当前位置:文档之家› (水力学)-流体力学实验(1)

(水力学)-流体力学实验(1)

(水力学)-流体力学实验(1)
(水力学)-流体力学实验(1)

壹、静水压强实验

一、实验目的

1、加深对水静力学基本方程物理意义的理解,验证静止液体中,不同点对于同一基准面的测压管水头为常数(即C g

p z =+

ρ)。 2、学习利用U 形管测量液体密度。

3、建立液体表面压强a p p >0,a p p <0的概念,并观察真空现象。

4、测定在静止液体内部A 、B 两点的压强值。 二、实验原理

在重力作用下,水静力学基本方程为:

C g

p z =+ρ 它表明:当质量力仅为重力时,静止液体内部任意点对同一基准面的z 与

g

p ρ两项之和为常数。

重力作用下,液体中任何一点静止水压强

gh p p ρ+=0,

0p 为液体表面压强。 a p p >0为正压;a p p <0为负压,负压可用真空压强v p 或真空高度v h 表示:

abs a v p p p -= g

p h v v ρ= 重力作用下,静止均质液体中的等压面是水平面。利用互相连通的同一种液

体的等到压面原理,可求出待求液体的密度。

三、实验设备

在一全透明密封有机玻璃箱内注入适量的水,并由一乳胶管将水箱与一可升

降的调压筒相连。水箱顶部装有排气孔1k ,可与大气相通,用以控制容器内液体

表面压强。若在U 形管压差计所装液体为油,水油ρρ<,通过升降调压筒可调节

水箱内液体的表面压强,如图1-1所示。

图 1—1

四、实验步骤

1、熟悉仪器,测记有关常数。

2、将调压筒旋转到适当高度,打开排气阀1k ,使之与水箱内的液面与大气

相通,此时液面压强a p p =0。待水面稳定后,观察各U 形压差计的液面位置,

以验证等压面原理。

3、关闭排气阀1k ,将调压阀升至某一高度。此时水箱内的液面压强a p p >0。

观察各测压管的液面高度变化并测记液面标高。

4、继续提高调压筒,再做两次。

5、打开排气阀1k ,使之与大气相通,待液面稳定后再关闭1k (此时不要移

动调压筒)。

6、将调压筒降至某一高度。此时a p p <0。观察各测压管的液面高度变化,

并测记标高,重复两次。

7、将调压筒升至适当位置,打开排气阀1k ,实验结束。

五、注意事项

1、升降调压筒时,应轻拉轻放,每次调压高度不宜过大。

2、在测记测压管液面标高时,一定要待液面稳定后再测读数。若0p 未变而

测压管水面持续变化时,则表明阀门漏气,应采取修复措施。

六、思考题

1、什么情况下3、4两根测压管的高度相同?

2、液面标高34?-?与56?-?相等吗?为什么?

3、调压筒的升降为什么能改变容器的液面压强0p ?

4、实验时,密封容器内的水面能不能低于A 点,为什么?

贰、流线演示实验

一、实验目的

1、应用流动演示仪演示各种不同边界条件下的水流形态,以观察在不同边

界条件下的流线、旋涡等,增强对流体运动特性的认识。

2、应用流动演示仪演示水流绕过不同形状物体的驻点、尾流、涡街现象及

非自由射流等,增强对这些现象的感性认识。

二、实验设备和仪器

流线可以形象地显示各种水流形态及其水流内部质点运动的特性。而通过各种演示设备就可以演示出流线。常用的有烟风洞、氢气泡显示设备,及流动演示仪等。现以流动演示仪为例加以说明。

图2-1 为流动演示仪的示意图,该仪器用有机玻璃制成,通过在水流中掺气的方法,演示不同边界条件下的多种水流现象,并显示相应的流线。整个仪器有不同的单元组成。每个单元都是一套独立的装置,可以单独使用,亦可同时使用。

三、实验步骤

(一)、操作程序

1、接通电源,打开开关。

2、用调节进气量旋钮,调

节气泡大小。

(二)演示内容

Ⅰ型:显示圆柱绕流等的流

线,该单元装置能十分清楚地显示出流体在驻点处的停滞现象、边界层分离状态分离状况及卡门涡街现象。

1、驻点:观察流经圆柱前端驻点处的小气泡运动特性,可图2-1

了解流速与压强沿圆柱周边的变化情况。

2、边界层分离:流线显示了圆柱绕流边界层分离现象,可观察边界层分离点的位置及分离后的回流形态。

3、卡门涡街:即圆珠柱的轴与水流方向垂直,在圆柱的两个对称点上产生边界层分离,然后不断交替在圆柱下游两侧产生旋转方向相反的旋涡,并流向下游。

Ⅱ型:显示桥墩、机翼绕流的流线。

该桥墩为圆头方尾的绕流体。水流在桥墩后的尾流区内也产生卡门涡街,并可观察水流绕过机翼时的运动状态。

Ⅲ型:显示逐渐收缩、逐渐扩散及通过孔板(或丁坝)纵剖面上的流线图像。

1、在逐渐收缩段,流线均匀收缩,无旋涡产生;在逐渐扩散段可看到边界层层分离而产生明显的漩涡。

2、在孔板前,流线逐渐收缩,汇集于孔板的过流孔口处,只在拐角处有一小旋涡出现;孔板后水流逐渐扩散,并在主流区周围形成较大的旋涡回流区。

Ⅳ型:显示管道突然扩大和突然收缩时的管道纵剖面上的流线图像。

1、在突然扩大段出现强烈的旋涡区。

2、在突然收缩段仅在拐角处出现旋涡。

3、在直角转变处,流线弯曲,越靠近弯道内侧流速越小,由于水流通道很不畅顺,回流区范围较广。

四、注意事项

此处注意调节进气阀的进气量,使气泡大小适中,流动演示更清晰。

五、思考题

1、旋涡区与水流能量损失有什么关系?

2、指出演示设备中的急变流区。

3、空化现象为什么常常发生在旋涡区中?

4、卡门涡街具有什么特征?对绕流物体有什么影响?

叁、能量(伯努利)方程实验

一、实验目的

1、观察恒定流的情况下,当管道断面发生改变时水流的位置势能、压强势能、动能的沿程转化规律,加深对能量方程的物理意义及几何意义的理解。

2、观察均匀流、渐变流断面及其水流特征。

3、掌握急变流断面压强分布规律。

4、测定管道的测压管水头和总水头值,并绘制管道的测压管水头线及总水头线。

二、实验原理

实际液体在有压管道中作恒定流动时,其能量方程如下:

w h g

v g p z g v g p z +++=++222222221111αραρ 它表明:液体在流动的过程中,液体的各种机械能(单位位能、单位压能和单位动能)是可以相互转化的。但由于实际液体存在粘性,液体运动时为克服阻力而要消耗一定的能量,也就是一部分机械能转化为热能而散逸,即水头损失。因而机械能应沿程减少。

对于均匀流和渐变流断面,其压强分布符合静水压强分布规律:

C g

p z =+ρ或gh p p ρ+=0 但不同断面的C 值不同。

图 3—1

对于急变流,由于流线的曲率较大,因此惯性力亦将影响过水断面上的压强分布规律:

上凸曲面边界上的急变流断面如图 3—1(a),离心力与重力方向相反,所以静动p p <。

下凹曲面边界上的急变流断面如图 3—1(b),离心力与重力方向相同,所以静动p p >。

三、实验设备

实验设备及各部分名称如图3—2所示。

1、分辩测压管与皮托管检查橡胶管接头是否接紧。

2、启动抽水机,打开进水阀,使水箱充水并保持溢流,使水位恒定。

3、关闭尾阀k ,检查测压管和皮托管的液面是否齐平。若不平,则需要检查管路中是否存在气泡并排出。

4、打开尾阀k ,在液面稳定后,量测测压管及皮托管水头,同时测量该级的流量。

5、观察急变流断面A 和B 处的压强分布规律。

6、本实验其做四次。

五、实验要求及注意事项

1、在管流流量Q 固定不变的情况下,观察管段内流体在不同位置的测压管水头线;

2、在某一级稳定流情况下,测定沿流各过水断面的平均位置高度z 、测压管高度g

p ρ、流速水头g v 22α及总水头H 值。 3、尾阀k 开启一定要缓慢,并注意测压管中的水位的变化,不要使测压管水面下降太多,以免空气倒吸入管路系统,影响实验进行。

4、流速较大时,测压管水面有脉动现象,读数要读取均值。

六、思考题

1、实验中哪个测压管水面下降最大?为什么?

2、皮托管中的水面高度能否低于测压管中的水面高度?

3、在逐渐扩大的管路中,测压管水头线是怎样变化的?

伍、雷诺实验

1、观察层流和紊流的流动特征及转变情况,以加深对层流、紊流形态的感性认识。

2、测定层流和紊流两种流态的水头损失与断面平均流速之间的关系。

3、绘制水头损失f h 和断面平均流速的对数关系曲线,并计算图中的斜率m 和临界雷诺数c e R 。

二、实验原理

同一种液体在同一管道中流动,当流速不同时,液体在运行中有两种不同的流态。当流速较小时,管中水流的全部质点以平行而不互相混杂的方式分层流动,这种形态的游体流动称为层流。当流速较大时,管中水流各质点间发生相互混杂的运动,这种形态的液体流动称为紊流。

层流与紊流的沿程水头损失规律不一样,根据试验,水头损失与断面平均流速之间的关系式用m f kv h =表示,层流状态时,沿程水头损失大小与断面平均流速的1次方成正比,即0.1v h f ∝;而在紊流状态时,沿程水头损失大小与断面平均流速的1.75~2.00次方成正比,即0.20750.1~v h f ∝。

每大实验设备的管径一定,当水箱水位保持不变时,管内即产生恒定流,沿程水头损失f h 与断面平均流速v 的关系可由能量方程导出:

f h g

v g p z g v g p z +++=++222222221111αραρ 当管径不变时,21v v =,取0.121≈=αα,

所以 h g

p z g p z h f ?=+-+

=)()(2211ρρ。 (h ?)值由压差计读取。

在圆管流动中采用雷蔚为大观数来判别流态:

Q Q k d vd

R e ===νπν4;ν

πd k 4= 式中:k —系数;ν—水流的运动粘滞系数;d —圆管直径;Q —流量

当c e e R R <(下临界雷诺数)时为层流状态,2320=c e R ;

当'c e e R R >(上临界雷诺数)时为层流状态,'c

e R 在4000~12000之间。

三、实验设备

实验设备及相应部分的名称见图5-1所示

图5—1 雷诺实验仪

四、实验步骤

1. 观察流动状态

将进水管打开使水箱充满水,并保持溢流状态;然后用尾阀调节流量,将阀门以极慢速打开,待水流稳定后,注入有色指示剂。当有色指示剂在试验管中呈现一条稳定而且明显的流线时,管内即为层流流态。

随后渐渐开大尾阀门,增大流量,这时有色指示剂开始颤动、弯曲,并逐渐扩散,当扩散至全管,水流紊乱到已看不清有以指示剂着色的流线时,此时即为紊流流态。

h~v的关系及临界雷诺数

2. 测定

f

1) 熟悉仪器,测记有关常数。

2) 检查尾阀全关时,压差计液面是否齐平,若不平,则需排气调平。

3) 将尾部阀门开至最大,然后逐步关小阀门,使管内流量逐步减少;每改

变一次流量,均待水流平稳后,测定每次的流量、水温和试验段的水头损失(即压差)。流量Q 用体积法测量。用量筒量测水的体积V ,用秒表计时间T 。流量T V Q =。相应的断面平均流速A

Q v =。 4) 流量用尾阀调节,共做10次。当e R <2500时,为精确起见,每次压差减小值只能为3~5mm 。

5) 用温度计量测当日的水温,由此可查得运动粘滞系数ν,从而计算雷诺数νvd

R e =。

6) 相反,将调节阀由小逐步开大,管内流速慢慢加大,重复上述步骤。

五、注意事项

1.在整个试验过程中,要特别注意保持水箱内的水头稳定。每变动一次阀门开度,均待水头稳定后再量测流量和水头损失。

2.在流动形态转变点附近,流量变化的间隔要小些,使测点多些以便准确测定临界雷诺数。

3.在层流流态时,由于流速v 较小,所以水头损失f h 值也较小,应耐心、细致地多测几次。同时注意不要碰撞设备并保持实验环境的安静,以减少扰动。

六、思考题

1.要使注入的颜色水能确切反映水流状态,应注意什么问题?

2.如果压差计用倾斜管安装,压差计的读数差是不是沿程水头损失f h 值?管内用什么性质的液体比较好?其读数怎样进行换算为实际压强差值?

3.为什么上、下临界雷诺数值会有差别?

4.为什么不用临界流速来判别层流和紊流?

流体力学第一章1

工程流体力学
中南大学 能源与动力工程学院 主讲教师: 陈 卓 Email: chenzhuo@https://www.doczj.com/doc/ab6037351.html,
第一章 导论
绪言
? 什么是流体?
——液体、气体 ——在切向力作用下将产生无限变形(流动)的物质
第一章 导论
绪言
? 流体力学
——研究流体在外力作用下平衡和运动规律的科学 侧重点:流体在外力作用下的宏观机械运动,而非个别分 子的微观行为。
ü 力学的一个分支,与刚体力学、弹性力学、材料力学 并列为四大力学.
? 流体力学
l 流体力学的基础理论由三部分组成。
? 流体处于平衡状态时,各种作用在流体上的力之间关系 的理论,称为流体静力学;
? 流体处于流动状态时,作用在流体上的力和流动之间关 系的理论,称为流体动力学;
? 气体处于高速流动状态时,气体的运动规律的理论,称 为气体动力学。
? 流体力学
v 工程流体力学是研究流体(液体、气体)处于平衡状态和流 动状态时的运动规律及其在工程技术领域中的应用。
v 研究范畴 —— 将流体流动作为宏观机械运动进行研究,而 不是研究流体的微观分子运动,主要研究流体的质量守恒、 动量守恒和能量守恒及转换等基本规律。
? 流体力学研究对象及其发展
ü 它的研究对象随着生产的需要与科学的发展在不断地更新、深化和扩大。
ü 60年代以前,它主要围绕航空、航天、大气、海洋、航运、水利和各种 管路系统等方面。 à 研究流体运动中的动量传递问题,即局限于研究流体的运动规律,和它与固 体、液体或大气界面之间的相互作用力问题。
ü 60年代以后,能源、环境保护、化工和石油等领域中的流体力学问题逐 渐受到重视,这类问题的特征是:尺寸小、速度低,并在流体运动过程 中存在传热、传质现象。 à 流体力学除了研究流体的运动规律以外,还要研究它的传热、传质规律。同 样,在固体、液体或气体界面处,不仅研究相互之间的作用力,而且还需要 研究它们之间的传热、传质规律。
1

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

流体力学实验指导书( 建环专业)

目录 实验一静水压强实验???????????????????????????????????????????1实验二伯努利方程式的验证?????????????????????????????????????3实验三雷诺实验??????????????????????????????????????????????6实验四管道沿程阻力实验??????????????????????????????????????9实验五管道局部阻力系数的测定????????????????????????????????12

实验一静水压强实验 (一)实验目的 1、测定静止液体中某点的静水压强,加深对静压公式p=p0+γh的理解; 2、测定有色液体的重度,并通过实验加深理解位置水头,压强水头及测压管水 头的基本概念,观察静水中任意两点测压管水头Z+p/γ=常数。 p=p0+γh 式中:P——被测点的静水压强; P0——水箱中水面的表面压强; γ——液体重度; h——被测点在表面以下的竖直深度。 可知在静止的液体内部某一点的静水压强等于表面压强加上液体重度乘以该点在液面下的竖直深度。 (四)实验步骤 1、打开密封水箱E顶上空气阀门a,此时水箱内水面上的压强p0=p a。观察各测压连通管内液面是否平齐,如果不齐则检查各管内是否阻塞并加以勾通。

2、读取A点、B点的位置高度Z A、Z B。 3、关闭空气阀门a,转动手柄,抬高长方形小水箱F至一定高度,此时表面压力P0>P a,待水面稳定后读各测压管中水位标高▽=▽I(I=1、2、3、 4、5),并记入表中。 4、在保持P0>P a的条件下,改变长方形小水箱F高度,重复进行2-3次。 5、打开空气阀门a,使水箱内的水面上升,然后关闭空气阀门a,下降长方形小水箱。 6、在P0<P a的条件下,改变水箱水位重复进行2-3次。 (五)对表中数据进行分析 单位:mm

流体力学

福州大学土木工程学院本科实验教学示范中心 学生实验报告 流体力学实验 题目: 实验项目1:毕托管测速实验 实验项目2:管路沿程阻力系数测定实验 实验项目3:管路局部阻力系数测定实验 实验项目4:流体静力学实验 实验一毕托管测速实验 一、实验目的要求: 1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。

2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。 3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。 二、实验成果及要求 实验装置台号 20040268 表1 记录计算表 校正系数c= 1.002 ,k= 44.36 cm 0.5/s 三、实验分析与讨论 1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否? 答:若测压管内存有气体,在测量压强时,测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值, 否则如果其中夹有气柱, 就会使测压失真, 从而造成误差。 误差值与气柱高度和其位置有关。对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很可能变成堵塞性气柱而影响 量测精度。 检验的方法:是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压 管液面是否齐平。如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。 2.毕托管的压头差Δh 和管嘴上、下游水位差ΔH 之间的大小关系怎样?为什么? 答:由于 且 即 这两个差值分别和动能及势能有关。在势能转换为动能的

过程中,由于粘性力的存在而有能量损失,所以压头差较小。 ?'说明了什么? 3.所测的流速系数 答:若管嘴出流的作用水头为,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有 称作管嘴流速系数。 若相对点流速而言,由管嘴出流的某流线的能量方程,可得 式中:为流管在某一流段上的损失系数;为点流速系数。 本实验在管嘴淹没出流的轴心处测得=0.990,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μμ?'=-=-?,24y y u p a y μμ?'=-=?, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图 所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。(请将 d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2d (1)2d h y p y y u v h x h h μ=- - (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当 d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式中2d ()2d h p p v x μ= - (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2 x g u zh z ,单宽流量 3 sin 3 gh q 。

2018流体力学实验指导书

《流体力学》实验指导书 杨英俊 2018.

目录 实验一平面上静水总压力测量实验 (4) 实验二恒定总流动量方程验证实验 (7) 实验三流态演示与临界雷诺数量测实验 (10) 实验四沿程水头损失测量实验 (13) 实验五文透里流量计率定实验 (16) 实验六局部水头损失测量实验 (19) 实验七恒定总流能量方程演示实验 (22)

前言 流体力学是一门重要的技术基础课,它的主要研究内容为流体运动的规律以及流体与边界的相互作用,它涉及到建筑、土木、环境、水利造船、电力、冶金、机械、核工程、航天航空等许多学科。在自然界中,与流体运动关联的力学问题是很普遍的,所以流体力学在许多工程领域有着广泛的应用。例如水利工程、机械工程、环境工程、热能工程、化学工程、港口、船舶与海洋工程等,因此流体力学是高等学校众多理工科专业的必修课。 流体力学课程的理论性强,同时又有明确的工程应用背景。它是连接前期基础课程和后续专业课程的桥梁。因此,掌握流体力学的基本概念、基本理论和解决流体力学问题的基本方法,具备一定的实验技能,为后续课程的学习打好基础,培养分析和解决工程实际中有关水力学问题的能力。 流体力学和其它学科一样,大致有三种研究方法。一是理论方法,分析问题的主次因素,提出适当的假定,抽象出理论模型(如连续介质、理想流体、不可压缩流体等),运用数学工具寻求流体运动的普遍解。二是实验方法,将实际流动问题概括为相似的实验模型,在实验中观察现象、测定数据,并进而按照一定方法推测实际结果。第三种方法是数值计算,根据理论分析与实验观测拟订计算方案,通过编制程序输入数据,用计算机算出数值解。三种方法各有千秋,既是互相补充和验证,但又不能互相取代。实验方法仍是检验与深化研究成果的重要手段,现代实验技术的突飞猛进也促进了流体力学的蓬勃发展。因此,流体力学实验在流体力学学科及教学中占有重要位置,也是在学习流体力学课程中一个不可缺少的重要教学环节。目前,针对我院各专业本科生,流体力学实验包括以下7个实验: 1)平面上静水总压力测量实验 2)恒定总流动量方程验证实验 3)流态演示与临界雷诺数量测实验 4)沿程水头损失测量实验 5)文透里流量计率定实验

流体力学实验-参考答案

流体力学实验思考题 参考答案 流体力学实验室 静水压强实验

1.同一静止液体内的测压管水头线是根什么线? 测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当0?B p 时,试根据记录数据,确定水箱内的真空区域。 0?B p ,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定0γ。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 γ θσd h cos 4= 式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。常温的水,m N 073.0=σ,30098.0m N =γ。水与玻璃的浸润角θ很小,可以认为0.1cos =θ。于是有 d h 7.29= (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5

重大流体力学实验1(流体静力学实验)

《流体力学》实验报告 开课实验室:年月日 学院年级、专业、班姓名成绩 课程名称流体力学实验 实验项目 名称 流体静力学实验 指导教 师 教师 评语教师签名: 年月日 一、实验目的 1、验证静力学的基本方程; 2、学会使用测压管与U形测压计的量测技能; 3、理解绝对压强与相对压强及毛细管现象; 4、灵活应用静力学的基本知识进行实际工程测量。 二、实验原理 流体的最大特点是具有易动性,在任何微小的剪切力作用下都会发生变形,变形必将引起质点的相对运动,破坏流体的平衡。因此,流体处于静止或处于相对静止时,流体内部质点之间只体现出压应力作用,切应力为零。此应力称静压强。静压强的方向垂直并指向受压面,静压强大小与其作用面的方位无关,只与该点位置有关。 1、静力学的基本方程静止流体中任意点的测压管水头相等,即:z + p /ρg=c 在重力作用下, 静止流体中任一点的静压强p也可以写成:p=p + ρg h 2、等压面连续的同种介质中,静压强值相等的各点组成的面称为等压面。质量力只为重力时, 静止液体中,位于同一淹没密度的各点的静压强相等,因此再重力作用下的静止液体中等压面是水平面。若质量有惯性时,流体做等加速直线运动,等压面为一斜面;若流体做等角速度旋转运动,等压面为旋转抛物面。 3、绝对压强与相对压强流体压强的测量和标定有俩种不同的基准,一种以完全真空时绝对压强 为基准来计量的压强,一种以当地大气压强为基准来计量的压强。

三、使用仪器、材料 使用仪器:盛水密闭容器、连通管、U 形测压管、真空测压管、通气管、通气阀、截止阀、加 压打气球、减压阀 材 料:水、油 四、实验步骤 1、熟悉一起的构成及其使用方法; 2、记录仪器编号及各点标高,确立测试基准面; 测点标高a ?=1.60CM b ?=-3.40CM c ? =-6.40CM 测点位能a Z =8.00CM b Z = 3.00CM c Z =0.00CM 水的容重为a=0.0098N/cm 3 3、测量各点静压强:关闭阀11,开启通气阀6,0p =0,记录水箱液面标高0?和测管2液面标高2?(此时0?=2?);关闭通气阀6和截止阀8,开启减压放水阀11,使0p > 0,测记0?及2?(加压3次);关闭通气阀6和截止阀8,开启减压放水阀11,使0p < 0(减压3次,要求其中一次,2?< 3?),测记0?及2?。 4、测定油容量 (1)开启通气阀6,使0p =0,即测压管1、2液面与水箱液面齐平后再关闭通气阀6和截止阀8,加压打气球7,使0p > 0,并使U 形测压管中的油水界面略高于水面,然后微调加压打气球首部的微调螺母,使U 形测压管中的油水界面齐平水面,测记0?及2?,取平均值,计算 0?-2?=H 1。设油的容重为r ,为油的高度h 。由等压面原理得:01p =a H=r h (1.4) a 为水的容重 (2)开启通气阀6,使0p =0,即测压管1、2液面与水箱液面齐平后再关闭通气阀6和截止阀8,开启放水阀11减压,使U 形管中的水面与油面齐平,测记0?及2?,取平均值,计算0?-2?=H 2。得:02p =-a H 2=(r-a)h (1.5) a 为水的容重 式(1.4)除以式(1.5),整理得:H 1/ H 2=r/(a-r) r= H 1a/( H 1+ H 2)

流体力学实验指导书

流体力学 实验指导书与报告 (第二集) 动量定律实验 毕托管测速实验 文丘里流量计实验 局部阻力实验 孔口与管嘴实验 静压传递自动扬水演示实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

流体力学实验报告

流体力学 实验指导书与报告 静力学实验 雷诺实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

四川大学化工实验1(流体力学)

学号:2014141492108 姓名:苗育民 专业:冶金工程 班号:143080501 实验日期:2016.4.27 实验成绩: 流体力学综合实验 一、实验目的 (1) 测定流体在管道内流动时的直管阻力损失,作出λ与Re 的关系曲线。 (2) 观察水在管道内的流动类型。 二、实验原理 流体在管道内流动时,由于实际流体有粘性,其在管内流动时存在摩擦阻力,必然会引起流体能量损耗,此损耗能量分为直管阻力损失和局部阻力损失。流体在水平直管内作稳态流动(如图3-1所示)时的阻力损失可根据伯努利方程求得。 图 3-1 流体在1、2截面间稳定流动 以管中心线为基准面,在1、2截面间列伯努利方程 (3-1) 因u 1=u 2,z 1=z 2,故流体在等直径管的1、2两截面间的阻力损失为 (3-2) 流体流经直管时的摩擦系数与阻力损失之间的关系可由范宁公式求得,其表达式为 (3-3) 将式(3-2)代入式(3-3)得 (3-4) 而 (3-5) 由此可见,摩擦系数与流体流动类型、管壁粗糙度等因素有关。由因此分析法整理可形象地表示为 (3-6) f h gz u p P +++=++22 221211 2 gz 2u ρρρ P h f ?= 2 2u d l h f ? ?=λ2 2u l d P ???= ρλμ ρ du = Re ) (Re,d f ε λ=21请

式中:f h -----------直管阻力损失,J/kg ; λ------------摩擦阻力系数; d l .----------直管长度和管内径,m ; P ?---------流体流经直管的压降,Pa ; ρ-----------流体的密度,kg/m3; μ-----------流体黏度,Pa.s ; u -----------流体在管内的流速,m/s ; 流体在一段水平等管径管内流动时,测出一定流量下流体流经这段管路所产生的压降,即可算得f h 。两截面压差由差压传感器测得;流量由涡轮流量计测得,其值除以管道截面积即可求得流体平均流速u 。在已知管径d 和平均流速u 的情况下,测定流体温度,确定流体的密度ρ和黏度μ,则可求出雷诺数Re ,从而关联出流体流过水平直管的摩擦系数λ与雷诺数Re 的关系曲线图。 三、实验设备图 1--压力表;2--水泵;3,4,5,10,11,13,14,15,22,23--小球阀;6,16,17,18,19--球阀;7--水箱;8--电磁阀1;9--计量水箱;12--电磁阀2;20--闸阀;21--涡轮流量计;24--孔板;25--差压传感器;26--电磁阀3;27,28--压力缓冲罐;a--Φ25?2钢管;b--Φ25?2钢管;c--Φ12?2铜管;d--Φ25?2有机玻管 四、实验操作步骤 (1)根据现场实验装置,理清流程,检查设备的完好性,熟悉各仪表的使用方法。 (2)打开控制柜面上的总电源开关,按下仪表开关,检查无误后按下水泵开关。 (3)打开球阀16,调节流量调节阀20使管内流量约为10.5h /m 3 ,逐步减小流量,每次约减少0.5h /m 3 ,待数据稳定后,记录流量及压差读数,待流量减小到约为4h /m 3 后停止实验。

工程流体力学课件

流体力学 绪论 第一章流体的基本概念 第二章流体静力学 第三章流体动力学 第四章粘性流体运动及其阻力计算 第五章有压管路的水力计算 第六章明渠定常均匀流 第九章泵与风机 绪论 一、流体力学概念 流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 研究内容:研究得最多的流体是水和空气。 1、流体静力学:关于流体平衡的规律,研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系; 2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。 基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程(反映物质宏观性质的数学模型)和物理学、化学的基础知识。 二、流体力学的发展历史

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通 江河的传说;秦朝李冰父子带领劳动人民修建的 马人建成了大规模的供水管道系统等等。 流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 流体力学的主要发展: 17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。使流体力学开始成为力学中的一个独立分支。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘性流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维(法)建立了粘性流体的基本运动方程;1845年,斯托克斯

流体力学实验指导书

《流体力学》实验指导书 郭广思王连琪 沈阳理工大学 2006年10月

一伯努利方程综合性实验 (一)实验目的 伯努利方程是水力学三大基本方程之一,反映了水流在流动时,位能、压能、动能之间的关系。 1.了解总水头线和测压管水头线在局部阻力和沿程阻力处的变化规律; 2.了解总水头线在不同管径段的下降坡度,即水力坡度J的变化规律; 3.了解总水头线沿程下降和测压管水头线升降都有可能的原理; 4.用实例流量计算流速水头去核对测压板上两线的正确性; 不同管径流速水头的变化规律 (二)设备简图 本实验台由高位水箱、供水箱、水泵、测压板、有机玻璃管道、铁架、量筒等部件组成,可直观地演示水流在不同管径、不同高程的管路中流动时,上述三种能量之间的复杂变化关系。

(三)实验原理 过水断面的能量由位能、压能、动能三部分组成。水流在不同管径、不同高程的管路中流动时,三种能量不断地相互转化,在实验管道各断面设置测压管及测速管,即可演示出三种能量沿程变化的实际情况。 测压管中水位显示的是位能和压能之和,即伯努利方程中之前两项:g p Z ρ+,测速管 中水位显示的是位能、压能和动能之和。即伯努利方程中三项之和:g v g p Z 22 ++ρ。 将测压管中的水位连成一线,称为测压管水头线,反映势能沿程的变化;将测速管中的水位连成一线,称为总水头线,反映总能量沿程的变化,两线的距离即为流速水头g v 2/2。 本实验台在有机玻璃实验管道的关键部位处,设置测压管及测速管,适当的调节流量就可把总水头线和测压管水头线绘制于测压板上。 注:计算所的流速水头值是采用断面平均流速求得,而实测流速水头值是根据断面最大速度得出,显然实测值大于计算值,两者相差约为1.3倍。 (四)实验步骤 1.开动水泵,将供水箱内之水箱至高位水箱; 2.高位水箱开始溢流后,调节实验管道阀门,使测压管,测速管中水位和测压板上红、黄两线一致; 3.实验过程中,始终保持微小溢流; 4.如水位和红黄两线不符,有两种可能:一是连接橡皮管中有气泡,可不断用手挤捏橡皮管,使气泡排出;二是测速管测头上挂有杂物,可转动测头使水流将杂物冲掉。 (五)报告要求 实验报告是实验后要完成的一份书面材料。实验报告的内容一般包括实验名称、班级、实验人姓名、实验时间、实验目的、实验步骤、实验数据记录及处理、结论与讨论等多项内容。实验报告一律用流体力学实验报告用纸书写。 (六)讨论题 1. 什么是速度水头,位置水头,压力水头?速度水头、测压管水头和总水头什么关系? 2. 总水头线和测压管水头线在局部阻力和沿程阻力处有怎样的变化?为什么?

CB-1流体力学综合实验..

CB-1流体力学综合实验报告 一、实验目的 1. 学习直管摩擦阻力△Pf、直管摩擦系数λ的测定方法。 2. 掌握不同流量下摩擦系数λ与雷诺数Re之间关系及其变化规律。 3. 学习压差传感器测量压差,流量计测量流量的方法。 4. 掌握对数坐标系的使用方法。 5. 熟悉离心泵的结构与操作方法,了解常用的测压仪表。 6. 测定恒定转速条件下泵的扬程(H)、轴功率(N)以及效率(η)与泵的流量(Q)之间的泵特性曲线,加深 对离心泵性能的了解。 7. 掌握流量计的标定方法。 8. 了解文丘里流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 9. 学习合理选择坐标系的方法。 二、装置整体流程图 图1 实验装置流程示意图

设备主要参数:输送设备:(1)离心泵型号40SBF-13,额定流量6m 3/h ,额定扬程13m ,额定电压380V , 额定功率0.55KW ,材质不锈钢;(2)离心泵型号50SBF-18,额定流量13m 3/h ,额定扬程18m ,额定电压380V ,额定功率1.5KW , 测量仪表:(1)压力 PI-101 不锈钢真空表,测量范围-0.1-0MPa PI-102 不锈钢压力表,测量范围0-0.25MPa PI-103 不锈钢差压变送器,测量范围0-200Kpa ,精度1.0,测量介质-水 (2)温度 TI-101 双金属温度计,测量范围0-100℃,精度1.6,材质-不锈钢 (3)流量 FI-101 玻璃转子流量计,型号LZB-25,测量范围100-1000L/h ,精度1.6 FI-102 玻璃转子流量计,型号LZB-10,测量范围10-100L/h ,精度1.6 涡轮流量计,型号LWGY-25,测量范围1-10m 3/h ,精度1.0 容器:水槽容积50L ,不锈钢材质 三、实验内容 (1)离心泵特性测定实验 一、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1. 流量的测定 流量是在实验过程中设定值,可直接通过手动阀门来调节实验所需的流量值。 2.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方 程: f H g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1-1)

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

流体力学实验指导书(雷诺、伯努利)

工程流体力学 实 验 指 导 书 河北理工大学给排水实验室 编者:杨永 2014 . 5 . 12 适用专业:给排水工程专业、建筑环境与设备工程专业 实验目录:

实验一:雷诺实验 实验二:伯努利方程实验 实验三:阻力及阻力系数测定实验 实验四:孔口管嘴实验 实验操作及实验报告书写要求: 一、实验课前认真预习实验要求有预习报告。 二、做实验以前把与本次实验相关的课本理论内容复习一下。 三、实验要求原始数据必须记录在原始数据实验纸上。 四、实验报告一律用标准实验报告纸。 五、实验报告内容包括: 1. 实验目的; 2. 实验仪器; 3. 实验原理; 4. 实验过程; 5. 实验数据的整理与处理。 六、实验指导书只是学生的指导性教材,学生在写实验报告时指导书制作 为参考,具体写作内容由学生根据实际操作去写。 七、根据专业不同以及实验学时,由任课教师以及实验老师选定实验内容。 建筑工程学院给排水实验室 编者:杨永 2014.5

实验一 雷诺实验指导书 一、实验目的: (一)观察实验中实验线的现象。 (二)掌握体积法测流量的方法。 (三)观察层流、临界流、紊流的现象。 (四)掌握临界雷诺数测量的方法。 二、实验仪器: 实验中用到的主要仪器有:雷诺实验仪、1000mL 量筒、秒表、10L 水桶等 三、实验原理: 有压管路流体在流动过程中,由于条件的改变(例如,管径改变、温度的改变、管壁的粗糙度改变、流速的改变)会造成流体流态的变化,会出现层流、临界流、紊流等现象。英国科学家雷诺(Reynolds )在1883年通过系统的实验研究,首先证实了流体的流动结构有层流和紊流两种形态。层流的特点是流体的质点在流动过程中互不掺混呈线状运动,运动要素不呈现脉动现象。在紊流中流体的质点互相掺混,其运动轨迹是曲折混乱的,运动要素发生脉动现象。 雷诺等人经过大量的实验发现临界流速与过流断面的特征几何尺寸管径d 、流体的动力粘度μ和密度ρ有关,即()ρμ、、d f u k =。由以上四个量组成一个无量纲数,称为雷诺数e R ,即ν μρ ud ud R e ==

流体力学实验报告册_1

流体力学实验报告册 篇一:流体力学实验报告 流体力学实验组 班级化33姓名吴凡灿学号成绩 实验时间第6周周日同组成员芦琛琳、董晓锐 一、实验目的 1、观察塔板上气液两相流动状况,测量气体通过塔板的压力降与空塔气速的关系;测定雾沫夹带量、漏液量与气速的关系; 2、研究板式塔负荷性能图的影响因素,作出筛孔塔板或斜孔塔板的负荷性能图;比较筛孔塔板与斜孔塔板的性能; 3、观察填料塔内气液两相流动状况,测定干填料及不同液体喷淋密度下填料层的阻力降与空塔气速的关系; 4、测定填料的液泛气速,并与文献介绍的液泛关联式比较; 5、测定一定压力下恒压过滤参数K、qe和te; 6、测定压缩性指数S和物料特性常数K。 二、实验原理 1.板式塔流体力学特性测定塔靠自下而上的气体和自上而下的液体逆流流动时相互接触达到传质目的,因此,塔板传质性能的好坏很大程度上取决于塔板上的流体力学状态。当液体流量一定,气体空塔速度从小到大变动时,可

以观察到几种正常的操作状态:鼓泡态、泡沫态和喷射态。当塔板在很低的气速下操作时,会出现漏液现象;在很高的气速下操作,又会产生过量液沫夹带;在气速和液相负荷均过大时还会产生液泛等几种不正常的操作状态。塔板的气液正常操作区通常以塔板的负荷性能图表示。负荷性能图以气体体积流量(m3/s)为纵坐标,液体体积流量(m3/s)为横坐标标绘而成,它由漏液线、液沫夹带线、液相负荷下限线、液相负荷上限线和液泛线五条线组成。当塔板的类型、结构尺寸以及待分离的物系确定后,负荷性能图可通过实验确定。传质效率高、处理量大、压力降低、操作弹性大以及结构简单、加工维修方便是评价塔板性能的主要指标。为了适应不同的要求,开发了多种新型塔板。本实验装置安装的塔板可以更换,有筛板、浮阀、斜孔塔板可供实验时选用,也可将自行构思设计的塔板安装在塔上进行研究。 筛板的流(本文来自:小草范文网:流体力学实验报告册)体力学模型如下: 1) 压降 ?p??pc??pl 式中,Δp—塔板总压降,Δpc—干板压降,Δpl—板上液层高度压降,其中 ?pc?0.051?vg( u02

水力学工程流体力学

水力学工程流体力学 实验指导书及实验报告 专业农田水利班级 学号姓名 河北农业大学城乡建设学院水力学教研室

目录 (一)不可压缩流体恒定流能量方程(伯诺里方程)实验 (1) (二)不可压缩流体恒定流动量定律实验 (4) (三)雷诺实验 (8) (四)文丘里实验 (10) (五)局部水头损失实验 (14) (六)孔口与管嘴出流实验 (18)

(一)不可压缩流体恒定流能量方程(伯诺里方程)实验 一.实验目的要求: 1.掌握流速、流量、压强等动水力学水力要素的实验两侧技术; 2.验证恒定总流的能量方程; 3.通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。 二.实验装置: 本实验的装置如图1.1所示,图中: 1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.溢流板; 5.稳水孔板; 6.恒压水箱; 7.测压计; 8.滑动测量尺; 9.测压管;10.实验管道;11.测压点;12.毕托管;13.实验流量调节阀。 三.实验原理:

在实验管路中沿管内水流方向取n 个过水断面,可以列出进口断面(1)至断面(i )的能量方程式(2,3,,i n =??????) 1i z + +=z +++22 1 1 1122i i i w i p v p v h g g 取121n a a a ==???=,选好基准面,从已设置的各断面的测压管中读出z+ p 值,测出通过 管路的流量,即可计算出断面平均流速v 及2 2v g ,从而即可得到各断面测管水头和总水头。 四.实验方法与步骤: 1.熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2.打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3.打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测管水头的变化情况。 4.调节阀13开度,待流量稳定后,侧记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。 5.再调节阀13开度1~2次,其中一次使阀门开度最大(以液面降到标尺最低点为限),按第4步重复测量。 五.实验成果及要求: 实验台号No 1.把有关常数记入表1.1 表1.1 有关常数记录表 水箱液面高程0?= cm,上管道轴线高程s ?= cm 。 注:(1)打“*”者为毕托管测点(测点编号见图1.2) (2)2、3为直管均匀流段同一断面上的二个测压点,10、11为弯管非均匀流段同一断面上的二个测点。 2.量测(z+ p )并记入表1.2。

相关主题
文本预览
相关文档 最新文档