表,没有包纱布的称干球温度表。 用干湿球温度表测定湿度时,按公式e=Et'-AP(t-t') 和f=(e/E)x100% 来计算此公式为干湿球温度表实用测湿公式. Et'为湿球温度下的饱和水汽压;A为干湿表测湿系数,随湿球周围的风速而变;P为当时气压;t 为干球温度;t'为湿球温度.用干湿球温度表测定空气湿度产生的误差,是由t',t,P的测量误差或A值引起的。 表1 室内空气质量标准 序号参数类别参数单位标准值备注 1 物理性温度℃ 22~28 夏季空调 16~24 冬季采暖 2 相对湿度% 40~80 夏季空调 30~60 冬季采暖 3 空气流速m/s 0.3 夏季空调 0.2 冬季采暖 4 新风量m3/h?人30a 5 化学性二氧化硫SO2 mg/m3 0.50 1h均值

6 二氧化氮NO2 mg/m3 0.24 1h均值 7 一氧化碳CO mg/m3 10 1h均值 8 二氧化碳CO2 % 0.10 1h均值 9 氨NH3 mg/m3 0.20 1h均值 10 臭氧O3 mg/m3 0.16 1h均值 11 甲醛HCHO mg/m3 0.10 1h均值 12 苯C6H6 mg/m3 0.11 1h均值 13 甲苯C7H8 mg/m3 0.20 1h均值 14 二甲苯C8H10 mg/m3 0.20 1h均值 15 苯并[a]芘B(a)P ng/m3 1.0 1h均值 16 可吸入颗粒物PM10 mg/m3 0.15 1h均值 17 总发挥性有机物TVOC mg/m3 0.60 8h均值 18 生物性菌落总数cfu/m3 2500 依据仪器定b 19 放射性氡222Rn Bq/m3 400 年平均值

露点温度绝对湿度对照表

露点仪原理及露点仪产品选型选择 作者:本站编辑出自: 点击次数:724【字体:小中大】 露点仪原理及露点仪产品选择选型 本文从湿度测量的几种基本方法入手,分析了各自的优缺点和主要有代表性露点仪,重点从性能、价格、适用条件和操作的方便程度上向用户介绍如何选用合适的露点仪 一.引言 随着我国经济的高速发展,为了要得到高质量的产品或设备正常地运行,许多行业诸如石化、电力、电子、航空航天、冶金、纺织等对湿度测量的要求越来越高,因而,湿度测量已逐渐成为一个新兴的技术领域,在86年我国正式成立了湿度与水分专业委员会,并开展了多次学术交流会,湿度的一些计量检定规程也逐步建立。根据有关规程,湿度被定义为气体中的水蒸气含量,常用单位有:克/升,PPM,mmH g,露点及相对湿度等。习惯上以露点-20℃为界把所测气体分为高湿度气体与低湿度气体(即微量水),这里重点介绍低湿度气体的测量。 二.湿度测量方法 根据国标GB11605-89《湿度测量方法》所著,湿度测量共有七种方法,这里不一一赘述。笔者重点对市场上流行的几种微量水测量方法及露点仪选型重新归类并简单介绍如下: 1.重量法: 是一种经典的测量方法。让所测样气流经某一干燥剂,其所含水分被干燥剂吸收,精确称取干燥剂吸收的水分含量,与样气体积之比即为样气的湿度。该方法的优点是精度高,最大允许误差可达0.1%;缺点是具体操作比较困难,尤其是必须得到足够量的吸收水质量(一般不小于0.6克),这对于低湿度气体尤其困难,。因而该方法只适合于测量露点-32℃以上的气体,可以说市场上纯粹利用该方法测 湿度的仪器较少。 由以上分析可知,重量法的关键是怎样精确测量干燥剂吸收的水分含量,因为直接测量比较困难,由此衍生了两种间接测量吸收水含量的方法。 A.电解法:就是将干燥剂吸收的水分经电解池电解成氢气和氧气排出,电解电流的大小与水分含量成正比,通过检测该电流即可测得样气的湿度。该方法弥补了重量法的缺点,测量量程可达-80℃以下,且精度较好,价格便宜;缺点是电解池气路需要在使用前干燥很长时间,且对气体的腐蚀性及清洁性要求较高。 B.振动频率法:就是将重量法中的干燥剂换用一种吸湿性的石英晶体,根据该晶体吸收水分质量不同时振动频率不同的特点,让样气和标准干燥气流经该晶体,因而产生不同的振动频率差△f1和△f2,计算两频率之差即可得到样气的湿度。该方法具有电解法一样的优点,且使用前勿须干燥。 2.冷镜法: 也是一种经典的测量方法。让样气流经露点冷镜室的冷凝镜,通过等压制冷,使得样气达到饱和结露状态(冷凝镜上有液滴析出),测量冷凝镜此时的温度即是样气的露点。该方法的主要优点是精度高,尤其在采用半导体制冷和光电检测技术后,不确定度甚至可达0.1℃;缺点是响应速度较慢,尤其在露点-60℃以下,平衡时间甚至达几个小时,而且此方法对样气的清洁性和腐蚀性要求也较高,否则会影响光电检测效果或产生…伪结露?造成测量误差。该方法的典型厂家代表是及英国的密析尔M ICHELL公司。一般应用在国家级湿度基准,企业基准或实验室分析,作为溯源的或对精度要求较高地方。 3.阻容法: 该方法的典型厂家代表为爱尔兰的PANAMETRICS公司及英国M ICHELL公司的EASIDE W系列,采用陶瓷基底的表面镀金的氧化铝及C2T X微处理器。该传感器的工作原理非常简单,是基于水分的导电性。多孔的吸湿层如同“三明治”一样被夹在陶瓷基底上的两个导

相对湿度对照表

干湿球温度计测量原理: 湿球温度实际反映了湿纱布中水的温度,将干湿球温度计置于相对湿度?<100%的空气中,湿纱布中的水分必然要蒸发,假定此时水的温度与空气的温度相同,则水分蒸发所需汽化热 只能来自水本身,水失去热量,温度下降,即湿球温度计的读数开始下降,从而低于干球温度。当湿球温度计的读数下降到某一数值时,湿球从周围空气或周围物体得到的热量,正好 等于湿球表面水分蒸发所需要的热量,湿球温度计的读数就将在某一位置上稳定下来,这时 的温度即为湿球温度。利用温湿度换算表来查相对湿度。 干湿球温度计测量的影响因素: ?={Psb-A(Tg-Ts)B}/Pgb *100% Psb:湿球温度下的饱和水蒸汽压(Pa) A=0.00001(88+9/v) B:当地大气压力(Pa) Pgb: 干球温度下的饱和水蒸汽压(Pa) 以上公式表明:空气的相对湿度是干球温度、湿球温度、风速、大气压力的函数。空气流 速较小时,系数A变化较大,流速较大时,系数A变化较小,而纺织厂内的空气流速一般较小,空气流速一般在0.2-0.5米之间。因此,纺织厂所用的查表法存在较大的误差。 室内大气压力的变化也会影响相对湿度。当大气压力变化时,按如下公式进行修证。 B/101325*?. 使用注意事项: 1、干湿球湿度计的准确度还取决于干球、湿球两支温度计本身的精度; 2、湿度计必须处于通风状态,为保证读书准确性,避免放置在空气不流通的死角: 3、湿球表面经经常保持清洁、湿润状态。应使用柔软性好、吸湿性好的脱脂纱布,容器 内的水应该用蒸馏水,必须定期加水。干湿球湿度计的误差在±5%RH。相对湿度是温度的函数,温度严重地影响着指定空间内的相对湿度。温度每变化0.1℃。将产生0.5%RH的湿度 变化(误差)。使用场合如果难以做到恒温,则提出过高的测湿精度是不合适的。

温度与相对湿度对照表

湿度对照表 干湿示差 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 干球温度相对湿度(%) 50 97 94 92 89 87 84 82 79 77 74 72 70 68 66 63 61 49 97 94 92 89 86 84 81 79 77 74 72 70 67 65 63 61 48 97 94 92 89 86 84 81 79 76 74 71 69 67 65 62 60 47 97 94 92 89 86 83 81 78 76 73 71 69 66 64 62 60 46 97 94 91 89 86 83 81 78 76 73 71 68 66 64 62 59 45 97 94 91 88 86 83 80 78 75 73 70 68 66 63 61 59 44 97 94 91 88 86 83 80 78 75 72 70 67 65 63 61 58 43 97 94 91 88 85 83 80 77 75 72 70 67 65 62 60 58 42 97 94 91 88 85 82 80 77 74 72 69 67 64 62 59 57 41 97 94 91 88 85 82 79 77 74 71 69 66 64 61 59 56 40 97 94 91 88 85 82 79 76 73 71 68 66 63 61 58 56 39 97 94 91 87 84 82 79 76 73 70 68 65 63 60 58 55 38 97 94 90 87 84 81 78 75 73 70 67 64 62 59 57 54 37 97 93 90 87 84 81 78 75 72 69 67 64 61 59 56 53 36 97 93 90 87 84 81 78 75 72 69 66 63 61 58 55 53 35 97 93 90 87 83 80 77 74 71 68 65 63 60 57 55 52 34 96 93 90 86 83 80 77 74 71 68 65 62 59 56 54 51 33 96 93 89 86 83 80 76 73 70 67 64 61 58 56 53 50 32 96 93 89 86 83 79 76 73 70 66 64 61 58 55 52 49 31 96 93 89 86 82 79 75 72 69 66 63 60 57 54 51 48 30 96 92 89 85 82 78 75 72 68 65 62 59 56 53 50 47 29 96 92 89 85 81 78 74 71 68 64 61 58 55 52 49 46 28 96 92 88 85 81 77 74 70 67 64 60 57 54 51 48 45 27 96 92 88 84 81 77 73 70 66 63 60 56 53 50 47 43 26 96 92 88 84 80 76 73 69 66 62 59 55 52 48 46 42 25 96 92 88 84 80 76 72 68 64 61 58 54 51 47 44 41 24 96 91 87 83 79 75 71 68 64 60 57 53 50 46 43 39 23 96 91 87 83 79 75 71 67 63 59 56 52 48 45 41 38 22 95 91 87 82 78 74 70 66 62 58 54 50 47 43 40 36 21 95 91 86 82 78 73 69 65 61 57 53 49 45 42 38 34 20 95 91 86 81 77 73 68 64 60 56 52 58 44 40 36 32 19 95 90 86 81 76 72 67 63 59 54 50 56 42 38 34 30 18 95 90 85 80 76 71 66 62 58 53 49 44 41 36 32 28 17 95 90 85 80 75 70 65 61 56 51 47 43 39 34 30 26 16 95 89 84 79 74 69 64 59 55 50 46 41 37 32 28 23 15 94 89 84 78 73 68 63 58 53 48 44 39 35 30 26 21 14 94 89 83 78 72 67 62 57 52 46 42 37 32 27 23 18 13 94 88 83 77 71 66 61 55 50 45 40 34 30 25 20 15 12 94 88 82 76 70 65 59 53 47 43 38 32 27 22 17 12 11 94 87 81 75 69 63 58 52 46 40 36 29 25 19 14 8 10 93 87 81 74 68 62 56 50 44 38 33 27 22 16 11 5 9 93 86 80 73 67 60 54 48 42 36 31 24 18 12 7 1 8 93 86 79 72 66 59 52 46 40 33 27 21 15 9 3

相关主题
文本预览
相关文档 最新文档