当前位置:文档之家› 误差理论与数据处理实验报告

误差理论与数据处理实验报告

误差理论与数据处理实验报告
误差理论与数据处理实验报告

《误差理论与数据处理》实验报告实验名称:MATLAB软件基础班级:学号:姓名:

实验时间:成绩:

一、实验目的

熟悉MATLAB软件的用户环境;了解MATLAB软件的一般目的命令;掌握MATLAB数组操作与运算函数;掌握MATLAB软件的基本绘图命令;掌握MATLAB语言的几种循环、条件和开关选择

结构。

通过该实验的学习,使学生能灵活应用MATLAB软件解决一些

简单问题,能借助MATLAB软件进行曲线或图形的绘制。

二、实验原理

三、实验内容和结果

1.程序及流程

1.MATLAB软件的数组操作及运算练习

设有分块矩阵A=[],其中E,R,O,S分别为单位矩阵,随机阵、零阵和对角阵,试通过数值计算验证=

程序:

>> E=eye(3);

>> R=rand(3,2);

>> O=zeros(2,3);

>> S=diag([1 2])

>> A=[E R

O S]

>> a=[E,R+R*S

O,S^2]

>> A^2-a

2.直接使用MATLAB软件进行作图练习

1.在同一个坐标下作出sin(2π*1*t)和cos(2π*10*t)2条曲

线的图形,并要求在图上加粗相应标注

程序:>> x=0:0.001:1;

>> plot(x,sin(2*pi*x),x,cos(2*pi*10*x))

2.用subplot分别在不同的坐标系下作出下列两条曲线,为每

幅图形加上标题。

1.正态分布N(0,1)的概率密度函数曲线;

2.反正弦分布的概率密度函数曲线,取a=1。

程序:x=-5:0.01:5;

r = randn(1,1);

y1=normpdf(x,0,1);

y2=1/(pi*sqrt(1-(r ^2)));

subplot(2,1,1)

plot(x,y1)

subplot(2,1,2)

plot(x,y2)

3画出下列曲面的3维图形:。

程序:[x,y]=meshgrid(0:0.25:4*pi);

z=sin(pi*sqrt(x^2+y^2));

mesh(x,y,z);

axis([0 4*pi 0 4*pi -2.5 1]);

3.用MATLAB语言编写命令M-文件和函数M-文件

编写函数M-文件sq.m:用迭代法求x=的值。求平方根的迭

代公式为迭代的终止条件为前后两次求出的x的差的绝对值小于。

程序:function y=sq(a)

err=10^-5;

Xn=a;

Xn1=0.5*(Xn+a/Xn)

while abs(Xn1-Xn)>= err;

Xn=Xn1;

Xn1=0.5*(Xn+a/Xn)

end

y=Xn1;

2.实验结果(数据或图表)

3.结果分析

四、心得体会

1、通过本次实验,我初步学习使用clc、clear指令,观察

command window、command history和workspace等窗口的变化结果。明白了两者的区别:Clc:是清除workspace,command window、

command history不变化;Clear 清除workspace,command window、command history不变化。

2、本次实验掌握了一些基本的运算指令,像数组和矩阵的各种运算符号,尤其要注意两者的区别。例如A*B是指内维相同矩阵相乘,而A.*B是指A数组与B 数组对应元素的相乘。同时注意矩阵的左乘和右乘。例如A/B是A右除B,指B 矩阵乘以A矩阵的逆;而B/A是A左除B,指A矩阵乘以B矩阵的逆。

3、此外,本实验要掌握一些标准数组生成函数的使用,例如diag(产生对角行矩阵)、eye(产生单位矩阵)等;还有一些数组操作函数,例如det(求方阵的行列式值),rank(求矩阵的秩)。

《误差理论与数据处理》实验报告实验名称:实验数据的统计分析

班级:学号:姓名:

实验时间:成绩:

一、实验目的

通过对试验数据进行统计分析,学习掌握实验数据统

计分析的基本方法,学习利用matlab软件编程长生不同分布规律的随机数据并对之进行统计分析,具体包

括画出统计直方图,求解均值,方差等统计参数。

二、实验原理

三、实验内容和结果

1、程序及其流程

1.利用matlab软件编程产生500个均值为10,

方差为5的正态分布随机数据,求出该组数据

的均值、方差并画出其统计直方图和概率密度

曲线

r=10+5.*randn(1,500);

bar(r)

plot(r)

2.在同一个坐标下画出正态分布密度N

(0,1),N(0,4)和N(10,1)3条曲线的图形,

并比较它们之间的差异。

x = [-15:0.001:20];

y1=normpdf(x,0,1);

y2=normpdf(x,0,4);

y3=normpdf(x,10,1);

plot(x,y1)

hold on

plot(x,y2)

hold on

plot(x,y3)

3.利用matlab软件编程产生500个均匀分布随

机数据,求出该组数据的均值、方差并画出其统计直方图和概率密度曲线。

A = unifrnd (0,1,1000,1)

bar(A)

plot(A)

4.在同一坐标下滑出标准正态分布,自由度分别

为5,10,20的t分布的概率密度曲线,并对之进行比较。

>> bar(A)

>> plot(A)

>> x=-10:0.01:10;

>> y=tpdf(x,5);

>> y1=tpdf(x,10);

>> y2=tpdf(x,20);

>> plot(x,y)

>> hold on

>> plot(x,y1)

>> hold on

>> plot(x,y2)

>> hold on

>> y3=normpdf(x,0,1);

>> plot(x,y3)

5.在同一坐标下画出自由度分别为5,10,20的想

x^2分布的概率密度曲线,并对之进行比较。

>> x=0:0.01:30;

>> y=chi2pdf(x,5);

>> y2=chi2pdf(x,10);

>> y3=chi2pdf(x,20);

>> plot(x,y)

>> hold on

>> plot(x,y2)

>> hold on

>> plot(x,y3)

6.在同一坐标下画出F分布:F(4,5)F(10,20)

和F(50,50)的概率密度曲线,并对之进行

比较。

>> x=0:0.001:8;

>> y=fpdf(x,4,5);

>> y2=fpdf(x,10,20);

>> y3=fpdf(x,50,50);

>> plot(x,y)

>> hold on

>> plot(x,y2)

>> hold on

>> plot(x,y3)

2、实验结果

r = Columns 1 through 1012.6883 19.1694 -1.2942 14.3109 11.5938 3.4616 7.8320 11.7131 27.8920 23.8472 Columns 11 through 203.2506 25.1746 13.6270 9.6847

13.5737 8.9752 9.3793 17.4485 17.0452 17.0860Columns 21 through 30 13.3575

3.9626 13.5862 18.1512 12.4445 15.1735 13.6344 8.4828 11.4694 6.0636 Columns 31 through 401

4.4420 4.2646 4.6556

5.9525 -4.7214 17.1919 11.6260

6.2254 16.8515 1.4424 Columns 41 through 50 9.4888 8.7928 11.5960 11.5643

5.6756 9.8497 9.1756 13.1385 15.4663 15.5464 Columns 51 through 605.6817

大学物理实验报告数据处理及误差分析

篇一:大学物理实验1误差分析 云南大学软件学院实验报告 课程:大学物理实验学期: - 学年第一学期任课教师: 专业: 学号: 姓名: 成绩: 实验1 误差分析 一、实验目的 1. 测量数据的误差分析及其处理。 二、实验内容 1.推导出满足测量要求的表达式,即 0? (?)的表达式; 0= (( * )/ (2*θ)) 2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程, 记入下表中: 3.根据上表计算出字母A 对应的发射初速,注意数据结果的误差表示。 将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[] _ = ("A. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _

+= [ ] 0= _ /10.0 0 4.选择速度B、C、D、重复上述实验。 B C 6.实验小结 (1) 对实验结果进行误差分析。 将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为 -2.84217094304 -13 a =9.8 _ =0 1=0 =[] _ = ("B. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0 a (0,10): 1+= [ ]- 0 1/10.0 1 (2) 举例说明“精密度”、“正确度”“精确度”的概念。 1. 精密度 计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所 反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。 2. 正确度 计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差 正确度高定精密度高说测值系统误差定其随机误差亦。 3. 精确度 计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念 测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。 比如说系统误差就是秤有问题,称一斤的东西少2两。这个一直恒定的存在,谁来都是 这样的。这就是系统的误差。随机的误差就是在使用秤的方法。 篇二:数据处理及误差分析 物理实验课的基本程序

误差理论与数据处理 实验报告

《误差理论与数据处理》实验指导书 姓名 学号 机械工程学院 2016年05月

实验一误差的基本性质与处理 一、实验内容 1.对某一轴径等精度测量8次,得到下表数据,求测量结果。 Matlab程序: l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值 x1=mean(l);%用mean函数求算数平均值 disp(['1.算术平均值为:',num2str(x1)]); v=l-x1;%求解残余误差 disp(['2.残余误差为:',num2str(v)]); a=sum(v);%求残差和 ah=abs(a);%用abs函数求解残差和绝对值 bh=ah-(8/2)*0.001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确 if bh<0 disp('3.经校核算术平均值及计算正确'); else disp('算术平均值及误差计算有误'); end xt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差) if xt<0.1 disp(['4.用残余误差法校核,差值为:',num2str(x1),'较小,故不存在系统误差']); else disp('存在系统误差'); end bz=sqrt((sum(v.^2)/7));%单次测量的标准差 disp(['5.单次测量的标准差',num2str(bz)]);

p=sort(l);%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列 g0=2.03;%查表g(8,0.05)的值 g1=(x1-p(1))/bz; g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断暂不存在粗大误差if g1

误差理论与数据处理实验报告

误差理论与数据处理 实验报告 姓名:小叶9101 学号:小叶9101 班级:小叶9101 指导老师:小叶

目录 实验一误差的基本概念 实验二误差的基本性质与处理 实验三误差的合成与分配 实验四线性参数的最小二乘法处理实验五回归分析 实验心得体会

实验一误差的基本概念 一、实验目的 通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。 二、实验原理 1、误差的基本概念:所谓误差就是测量值与真实值之间的差,可以用下式表示 误差=测得值-真值 1、绝对误差:某量值的测得值和真值之差为绝对误差,通常简称为误差。 绝对误差=测得值-真值 2、相对误差:绝对误差与被测量的真值之比称为相对误差,因测得值与 真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。 相对误差=绝对误差/真值≈绝对误差/测得值 2、精度 反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。 3、有效数字与数据运算 含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。 数字舍入规则如下: ①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。 ②若舍去部分的数值,小于保留部分的末位的半个单位,则末位加1。 ③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。即当末位为偶数时则末位不变,当末位为奇数时则末位加1。 三、实验内容 1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。 2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。 原有数据 3.14159 2.71729 4.51050 3.21551 6.378501 舍入后数据

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

误差理论及数据处理第三章 课后答案

修正值=)(4321l l l l ?+?+?+?- =)1.03.05.07.0(+-+-- =0.4)(m μ 测量误差: l δ=4 3 2 1 lim 2lim 2lim 2lim 2l l l l δδδδ+++± =2222)20.0()20.0()25.0()35.0(+++± =)(51.0m μ± 3-2 为求长方体体积V ,直接测量其各边长为mm a 6.161=, mm 44.5b =,mm c 2.11=,已知测量的系统误差为mm a 2.1=?,mm b 8.0-=?,mm c 5.0=?,测量的极限误差为mm a 8.0±=δ, mm b 5.0±=δ,mm c 5.0±=δ, 试求立方体的体积及其体积的极限误差。 abc V = ),,(c b a f V = 2.115.446.1610??==abc V )(44.805413 mm = 体积V 系统误差V ?为: c ab b ac a bc V ?+?+?=? )(74.2745)(744.274533mm mm ≈= 立方体体积实际大小为:)(70.777953 0mm V V V =?-= 2 22222lim )()()( c b a V c f b f a f δδδδ??+??+??±= 2 22 22 2)()()(c b a ab ac bc δδδ++±= )(11.37293mm ±= 测量体积最后结果表示为:

V V V V lim 0δ+?-=3)11.372970.77795(mm ±= 3—3 长方体的边长分别为α1,α2, α3测量时:①标准差均为σ;②标准差各为σ1、σ2、 σ3 。试求体积的标准差。 解: 长方体的体积计算公式为:321a a a V ??= 体积的标准差应为:2 323 22222121)()()( σσσσa V a V a V V ??+??+??= 现可求出: 321a a a V ?=??;312a a a V ?=??;213 a a a V ?=?? 若:σσσσ===321 则 有 : 23 2221232322222121)()()()()()( a V a V a V a V a V a V V ??+??+??=??+??+??=σσσσσ221231232)()()(a a a a a a ++=σ 若:321σσσ≠≠ 则有:2 32212223121232)()()(σσσσa a a a a a V ++= 3-4 测量某电路的电流mA I 5.22=,电压V U 6.12=,测量的标准差分别为mA I 5.0=σ, V U 1.0=σ,求所耗功率UI P =及其标准差P σ。UI P =5.226.12?=)(5.283mw = ),(I U f P =I U 、 成线性关系 1=∴UI ρ I u I U P I f U f I f U f σσσσσ))((2)()( 2 222????+??+??= I U I U U I I f U f σσσσ+=??+??= 5.06.121.05.22?+?= )(55.8mw = 3-6 已知x 与y 的相关系数1xy ρ=-,试求2 u x ay =+的方差2u σ。 【解】属于函数随机误差合成问题。

机械加工误差分析实验报告

机械加工误差的综合分析 ------统计分析法的应用一、实验目的

运用统计分析法研究一批零件在加工过程中尺寸的变化规律,分析加工误差的性质和产生原因,提出消除或降低加工误差的途径和方法,通过本实验使同学能够掌握综合分析机械加工误差的基本方法。 二、实验用仪器、设备 1.M1040A型无心磨床一台; 2.分辨率为0.001mm的电感测微仪一台; 3.块规一付(尺寸大小根据试件尺寸而定); 4.千分尺一只; 5.试件一批约120件, 6.计算机和数据采集系统一套。 三、实验容 在无心磨床上连续磨削一批试件(120件),按加工顺序在比较仪上测量尺寸,并记录之,然后画尺寸点图和X---R图。并从点图上取尺寸比较稳定(即尽量排除掉变值系统性误差的影响)的一段时间连续加工的零件120件,由此计算出X、σ,并做出尺寸分布图,分析加工过程中产生误差的性质,工序所能达到的加工精度;工艺过程的稳定性和工艺能力;提出消除或降低加工误差的措施。

四、实验步骤 1. 按被磨削工件的基本尺寸选用块规,并用气油擦洗干净后推粘在一起; 2. 用块规调整比较仪,使比较仪的指针指示到零,调整时按大调---微调---水平调整步骤进行(注意大调和水平调整一般都予先调好),调整好后将个锁紧旋钮旋紧,将块规放入盒中。 3. 修正无心磨床的砂轮,注意应事先把金刚头退后离开砂轮。将冷却液喷向砂轮,然后在按操作规程进刀,修整好砂轮后退刀,将冷却液喷头转向工件位置。 4. 检查磨床的挡片,支片位置是否合理(如果调整不好,将会引起较大的形变误差)。对于挡片可通过在机床不运转情况下,用手将工件沿着支片紧贴挡片前后推动,同时调整前后螺钉,直至工件能顺利、光滑推过为宜。 5. 按给定尺寸(Φd-0.02)调整机床,试磨五件工件,使得平均尺寸应保证在公差带中心稍偏下为宜,然后用贯穿法连续磨削一批零件,同时用比较仪,按磨削顺序测量零件尺寸并记录之。 6. 清理机床,收拾所用量具、工具等。 7. 整理实验数据,打印做实验报告。 五、实验结果及数据处理 该实验选用M1040A型无心磨床和块规一付 (1)实验原始数据

误差理论与大数据处理实验报告材料

标准文档 误差理论与数据处理 实验报告 姓名:黄大洲 学号:3111002350 班级:11级计测1班 指导老师:陈益民

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有:1 n i i v ==∑0 1)残余误差代数和应符合:

当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1 n i i v =∑为零; 当 1 n i i l =∑>nx ,求得的x 为凑整的非准确数时,1 n i i v =∑为正;其大小为求x 时 的余数。 当 1 n i i l =∑

成都理工误差实验报告数据处理

实验报告 实验工作者:杜华学号:201206020108 实验日期:2014年3月31号实验名称:实验一:生产过程监控图的编制 实验目的:本实验通过对某化工厂正常生产过程中120次Hgcl2浓度的测定数据。 编制对生产过程中Hgcl2浓度的监控图,以保证最终产品质量。通 过本实验,让同学们一起理解误差的理论与意义,学会编制生产过 程监控图的方法 实验原理:一般情况下,很多工程测量与生产过程的参数值都是服从正态分布的随机变量,例如利用正常电子仪器在相同条件下对同一物理量重复 测量所获得的数据;化工生产过程中正常的浓度、温度值等等。因 此,我们可以依据服从正态分布的随机变量所具有特征,来实现对 这些测量值、或生产过程中的参数值“是否正常”的判断。这就是我 们建立监控图的基本思想。从这个意义上说,已经建立的监控图实际是一把 尺子,我们可以用它来度量每一个测量数据或生产参数是否正常。 根据正态分布理论,正常的测量值或生产过程中的参数值落入平均 值加减一倍,两倍,三倍均方差区间的理论概率值应该分别等于 68.26%,95.44%,99.73%;当我们只进行有限次测量时,获取数据 如果是正常的,超出平均值加减三倍均方差的区间可能性几乎是0。 因此,一旦检测数据超过平均值加减三倍均方差区间,我们就可以 判定,其为不正常数据,预示着生产过程出了问题,需进行调整从 而实现监控目的 实验设备:按有excel软件的电脑 实验步骤: 1.依据5.1.1所测量数据,统计平均值和标准差;

2.按平均值加减一倍,两倍,三倍标准差编制质量监控图; 3.将5.1.2监测数据标绘在所编监控图上: 4.分析6.1-6.11时间段中生产过程是否正常。 按三倍标准差理论,上午有五个数据不正常,它们分别是0.64,0.65,0.94,0.98 ,0.99

一元线性回归分析实验报告

一元线性回归在公司加班制度中的应用 院(系): 专业班级: 学号姓名: 指导老师: 成绩: 完成时间:

一元线性回归在公司加班制度中的应用 一、实验目的 掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境 SPSS21.0 windows10.0 三、实验题目 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经10周时间,收集了每周加班数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示 y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0 2. x 与y 之间大致呈线性关系? 3. 用最小二乘法估计求出回归方程。 4. 求出回归标准误差σ∧ 。 5. 给出0 β∧与1 β∧ 的置信度95%的区间估计。 6. 计算x 与y 的决定系数。 7. 对回归方程作方差分析。 8. 作回归系数1 β∧ 的显著性检验。 9. 作回归系数的显著性检验。 10.对回归方程做残差图并作相应的分析。

11.该公司预测下一周签发新保单01000 x=张,需要的加班时间是多少? 12.给出0y的置信度为95%的精确预测区间。 13.给出 () E y的置信度为95%的区间估计。 四、实验过程及分析 1.画散点图 如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。 2.最小二乘估计求回归方程

用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下: 0.1180.004y x =+ 3.求回归标准误差σ∧ 由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差: 2= 2SSE n σ∧-,2σ∧=0.48。 4.给出回归系数的置信度为95%的置信区间估计。 由回归系数显著性检验表可以看出,当置信度为95%时:

误差理论实验报告3

《误差理论与数据处理》实验报告实验名称:动态测试数据处理初步一、实验目的 动态数据是动态测试研究的重要容。通过本实验要求学生掌握有关动态数据分析。评价的基本方法,为后续课程做好准备。 二、实验原理 三、实验容和结果 1.程序及流程 1.认识确定性信号及其傅立叶频谱之间的关系 1.用matlab编程画出周期方波信号及其傅立叶频谱,并说明其 傅立叶频谱的特点。 >> fs=30; >> T=1/fs; >> t=0:T:2*pi; >> A=2;P=4; >> y=A*square(P*t); >> subplot(2,1,1),plot(t,y) >> title('方波信号') >> Fy=abs(fft(y,512)); >> f2=fs*(0:256)/512; >> subplot(2,1,2),plot(f2,Fy(1:257)) >> title('频谱图'); >> set(gcf,'unit','normalized','position',[0 0 1 1]); >> set(gca,'xtick',0:0.6:8); >> axis([0,8,0 300]);

2.用matlab边城画出矩形窗信号的宽度分别为T=1和T=5两种 情况下的时域波形图及其频谱,并分析时域与频域的变化关系。 wlp = 0.35*pi; whp = 0.65*pi; wc = [wlp/pi,whp/pi]; window1= boxcar(1); window2=boxcar(5); [h1,w]=freqz(window1,1); [h2,w]=freqz(window2,5); subplot(411); stem(window1); axis([0 60 0 1.2]); title('矩形窗函数(T=1)'); subplot(413); stem(window2); axis([0 60 0 1.2]); grid; xlabel('n'); title('矩形窗函数(T=5)'); subplot(412); plot(w/pi,20*log(abs(h1)/abs(h1(1)))); xlabel('w/pi'); ylabel('幅度(dB)'); title('矩形窗函数的频谱(T=1)'); subplot(414); plot(w/pi,20*log(abs(h2)/abs(h2(5)))); axis([0 1 -350 0]); grid; xlabel('w/pi'); ylabel('幅度(dB)'); title('矩形窗函数的频谱(T=5)'); 2.认识平稳随机过程自相关函数及其功率谱之间的关系 已知某随机过程x(t)的相关函数为:Rx(t)=e?α|τ|cosω0τ,画出下列两种情况下的自相关函数和功率谱函数。 1.取α=1,ω0=2π?10; 2.取α=5,ω0=2π?10; 程序:>> t=0:0.01:1;

安徽工业大学误差实验报告

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)正态分布 设被测量的真值为0L ,一系列测量值为i L ,则测量列中的随机误差i δ为 i δ=i L -0L (2-1) 式中i=1,2,…..n. 正态分布的分布密度()()2 22f δσδ -= (2-2) 正态分布的分布函数()()22 2F e d δδσδδ --∞=(2-3) 式中σ-标准差(或均方根误差); 它的数学期望为 ()0E f d δδδ+∞ -∞==? (2-4) 它的方差为 ()22f d σδδδ+∞ -∞=? (2-5) (2)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义 在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。

i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 11n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有 1n i i v ==∑0 1)残余误差代数和应符合: 当1 n i i l =∑=nx ,求得的x 为非凑整的准确数时,1n i i v =∑为零; 当1 n i i l =∑>nx ,求得的x 为凑整的非准确数时,1n i i v =∑为正;其大小为求x 时的余数。 当1n i i l =∑

误差分析及实验心得

误差分析及实验心得 误差分析 1 系统误差:使用台秤、量筒、量取药品时产生误差; 2 随机误差:反应未进行完全,有副反应发生;结晶、纯化及过滤时,有部分产品损失。 1、实验感想: 在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。 在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获: (1)、培养了严谨求实的精神和顽强的毅力。通过此次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。(2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。 九、实验讨论及心得体会 本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为理论上应该是约1.5g。所得产量与理论值存在一定偏差通过分析得到以下可能原因: a、减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、结晶时没有结晶完全。 通过以上分析我觉得有些操作导致的损失可以避免所以我在以后的实验中保持严谨的态度。我通过本次实验我学到了乙酸酐和水杨酸在酸催化下制备乙酰水杨酸的操作方法初步了解有机合成中乙酰化反应原理巩固和进一步熟悉了减压过滤、重结晶基本操作的原理和方法了解到乙酰水杨酸中杂质的来源及其鉴别方法通过误差分析可能原因进一步更深理解实验的原理和操作养成严谨的态度。

误差测量实验报告

误差测量与处理课程实验 报告 学生姓名:学号: 学院: 专业年级: 指导教师: 年月

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法。 二、实验原理 (1)正态分布 设被测量的真值为0L ,一系列测量值为i L ,则测量列中的随机误差i δ为 i δ=i L -0L (2-1) 式中i=1,2,…..n. 正态分布的分布密度 ()() 2 2 21 f e δ σδσπ -= (2-2) 正态分布的分布函数 ()()2 2 21 F e d δ δ σδδσπ --∞ =? (2-3) 式中σ-标准差(或均方根误差); 它的数学期望为 ()0 E f d δδδ+∞ -∞ ==? (2-4) 它的方差为 ()22f d σδδδ +∞ -∞ =? (2-5) (2)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义 在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。

设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++= =∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有 1 n i i v ==∑0 1)残余误差代数和应符合: 当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1n i i v =∑为零; 当 1n i i l =∑>nx ,求得的x 为凑整的非准确数时,1n i i v =∑为正;其大小为求x 时的余数。 当 1n i i l =∑

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

《误差理论与数据处理(第6版)费业泰》课后习题答案

《误差理论与数据处理》练习题 第一章 绪论 1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少? 【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。故二等标准活塞压力计测量值的 绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。 相对误差=0.3 100%0.3%100.5-?≈- 1-9 使用凯特摆时,g 由公式g=4π2 (h 1 +h 2 )/T 2 给定。今测出长度(h 1 +h 2 )为(1.04230 ±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。试求g 及其最大相对误差。如果(h 1 +h 2 )测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2 ,T 的测量必须精确到多少? 【解】测得(h 1 +h 2 )的平均值为1.04230(m ),T 的平均值为2.0480(s )。 由2 1224()g h h T π=+,得: 22 2 4 1.042309.81053(/)2.0480 g m s π=?= 当12()h h +有微小变化12()h h ?+、T 有T ?变化时,令12h h h =+ g 的变化量为: 22 12121223122 1212248()()()()42[()()]g g g h h T h h h h T h h T T T T h h h h T T πππ???=?++?=?+-+??+??= ?+-+ 22 23224842()g g g h T h h T h T T T T h h T T πππ???=?+?=?-????=?- g 的最大相对误差为:

误差理论及数据处理答案

《误差理论与数据处理》 第一章 绪论 1-1.研究误差的意义是什么?简述误差理论的主要容。 答: 研究误差的意义为: (1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差; (2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据; (3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。 误差理论的主要容:误差定义、误差来源及误差分类等。 1-2.试述测量误差的定义及分类,不同种类误差的特点是什么? 答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。 系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化); 随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。 1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。 答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量; 绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。+多少表明大了多少,-多少表示小了多少。 (2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定 1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于: 相对误差等于: 1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm , 试问该被测件的真实长度为多少? 解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm , 测件的真实长度L0=L -△L =50-0.001=49.999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少? 解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。 故二等标准活塞压力计测量值的误差=测得值-实际值, 即: 100.2-100.5=-0.3( Pa ) 21802000180''=-'''o o %000031.010*********.00648002066018021802≈=' '' '''??''=''=o

精密形位误差的测试与数据处理实验报告讲解

实验一用合像水平仪测量1500?500平板的平面度 一、实验目的 1. 了解合像水平仪的结构和工作原理。 2. 加深对平面度定义的理解。 3. 掌握用水平仪测量平板平面度方法及测量数据处理。 4.掌握平面度的判定标准及数据处理方法。 二、实验内容 用合像水平仪测量平板平面度误差。 三、实验仪器及器材 合像水平仪,标准平面平板、桥板。 四、测量原理 1. 合像水平仪的使用原理 1-底板;2-杠杆;3-支承;4-壳体;5-支承架;6-放大镜; 7-棱镜;8-水准器;9-微分筒;10-测微螺杆;11-放大镜;12-刻线尺 图1-1 合像水平仪 合像水平仪是一种精密测角仪器,用自然水平面为测量基准。合像水平仪的结构见图1-1,它的水准器8是一个密封的玻璃管,管内注入精镏乙醚,并留有一定量的空气,以形成气泡,管的内壁在长度方向具有一定的曲率半径。气泡在管中停住时,气泡的位

置必然垂直于重力方向。就是说,当水平仪倾斜时,气泡本身并不倾斜,而始终保持水平位置。利用这个原理,将水平仪放在桥板上使用,便能测出实际被测直线上相距一个桥板跨距的两点间高度差,如图1-2所示。 I-桥板;Ⅱ-水平仪;Ⅲ-实际被测直线;L-桥板跨距;0,1,2,…,n-测点序号 图1-2用水平仪测量直线度误差时的示意图 在水准器玻璃管管长的中部,从气泡的边缘开始向两端对称地按弧度值(mm/m)刻有若干条等距刻线。水平仪的分度值i用[角]秒和mm/m表示。合像水平仪的分度值为2",该角度相当于在1m长度上,对边高0.01mm的角度,这时分度值也用0.01mm/m 或0.01/1000表示。 测量时,合像水平仪水准器8中的气泡两端经棱镜7反射的两半像从放大镜6观察。当桥板两端相对于自然水平面无高度差时,水准器8处于水平位置。则气泡在水准器8的中央,位于棱镜7两边的对称位置上,因此从放大镜6看到的两半像相合(如图1—3(a)所示)。如果桥板两端相对于自然水平面有高度差,则水平仪倾斜一个角度α,因此,气泡不在水准器8的中央,从放大镜6看到的两半像是错开的(如图1—3(b)所示),产生偏移量△。 (a)相合 (b)错开 图1-3 气泡的两半像 为了确定气泡偏移量A的数值,转动测微螺杆10使水准器8倾斜一个角度α,以使气泡返回到棱镜7两边的对称位置上。从放大镜中观察到气泡的两半像恢复成图1-3(a)所示相合的两半像。偏移量A先从放大镜11由刻线尺12读数,它反映测微螺杆

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

相关主题
文本预览
相关文档 最新文档