当前位置:文档之家› 吉林大学离散数学课后习题答案

吉林大学离散数学课后习题答案

吉林大学离散数学课后习题答案
吉林大学离散数学课后习题答案

第二章命题逻辑

§2.2 主要解题方法

2.2.1 证明命题公式恒真或恒假

主要有如下方法:

方法一.真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每

一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。

真值表法比较烦琐,但只要认真仔细,不会出错。

例2.2.1 说明 G= (P Q R)(P Q)(P R)是恒真、恒假还是可满足。

解:该公式的真值表如下:

P Q R P Q

R P

Q

(P Q

R)

(P Q)

P R G

0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 1 1

1 0 1 1 0 0 1 1

1 1 0 0 1 0 0 1

1 1 1 1 1 1 1 1

表2.2.1

由于表2.2.1中对应公式G所在列的每一取值全为1,故

G恒真。

方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。

例2.2.2 说明 G= ((P R) R) ( (Q P) P)是恒真、恒假还是可满足。

解:由(P R) R=P R R=1,以及

(Q P) P= (Q P) P = Q P

P=0

知,((P R) R) ( (Q P) P)=0,故G恒假。

方法三.设命题公式G含n个原子,若求得G的主析取式包含所有2n个极小项,则G是恒真的;若求得G的主合取式包含所有2n个极大项,则G是恒假的。

方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果

全为1,则公式G恒真,若最终结果全为0,则公式G恒假,若最终结果有1,有0,则是可满足的。例子参见书中例2.4.3。

方法五. 注意到公式G蕴涵公式H的充要条件是:公式G H是恒真的;公式G,H等价的充要条件是:公式G H是恒真的,因此,如果待考查公式是G H型的,可将证明G H 是恒真的转化为证明G蕴涵H;如果待考查公式是G H型的,可将证明G H是恒真的转化为证明G和H彼此相蕴涵。

例2.2.3 证明 G= (P R) ( (Q R) (( P Q) R))恒真。

证明:要证明(P R) ( (Q R) (( P Q) R))恒真,只需证明(P R) ( (Q R) (( P Q) R))。我们使用形式演绎法。

(1)P R 规则1

(2)Q R 附加前提

(3)P R 规则2,根据(1)(4)Q R 规则2,根据(2)(5)(P R)(Q R)规则2,根据(3)、(4)

(6)(P Q) R 规则2,根据(5)(7)(P Q) R 规则2,根据(6)(8)(P Q) R 规则2,根据(7)

(9)(Q R) (( P Q) R) 规则3,根据(2)、(8)

2.2.2 公式蕴涵的证明方法

主要有如下方法:给出两个公式A,B,证明A蕴涵B,我们有如下几种方法:

方法一.真值表法。将公式A和公式B同列在一真值表中,扫描公式A所对应的列,验证该列真值为1的每一项,它所在行上相应公式B所对应列上的每一项必为1(真),则公式A蕴涵B。

例2.2.4 设A= (P Q R)(P Q),B=(P R),证明:A B。

证明:

P Q R P Q

R P

Q

A B

0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 1 0 0 1

1 0 1 1 0 0 1

1 1 0 0 1 0 0

1 1 1 1 1 1 1

表2.2.2

由表2.2.2可以看出,使A为真的解释均使B亦为真,因此,A B。

方法二.证明A B是恒真公式。

由例2.2.1知,(P Q R)(P Q)(P R)恒真,因此,立即可得到例 2.2.4中的结论:(P Q R)(P Q) (P R),即A B。

例2.2.5 设A、B和C为命题公式,且A B。请分别阐述(肯定或否定)下列关系式的正确性。

(1)(A C) (B C);

(2)(A C) ( B C)。

解:由A B知,A B是恒真公式,故A=1时,B不可能为0。

真值表如下:

A B C A B (A C) (A C)

(B C) ( B C)

0 0 0 1 1 1

0 0 1 1 1 1

0 1 0 1 1 0

0 1 1 1 1 1

1 1 0 1 1 1

1 1 1 1 1 1

表2.2.3

从真值表可以看出,(A C) (B C)是恒真公式,所以,(A C) ( B C) (A C) (B C)正确;(A C) ( B C)不是恒真公式,所以,(A C) ( B C)不正确。

例2.2.6 设A=(R P) Q,B= P Q,证明A蕴涵B。

证明:我们来证明A B恒真。

((R P) Q) ( P Q)= (( R P) Q) (P Q)

=((R P) Q)

(P Q)

=(R Q) ( P Q) ( P Q)

=1

方法三.利用一些基本等价式及蕴涵式进行推导。

对于例2.2.6,由基本等价式可得:

A=(R P) Q

= ( R P) Q

= (R P) Q

=( R Q) ( P Q)

=( R Q) ( P Q)

由教材中基本蕴涵式2. P Q Q可知,( R Q) ( P Q) (P Q),即A蕴涵B。

方法四.任取解释I,若I满足A,往证I满足B。

例2.2.7 设A= P Q,B=(R Q) ((P R) Q),证明A蕴涵B。

证明:任取解释I,若I满足A,则有如下两种情况:(1)在解释I下,P为假,这时,B等价于(R Q) (R Q),因此,I亦满足B。

(2)在解释I下,P为真,Q为真,所以,P R Q 为真,故B为真,即,I满足B。

综上,I满足B,因此,A蕴涵B。

方法五.反证法,设结论假,往证前提假。

对于例2.2.6,证明(R P) Q蕴涵 P Q,若使用方法三,是很烦琐的,而使用方法四,就很简单。假设存在解释I使P Q为假,则只有一种情形,P在I下为真,且Q 在I下为假,这时R P在I下为真,故I弄假(R P) Q。因此,(R P) Q蕴涵 P Q。

方法六.分别将公式A和公式B转化为它们各自的主析取式或主合取式。若公式A的主析取式所包含的所有极小项也包含在公式B的主析取式中;或者,公式B的主合取式中所包含的极大项均包含在公式A的主合取式中,则公式A蕴涵公式B。

使用这种方法需要注意,当公式A和公式B中包含的原子不完全相同时,在求两公式的极小项或极大项时,要考虑该两公式包含命题原子的并集中的所有原子。

在例2.2.6中,A和B的主析取式分别为:

A= ( P Q R) ( P Q R) ( P Q R) (P Q R) ( P Q R),B= ( P Q R) ( P Q R) (

P Q R)

( P Q R) (P Q R) ( P Q R),可见,A B。

A和B的主合取式分别为:

A=(P Q R) ( P Q R) ( P Q R) , B=( P Q R) ( P Q R) 可见,A B。

另外若给出前提集合S={G1,…,G k},公式G,证明S G 有如下两种方法:

1. G1… G k G

2. 形式演绎法:根据一些基本等价式和基本蕴涵式,从S出发,演绎出G。

教材中已经给出了这方面的例子,在此不再赘述。

2.2.3 求主合取式和主析取式

1. 极小项与极大项的性质

以3个原子为例,则对应极小项和极大项的表为:

P Q R 极小项极大项

0 0 0 m0= P

M0=P Q R

Q R

0 0 1 m1= P Q R M1=P Q R

0 1 0 m 2= P Q R M 2=P Q R 0 1 1 m 3= P

Q R M 3=P Q R 1 0 0 m 4= P

Q R M 4=P Q R 1 0 1 m 5=P Q R M 5=P Q R 1 1 0 m 6= P Q R M 6=P

Q R 1

1

1

m 7= P

Q

R

M 7=

P Q

R

表2.2.4

由表2.2.4可知,对n 个命题原子P 1,…,P n ,极小项有如下性质:

(1)n 个命题原子P 1,…,P n 有n 2个不同的解释,每个解释对应P 1,…,P n 的一个极小项。

(2)对P 1,…,P n 的任意一个极小项m ,有且只有一个解释使m 取1值,若使极小项取1的解释对应的二进制数为i ,则m 记为m i ,于是关于P 1,…,P n 的全部极小项为m 0,m 1,…,

12-n m 。

(3)任意两个不同的极小项的合取式恒假:m i m j =0,i≠j。

(4)所有极小项的析取式恒真:i i m n ∨-=1

20=1。

极大项有如下性质:

(1)n 个命题原子P 1,…,P n 有n 2个不同的解释,每个解

释对应P 1,…,P n 的一个极大项。

(2)对P 1,…,P n 的任意一个极大项M ,有且只有一个解释使M 取0值,若使极大项取0的解释对应的二进制数为i ,则M 记为M i ,于是关于P 1,…,P n 的全部极大项为M 0,M 1,…,

12-n M 。

(3)任意两个不同的极大项的析取式恒真:M i M j =1,

i≠j。

(4)所有极大项的合取式恒假:i i M n ∧-=1

20=0。

2. 主合取式与主析取式之间的关系

由极小项和极大项的定义可知,二者有如下关系:

m i =

M i ,M i =

m i

由此可知,若P

Q

R 为一公式G 的主合取式,则

G =

G =

M 0

= (M 1 M 2… M 6) = M 1

M 2

…M 6

= m 1 m 2

… m 6

为G 的主析取式。 若(

P

Q )

P

Q )

( P Q )为一公式

H 的主析取式,则

H=

H =((

P

Q )

P

Q )

( P

Q ))

=

((m 0 m 1 m 3))

= (m 2)

=M 2

= P Q

为H 的主合取式。

一般地,若公式A 中含n 个命题原子,且A 的主析取式中含有k 个极小项:k

i i m m ,...,1

,则

A 的主析取式中必含有其余

的n 2-k 个极小项,不妨设为:k

n j

j m m -21

,...,,即

A=k

n

j j

m m -∨∨21

...。

因此,

A=

A

= (k

n

j j

m m -∨∨21

...)

=k

n

j j m m -?∧∧?21

...

=k

n

j j

M M -∧∧21

...。

由此可知,从一公式A 的主析取式求其主合取式的步骤如下: (1)求出A 的主析取式中没有包含的所有极小项。 (2)求出与(1)中极小项下标相同的极大项。

(3)将(2)求出的所有极大项合取起来,即得A 的主合取式。

类似地,从一公式A的主合取式求其主析取式的步骤为:(1)求出A的主合取式中没有包含的所有极大项。

(2)求出与(1)中极大项下标相同的极小项。

(3)将(2)求出的所有极小项析取起来,即得A的主析取式。

3. 求主合取式和主析取式的方法

方法一.真值表法。主析取式恰好是使得公式为真的解释所对应的极小项的析取组成,主合取式恰好是使得公式为假的解释所对应的极大项的合取组成。

方法二. 公式推导法。设命题公式G中所有不同原子为P1,…,P n,则G的主析取式的求法如下:

(a) 将公式G化为析取式。

(b) 删去析取式中所有恒假的短语。

(c) 用等幂律将短语中重复出现的同一文字化简为一次出现,如,P P=P。

(d) 对于所有不是关于P1,…,P n的极小项的短语使用同一律,补进短语中未出现的所有命题原子,并使用分配律展开,即,如果短语G i’不是关于P1,…,P n的极小项,则G i’中必然缺少原子,不妨设为P j1,…,P jk,于是

G i ’= G i ’(P j1 P j1)…( P jk

P jk )

=k i i

m m 2

1

...∨∨

这样,就将非极小项G i ’化成了一些极小项之析取。将相同的短语的多次出现化为一次出现,就得到了给定公式的主析取式。

主合取式的求法类似,留给读者作为练习。

由上面讨论可知,只要求出一种式,可立即得到另外一种式。

例2.2.8 求公式G= P→(Q→R)的主析取式与主合取式。 解:(1)使用真值表法。见表2.2.5。 P Q R P→(Q→R)

0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1

1

1

1

表2.2.5

根据真值表中使得公式为真的解释,所对应的极小项的析取即为其主析取式:

G= ( P Q R) ( P Q R) (

P Q R)

( P Q R) (P Q R) (P Q R)

(P Q R)

= m0 m1 m2 m3 m4 m5 m7根据真值表中使得公式为假的解释,所对应的极大项的合取即为其主合取式:

G= P Q R= M6

(2)公式推导法

G= P→(Q→R)

= P Q R

=( P(Q Q)(R R))

( Q(P P)(R R))

(R(P P)(Q Q))

= ( P Q R) ( P Q R) ( P Q R)

( P Q R) (P Q R) (P Q R)

= m0 m1 m2 m3 m4 m5 m7

G= P→(Q→R)

= P Q R

= M6

4. 主合取式与主析取式的应用

(1)由2.2.1可知,利用主合取式与主析取式可求解判定问题。

(2)证明等价式成立。由于任意公式的主式是唯一的,所以可以分别求出两个给定的公式的主式,若二者主式相同,则给定的两公式是等价的,否则,给定的两公式不等价。

例2.2.9 判断P→(Q→R)与(P Q)→ R是否等价。

证明:我们利用求主合取式的方法来判断。

由例2.2.8知,P→(Q→R)的主合取式为:M6。下面求(P Q)→ R的主合取式。

(P Q)→ R = (P Q) R =( P Q)R

=( P R)(Q R)

=( P(Q Q)R)((P P)Q R)

=(P Q R)(

P Q R)(P Q R)

= M2 M4 M6

二者的主合取式不相同,因此,这两个公式不等价。

2.2.4 联结词的转化和全功能集

关于联结词的转化和全功能集方面一般有如下题型:

(1)要求只用几个联结词表示某个命题公式,见例2.2.10。

(2)给出一个新的联结词的定义,要求证明其是全功能集,并用其表示某个命题公式。这种题目的做法如下:由于不难证明出{,},{,},{,→},{},{}都是全功能联结词集合,因此,若要证明新定义的联结词是全功能集,只需证明上面某个全功能集合(比如{,})中的每个联结词(如,和)都可以用新联结词表示。若想用其表示某个命题公式,可以先将基本联结词(,,)用给定的新联结词表示,然后按要求把原命题公式转化成用新联结词表示的形式。见例2.2.11。

(3)证明一个联结词集合不是全功能集。一般用归纳法,证明在有限步,用这个联结词结合不可能表示所有的命题。见例2.2.12。

应该说明的是,寻求最少联结词的全功能联结词集合,主要不是个理论问题,而是为了满足工程实践的需要。但是,一般情况下,为了不至于因为联结词的减少而使得公式的形式变得复杂,我们仍常采用“,,,→,”这5个联结词。

例2.2.10将公式(P→(Q R))(P Q)用仅含联结词和的公式等价表示。

解:(P→(Q R))(P Q)=(P(Q R))(P Q)

=(P(P Q))((Q R)(P Q))

=(P Q)(Q (P Q))(R(P Q))

=(P Q)

(P Q)((P Q)R)

=P Q

=(P Q)

例2.2.11定义三元联结词如表2.2.6。

e1e2e3f(e1,e2,e3)

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

表2.2.6 三元联结词f(e1,e2,e3)的真值表

(1)试证明{ f}是完备的,即,联结词集合{,}或{,}可由该联结词表示。

(2)用该联结词表示公式:(P→R)Q。

(1)证明:因为

P=f(P,P,P), P Q=f(P, P, Q),所以联结词集合{,}可由该三元联结词f表示。

而联结词集合{,}是完备的,因此,{ f}是完备的。

(2)解:因为

P Q=f(P, P, Q),

所以

P→ Q=P Q=f(P, P, Q).

离散数学作业答案

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月19日前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.命题公式()P Q P →∨的真值是 1 . 2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为 (PQ)R . 3.含有三个命题变项P ,Q ,R 的命题公式PQ 的主析取范式是 (PQR) (PQR) . 4.设P(x):x 是人,Q(x):x 去上课,则命题“有人去上课.” 可符号化为 (x)(P(x) →Q(x)) . 5.设个体域D ={a, b},那么谓词公式)()(y yB x xA ?∨?消去量词后的等值式为 (A(a) A(b)) (B(a) B(b)) . 6.设个体域D ={1, 2, 3},A(x)为“x 大于3”,则谓词公式(x)A(x) 的真值为 . 7.谓词命题公式(x)((A(x)B(x)) C(y))中的自由变元为 . 8.谓词命题公式(x)(P(x) Q(x) R(x ,y))中的约束变元为 X . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 1.解:设P :今天是天晴; 则 P . 2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式. 解:设P :小王去旅游,Q :小李去旅游, 则 PQ . 3.请将语句“如果明天天下雪,那么我就去滑雪”翻译成命题公式. 解:设P:明天天下雪 。 Q:我去滑雪 则 P Q . 4.请将语句“他去旅游,仅当他有时间.”翻译成命题公式. 7.解:设 P :他去旅游,Q :他有时间, 则 P Q . 5.请将语句 “有人不去工作”翻译成谓词公式. 11.解:设P(x):x 是人,Q(x):x 去工作,

山东大学离散数学题库及答案

《离散数学》题库答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q →P (2)?Q=>P →Q (3)P=>P →Q (4)?P ∧(P ∨Q)=>?P 答:(1),(4) 2、下列公式中哪些就是永真式?( ) (1)(┐P ∧Q)→(Q →?R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q) 答:(2),(3),(4) 3、设有下列公式,请问哪几个就是永真蕴涵式?( ) (1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q (4)P ∧(P →Q)=>Q (5) ?(P →Q)=>P (6) ?P ∧(P ∨Q)=>?P 答:(2),(3),(4),(5),(6) 4、公式?x((A(x)→B(y,x))∧ ?z C(y,z))→D(x)中,自由变元就是( ),约束变元就是( )。 答:x,y, x,z 5、判断下列语句就是不就是命题。若就是,给出命题的真值。( ) (1) 北京就是中华人民共与国的首都。 (2) 陕西师大就是一座工厂。 (3) 您喜欢唱歌不? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1) 就是,T (2) 就是,F (3) 不就是 (4) 就是,T (5) 不就是 (6) 不就是 6、命题“存在一些人就是大学生”的否定就是( ),而命题“所有的人都就是要死的”的否定就是( )。 答:所有人都不就是大学生,有些人不会死 7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校 答:(1) P Q →? (2) Q P ?→ (3) Q P ?? (4)Q P →? 8、设个体域为整数集,则下列公式的意义就是( )。 (1) ?x ?y(x+y=0) (2) ?y ?x(x+y=0) 答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=0 9、设全体域D 就是正整数集合,确定下列命题的真值: (1) ?x ?y (xy=y) ( ) (2) ?x ?y(x+y=y) ( ) (3) ?x ?y(x+y=x) ( ) (4) ?x ?y(y=2x) ( ) 答:(1) F (2) F (3)F (4)T 10、设谓词P(x):x 就是奇数,Q(x):x 就是偶数,谓词公式 ?x(P(x)∨Q(x))在哪个个体域中为真?( ) (1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立 答:(1) 11、命题“2就是偶数或-3就是负数”的否定就是( )。 答:2不就是偶数且-3不就是负数。 12、永真式的否定就是( ) (1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能

离散数学题库及答案

数理逻辑部分 选择、填空及判断 ?下列语句不就是命题的( A )。 (A) 您打算考硕士研究生不? (B) 太阳系以外的星球上有生物。 (C) 离散数学就是计算机系的一门必修课。 (D) 雪就是黑色的。 ?命题公式P→(P∨?P)的类型就是( A ) (A) 永真式(B) 矛盾式 (C) 非永真式的可满足式(D) 析取范式 ?A就是重言式,那么A的否定式就是( A ) A、矛盾式 B、重言式 C、可满足式 D、不能确定 ?以下命题公式中,为永假式的就是( C ) A、p→(p∨q∨r) B、(p→┐p)→┐p C、┐(q→q)∧p D、┐(q∨┐p)→(p∧┐p) ?命题公式P→Q的成假赋值就是( D ) A、 00,11 B、 00,01,11 C、10,11 D、 10 ?谓词公式) x xP∧ ?中,变元x就是 ( B ) R , ( x ) (y A、自由变元 B、既就是自由变元也就是约束变元 C、约束变元 D、既不就是自由变元也不就是约束变元 ?命题公式P→(Q∨?Q)的类型就是( A )。 (A) 永真式 (B) 矛盾式 (C) 非永真式的可满足式 (D) 析取范式 ?设B不含变元x,) x x→ ?等值于( A ) A ) ( (B A、B (D、B x xA→ x ?) ( ( ?C、B x∧ A ?) (B、) ?) xA→ x ) ( A x (B x∨ ?下列语句中就是真命题的就是( D )。 A.您就是杰克不? B.凡石头都可练成金。 C.如果2+2=4,那么雪就是黑的。 D.如果1+2=4,那么雪就是黑的。 ?从集合分类的角度瞧,命题公式可分为( B ) A、永真式、矛盾式 B、永真式、可满足式、矛盾式 C、可满足式、矛盾式 D、永真式、可满足式 ?命题公式﹁p∨﹁q等价于( D )。 A、﹁p∨q B、﹁(p∨q) C、﹁p∧q D、 p→﹁q ?一个公式在等价意义下,下面写法唯一的就是( D )。 (A) 范式 (B) 析取范式 (C) 合取范式 (D) 主析取范式 ?下列含有命题p,q,r的公式中,就是主析取范式的就是( D )。

离散数学第三版课后习题答案

离散数学辅助教材 概念分析结构思想与推理证明 第一部分 集合论

离散数学习题解答 习题一(第一章集合) 1. 列出下述集合的全部元素: 1)A={x | x ∈N∧x是偶数∧x<15} 2)B={x|x∈N∧4+x=3} 3)C={x|x是十进制的数字} [解] 1)A={2,4,6,8,10,12,14} 2)B= 3)C={0,1,2,3,4,5,6,7,8,9} 2. 用谓词法表示下列集合: 1){奇整数集合} 2){小于7的非负整数集合} 3){3,5,7,11,13,17,19,23,29} [解] 1){n n∈I∧(?m∈I)(n=2m+1)}; 2){n n∈I∧n≥0∧n<7}; 3){p p∈N∧p>2∧p<30∧?(?d∈N)(d≠1∧d≠p∧(?k∈N)(p=k?d))}。 3. 确定下列各命题的真假性: 1) 2)∈ 3){} 4)∈{} 5){a,b}{a,b,c,{a,b,c}} 6){a,b}∈(a,b,c,{a,b,c}) 7){a,b}{a,b,{{a,b,}}} 8){a,b}∈{a,b,{{a,b,}}} [解]1)真。因为空集是任意集合的子集; 2)假。因为空集不含任何元素; 3)真。因为空集是任意集合的子集; 4)真。因为是集合{}的元素; 5)真。因为{a,b}是集合{a,b,c,{a,b,c}}的子集; 6)假。因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;

7)真。因为{a,b}是集合{a,b,{{a,b}}}的子集; 8)假。因为{a,b}不是集合{a,b,{{a,b}}}的元素。 4. 对任意集合A,B,C,确定下列命题的真假性: 1)如果A∈B∧B∈C,则A∈C。 2)如果A∈B∧B∈C,则A∈C。 3)如果A B∧B∈C,则A∈C。 [解] 1)假。例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。 2)假。例如A={a},B={a,{a}},C={{a},{{a}}},从而A∈B∧B∈C,但、A ∈C。 3)假。例如A={a},B={a,b},C={{a},a,b},从而ACB∧B∈.C,但A∈C。5.对任意集合A,B,C,确定下列命题的真假性: 1)如果A∈B∧B C,则A∈C。 2)如果A∈B∧B C,则A C。 3)如果A B∧B∈C,则A∈C。 3)如果A B∧B∈C,则A C。 [解] 1)真。因为B C x(x∈B x∈C),因此A∈B A∈C。 2)假。例如A={a},B={{a},{b}},C={{a},{b},{c}}从而A∈B∧B C,但A C。 3)假。例如A={a},B={{a,b}},C={{a,{a,b}},从而A B∧B∈C,但A C。 4)假。例如A={a},B={{a,b}},C={{a,b},b},从而A B∧B∈C,但A C。 6.求下列集合的幂集: 1){a,b,c} 2){a,{b,c}} 3){} 4){,{}} 5){{a,b},{a,a,b},{a,b,a,b}} [解] 1){,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} 2){,{a},{{b,c}},{a,{a,b}}} 3){,{}} 4){,{},{{}},{,{}}}

(完整版)离散数学作业答案一

离散数学作业7 离散数学数理逻辑部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、 数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外) 安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第17周末前完成并上交任课教师(不收电子稿)。并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1 .命题公式P (Q P)的真值是T或1 ______ . 2?设P:他生病了,Q:他出差了. R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P V Q)-R 3. ____________________________________________________________ 含有三个命题变项P,Q,R的命题公式P Q的主析取范式是__________________ _(P Q R) (P Q R)_ 4. 设P(x): x是人,Q(x): x去上课,则命题“有人去上课.” 可符号化为— x(P(x) Q(x))_ 5. 设个体域D = {a, b},那么谓词公式xA(x) yB(y)消去量词后的等值式为 (A(a) A(b)) (B(a) B(b))_ 6 .设个体域D = {1,2, 3},A(x)为“x大于3”,则谓词公式(x)A(x)的真值为F 或0 ________________ . 7.谓词命题公式(x)((A(x) B(x)) C(y))中的自由变元为 ________ . 8 .谓词命题公式(x)(P(x) Q(x) R(x,y))中的约束变元为x _______ . 三、公式翻译题 1 .请将语句“今天是天晴”翻译成命题公式

《离散数学》题库及答案

《离散数学》题库与答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( A ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)可用蕴含等值式证明 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式 4、公式x((A(x)B(y,x))z C(y,z))D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z(考察定义在公式x A和x A中,称x为指导变元,A为量词的辖域。在x A和x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。于是A(x)、B(y,x)和z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元) 5、判断下列语句是不是命题。若是,给出命题的真值。( )

(1)北京是中华人民共和国的首都。(2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗?(4) 若7+8>18,则三角形有4条边。 (5) 前进!(6) 给我一杯水吧! 答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。) 6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。 答:所有人都不是大学生,有些人不会死(命题的否定就是把命题前提中的量词“换成存在,换成”,然后将命题的结论否定,“且变或或变且”) 7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校(2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)P ?(注意“只有……才……”和“除非……就……”两者都是一个 Q→ 形式的)(2)Q P→ ? P? ?(4)Q P? →(3)Q 8、设个体域为整数集,则下列公式的意义是( )。 (1) x y(x+y=0) (2) y x(x+y=0) 答:(1)对任一整数x存在整数y满足x+y=0 (2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值: (1) x y (xy=y) ( ) (2) x y(x+y=y) ( ) (3) x y(x+y=x) ( ) (4) x y(y=2x) ( ) 答:(1)F (反证法:假若存在,则(x- 1)*y=0 对所有的x都成立,显然这个与前提条件相矛盾) (2)F (同理)(3)F (同理)(4)T(对任一整数x存在整数y满足条件y=2x 很明显是正确的)

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

离散数学习题解答

习题一 1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道? (1)中国有四大发明. 答:此命题是简单命题,其真值为1. (2)5是无理数. 答:此命题是简单命题,其真值为1. (3)3是素数或4是素数. 答:是命题,但不是简单命题,其真值为1. x+< (4)235 答:不是命题. (5)你去图书馆吗? 答:不是命题. (6)2与3是偶数. 答:是命题,但不是简单命题,其真值为0. (7)刘红与魏新是同学. 答:此命题是简单命题,其真值还不知道. (8)这朵玫瑰花多美丽呀! 答:不是命题. (9)吸烟请到吸烟室去! 答:不是命题. (10)圆的面积等于半径的平方乘以π. 答:此命题是简单命题,其真值为1. (11)只有6是偶数,3才能是2的倍数. 答:是命题,但不是简单命题,其真值为0. (12)8是偶数的充分必要条件是8能被3整除. 答:是命题,但不是简单命题,其真值为0. (13)2008年元旦下大雪. 答:此命题是简单命题,其真值还不知道. 2.将上题中是简单命题的命题符号化. 解:(1)p:中国有四大发明. (2)p:是无理数. (7)p:刘红与魏新是同学. (10)p:圆的面积等于半径的平方乘以π. (13)p:2008年元旦下大雪. 3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值. (1)5是有理数. 答:否定式:5是无理数.p:5是有理数.q:5是无理数.其否定式q的真值为1.

(2)25不是无理数. 答:否定式:25是有理数. p :25不是无理数. q :25是有理数. 其否定式q 的真值为1. (3)2.5是自然数. 答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1. (4)ln1是整数. 答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1. 4.将下列命题符号化,并指出真值. (1)2与5都是素数 答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1. (2)不但π是无理数,而且自然对数的底e 也是无理数. 答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数. 答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧?,其真值为1. (4)3是偶素数. 答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数. 答:p :4是素数,q :4是偶数,符号化为p q ?∧?,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数. (4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数. 答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ?∨?,其真值为1. (5) 符号化:r s ?∨?,其真值为0. 6.将下列命题符号化. (1)小丽只能从筐里拿一个苹果或一个梨. 答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ?∧∨∧?. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化 答:列出两种符号化的真值表:

吉林大学离散数学课后习题答案

第二章命题逻辑 §2.2 主要解题方法 2.2.1 证明命题公式恒真或恒假 主要有如下方法: 方法一.真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每

一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。 真值表法比较烦琐,但只要认真仔细,不会出错。 例2.2.1 说明G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。 解:该公式的真值表如下: 表2.2.1 由于表2.2.1中对应公式G所在列的每一取值全为1,故

G恒真。 方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。 例2.2.2 说明G= ((P→R) ∨? R)→ (? (Q→P) ∧ P)是恒真、恒假还是可满足。 解:由(P→R) ∨? R=?P∨ R∨? R=1,以及 ? (Q→P) ∧ P= ?(?Q∨ P)∧ P = Q∧? P∧ P=0 知,((P→R) ∨? R)→ (? (Q→P) ∧ P)=0,故G恒假。 方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。 方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G

大学本科高等数学《离散数学》试题及答案

本科高等数学离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____. 15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

慕课 离散数学 电子科技大学 课后习题十 答案

作业参考答案——10-特殊图 1.(a)(c)(d)是欧拉图,(a)(b)(c)(d)(e)可以一笔画,(a)(b)(c)(d)(e)(f)(g)是 哈密顿图。 2.根据给定条件建立一个无向图G=,其中: V={a,b,c,d,e,f,g} E={(u,v)|u,v∈V,且u和v有共同语言} 从而图G如下图所示。 a b c d e f g 将这7个人围圆桌排位,使得每个人都能与他两边的人交谈,就是在图G 中找哈密顿回路,经观察上图可得到两条可能的哈密顿回路,即两种方案:abdfgeca和acbdfgea。 3.证明(法一):根据已知条件,每个结点的度数均为n,则任何两个不相邻 的结点v i,v j的度数之和为2n,而图中总共有2n个结点,即deg(v i)+ deg(v j)?2n,满足哈密顿图的充分条件,从而图中存在一条哈密顿回路,当然,这就说明图G是连通图。 证明(法二):用反证法,假设G不是连通图,设H是G的一个连通分支,由于图G是简单图且每个结点的度数为n,则子图H与G-H中均至少有n+1个结点。所以G的结点数大于等于2n+2,这与G中结点数为2n矛盾。所以假设不成立,从而G是连通图。 4.将n位男士和n位女士分别用结点表示,若某位男士认识某位女士,则在 代表他们的结点之间连一条线,得到一个偶图G,假设它的互补结点子集V1、V2分别表示n位男士和n位女士,由题意可知V1中的每个结点度 1

数至少为2,而V2中的每个结点度数至多为2,从而它满足t条件t=1,因此存在从V1到V2的匹配,故可分配。 5.此平面图具有五个面,如下图所示。 a b c d e f g r1r2 r3 r4 r5 ?r1,边界为abca,D(r1)=3; ?r2,边界为acga,D(r2)=3; ?r3,边界为cegc,D(r3)=3; ?r4,边界为cdec,D(r4)=3; ?r5,边界为abcdefega,D(r5)=8;无限面 6.设该连通简单平面图的面数为r,由欧拉公式可得,6?12+r=2,所以 r=8,其8个面分别设为r1,r2,r3,r4,r5,r6,r7,r8。因是简单图,故每个面至少由3条边围成。只要有一个面是由多于3条边所围成的,那就有所有面的次数之和 8∑ i=1 D(r i)>3×8=24。但是,已知所有面的次数之和等于边数的两倍,即2×12=24。因此每个面只能由3条边围成。 2

中国石油大学大学《离散数学》期末复习题及答案

《离散数学》期末复习题 一、填空题(每空2分,共20分) 1、集合A上的偏序关系的三个性质是、 和。 2、一个集合的幂集是指。 3、集合A={b,c},B={a,b,c,d,e},则A?B= 。 4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。 5、若A是2元集合, 则2A有个元素。 6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则 2*3= 。 7、设A={a, b,c,d }, 则∣A∣= 。 8、对实数的普通加法和乘法,是加法的幂等元, 是乘法的幂等元。 9、设a,b,c是阿贝尔群的元素,则-(a+b+c)= 。 10、一个图的哈密尔顿路是。 11、不能再分解的命题称为,至少包含一个联结词的命题称 为。 12、命题是。 13、如果p表示王强是一名大学生,则┐p表示。 14、与一个个体相关联的谓词叫做。 15、量词分两种:和。 16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B 的。 17、集合上的三种特殊元是、 及。 18、设A={a, b},则ρ(A) 的四个元素分别 是:,,,。

19、代数系统是指由及其上的或 组成的系统。 20、设是代数系统,其中是*1,*2二元运算符,如果*1,*2都满 足、,并且*1和*2满足,则称是格。 21、集合A={a,b,c,d},B={b },则A \ B= 。 22、设A={1, 2}, 则∣A∣= 。 23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示 以。 24、一个图的欧拉回路是。 25、不含回路的连通图是。 26、不与任何结点相邻接的结点称为。 27、推理理论中的四个推理规则 是、、、。 二、判断题(每题2分,共20分) 1、空集是唯一的。 2、对任意的集合A,A包含A。 3、恒等关系不是对称的,也不是反对称的。 4、集合{1,2,3,3}和{1,2,2,3}是同一集合。 5、图G中,与顶点v关联的边数称为点v的度数,记作deg(v)。 6、在实数集上,普通加法和普通乘法不是可结合运算。 7、对于任何一命题公式,都存在与其等价的析取范式和合取范式。 8、设(A,*)是代数系统,a∈A,如果a*a=a,则称a为(A,*)的等幂元。 9、设f:A→B,g:B→C。若f,g都是双射,则gf不是双射。 10、无向图的邻接矩阵是对称阵。 11、一个集合不可以是另一个集合的元素。 12、映射也可以称为函数,是一种特殊的二元关系。 13、群中每个元素的逆元都不是惟一的。

离散数学试题及答案(1)

离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B =_________________________;A-B=_____________________ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________, _____________________________, __________________________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____. 15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学作业答案

第一章 1.假定A是ECNU二年级的学生集合,B是ECNU必须学离散数学的学生的集合。请用A 和B表示ECNU不必学习离散数学的二年级的学生的集合。 2.试求: (1)P(φ) (2)P(P(φ)) (3)P(P(P(φ))) 3.在1~200的正整数中,能被3或5整除,但不能被15整除的正整数共有多少个? 能被5整除的有40个, 能被15整除的有13个, ∴能被3或5整除,但不能被15整除的正整数共有 66-13+40-13=80个。 第三章 1.下列语句是命题吗? (1)2是正数吗? (2)x2+x+1=0。 (3)我要上学。 (4)明年2月1日下雨。 (5)如果股票涨了,那么我就赚钱。 2.请用自然语言表达命题(p?→r)∨(q?→r),其中p、q、r为如下命题: p:你得流感了 q:你错过了最后的考试

3.通过真值表求p→(p∧(q→p))的主析取范式和主合取范式。 4.给出p→(q→s),q,p∨?r?r→s的形式证明。 第四章 1.将?x(C(x)∨?y(C(y)∧F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y) 表示x和y是同 班同学,个体域是学校全体学生的集合。 解: 学校的全体学生要么自己有电脑,要么其同班同学有电脑。 2.构造?x(P(x)∨Q(x)),?x(Q(x)→?R(x)),?xR(x)??xP(x)的形式证明。 解: ①?xR(x) 前提引入 ②R(e) ①US规则 ③?x(Q(x)→?R(x)) 前提引入 ④Q(e) →?R(e) ③US规则 ⑤?Q (e) ②④析取三段论 ⑥?x(P(x)∨Q(x)) 前提引入 ⑦P(e) ∨Q(e) ⑥US规则 ⑧P(e) ⑤⑦析取三段论 ⑨?x (P(x)) ⑧EG规则 第五章

山东大学离散数学题库及答案

《离散数学》题库答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q →P (2)?Q=>P →Q (3)P=>P →Q (4)?P ∧(P ∨Q)=>?P 答:(1),(4) 2、下列公式中哪些是永真式?( ) (1)(┐P ∧Q)→(Q →?R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q) 答:(2),(3),(4) 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q (4)P ∧(P →Q)=>Q (5) ?(P →Q)=>P (6) ?P ∧(P ∨Q)=>?P 答:(2),(3),(4),(5),(6) 4、公式 x((A(x) B(y ,x)) z C(y ,z))D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1) 北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1) 是,T (2) 是,F (3) 不是 (4) 是,T (5) 不是 (6) 不是 6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。 答:所有人都不是大学生,有些人不会死 7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校 答:(1) P Q →? (2) Q P ?→ (3) Q P ?? (4)Q P →? 8、设个体域为整数集,则下列公式的意义是( )。 (1) x y(x+y=0) (2) y x(x+y=0) 答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=0 9、设全体域D 是正整数集合,确定下列命题的真值: (1) x y (xy=y) ( ) (2) x y(x+y=y) ( ) (3) x y(x+y=x) ( ) (4) x y(y=2x) ( ) 答:(1) F (2) F (3)F (4)T 10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 x(P(x)Q(x))在哪个个体域中为真?( ) (1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立 答:(1) 11、命题“2是偶数或-3是负数”的否定是( )。 答:2不是偶数且-3不是负数。 12、永真式的否定是( ) (1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能 答:(2) 13、公式(?P ∧Q)∨(?P ∧?Q)化简为( ),公式 Q →(P ∨(P ∧Q))可化简为( )。 答:?P ,Q →P

离散数学章练习题及答案

离散数学练习题 第一章 一.填空 1.公式) ∨ ? ∧的成真赋值为 01;10 ? p∧ ( (q ) p q 2.设p, r为真命题,q, s 为假命题,则复合命题) ? ? →的真值为 0 p→ ( q (s ) r 3.公式) ∨ ? p∧ q ?与共同的成真赋值为 01;10 ? ∧ p ( ) ) (q q p ( 4.设A为任意的公式,B为重言式,则B A∨的类型为重言式 5.设p, q均为命题,在不能同时为真条件下,p与q的排斥也可以写成p与q的相容或。 二.将下列命题符合化 1. 7不是无理数是不对的。 解:) ? ?,其中p: 7是无理数;或p,其中p: 7是无理数。 (p 2.小刘既不怕吃苦,又很爱钻研。 解:其中 ?p: 小刘怕吃苦,q:小刘很爱钻研 p∧ ,q 3.只有不怕困难,才能战胜困难。 解:p →,其中p: 怕困难,q: 战胜困难 q? 或q →,其中p: 怕困难, q: 战胜困难 p? 4.只要别人有困难,老王就帮助别人,除非困难解决了。 解:) → ?,其中p: 别人有困难,q:老王帮助别人,r: 困难解决了 p (q r→ 或:q ?) (,其中p:别人有困难,q: 老王帮助别人,r: 困难解决了r→ ∧ p 5.整数n是整数当且仅当n能被2整除。 解:q p?,其中p: 整数n是偶数,q: 整数n能被2整除 三、求复合命题的真值 P:2能整除5, q:旧金山是美国的首都, r:在中国一年分四季 1. )) p∧ → q ∨ r → ∧ ((q r ( ) ( ) p 2.r ?) → (( → (( ∨ ) ( )) p r p ∨ p q ? ∧ ? q∧ 解:p, q 为假命题,r为真命题 1.)) p∧ → q ∨的真值为0 r → ∧ ( ) ( ) ((q p r

相关主题
文本预览
相关文档 最新文档