当前位置:文档之家› 2020年车联网行业研究

2020年车联网行业研究

2020年车联网行业研究
2020年车联网行业研究

2020年车联网行业研究研究

导语

中国汽车市场在经历一段低迷期后已触底且正在反弹。从近5年情况来看,每年增速均超过20%。预计2020 年总规模有望达到4330 亿元。

来源:东莞证券

一、车联网承前启后有机结合,引领未来智慧交通(略)

2019 年3 月,工信部部长苗圩曾表示,5G 应用80%将用于物和物之间的通讯,以无人驾驶汽车为代表的5G 技术应用可能是最早的应用。然而,无人驾驶汽车从2016 年起就开始饱受争议,因为每年都会出现以特斯拉为代表的无人驾驶汽车发生一起又一起的交通事故,严重的或造成人员伤亡。因此,车联网这一新概念逐渐进入管理者的视野。车联网是借助具备高速率、大容量、低延时、高可靠特点的5G 和新兴通信技术LTE-V2X,以车内网、车际网和车载移动互联网为基础,按照约定的通信协议和数据交互标准,在车内、车与车、车与路、车与人、车与服务平台之间进行无线通讯和信息交换的大系统网络,是能够实现智能化交通管理、智能动态信息服务和车辆智能化控制的一体化网络,进而实现“人-车-路-云”结合为一体的新生态,是物联网技术在交通系统领域的典型应用。

二、5G 与V2X 技术相辅相成,合力打造智能汽车互联

2.1 5G 通信技术奠定车联网发展基石

2.1.1 车联网,5G 相对4G 大有作为

因为5G 具有上行大带宽,下行低时延高可靠的特点,所以相对于4G,5G 适用于远程驾驶。开始是由远程控制的车辆将实时音视频、声音、震动、味道等经视频编码后通过5G 传到云端,再经视频解码后传给人。在人收到前方传来的信号后,通过直接控制或者远程指示下达车辆控制指令,经5G 传输给远程驾驶车辆,进而实时进行机械控制。相对4G,因5G 上行宽带最高可达10G,可在每平方公里内支持至少800 辆车的数据传输。也正是因5G 的下行时延小于5ms,可支持车辆以60km/h 的速度行进,真正地满足了人们的日常所需。安全保障作为出行的刚需,5G 较为可靠。不仅如此,5G 还可以让我们身临其境,获取丰富的驾驶感知信息。

2.1.2 5G 助推汽车广域移动传感网形成

5G 初期发展以eMBB 为主,后续逐步支持mMTC 和URLLC。eMBB 是增强移动宽带,主要针对的是大流量移动宽带业务。mMTC 是超高可靠超低时延通信,可在无人驾驶等业务应用(3G 响应为500ms,4G 为50ms,5G 要求0.5ms);mMTC 是大规模物联网,针对大规模物联网业务。5G 可实现高密度接入,最高可达每平方公里一百万个连接数密度,峰值速率在特定场景下可高达20Gbps,毫秒级的端到端时延,每平方公里数十Tbps 的流量密度,支持最高1Gbps 的用户体验速率,每小时500Km 以上的移动性能和数十Gbps 的峰值速率。

2.1.3 5G 助力车联网走向智能时代

车联网早在2G、3G、4G 时代已经有所应用,但只能实现部分较为简单的信息娱乐功能。从1980 年的1G 到1990 年的2G,再到21 世纪的3G,到如今的4G、5G,随着通信技术推陈出新,车联网也从最初的传统汽车时代升级到拥有车内网、车载通信、车际网以及未来的车载互联网。近几年,从2009-2014 年的网联阶段发展到2015 年至今的智能阶段,再到未来2025 年后汽车实现自动驾驶。其中,车联网是实现智能驾驶以及自动驾驶的关键前提。

车联网最终目标是要实现汽车完全智能,使汽车具备认知和自动驾驶能力,实现真正的无人驾驶,完全解放驾驶者双手。5G 的性能目标是提高数据速率、减少延迟、节省能源、降低成本、提高系统容量和大规模设备连接。基于5G 诸多特点,应用云计算、人工智能、大数据等新兴技术,万物互联触手可及。

应用新兴的5G 和V2X 技术搭建一个完备的无线通讯和信息交换的大系统网络,是能够实现“人-车-路-云”结合为一体的新生态的重要一环。

2.1.4 5G 分布式网络助力全时空自动驾驶

自动驾驶对网络的实时性、移动性和QoS 保障要求极高,基于高网络能力的保障下当前主流车企/巨头互联网公司锁定自动驾驶应用的三大前景场景:1、高速公路行驶:高速公路道路环境相对封闭/稳定、行驶占据一半以上驾驶总时间,引入自动驾驶可缓解疲劳

2、自动代客泊车:停车位资源紧张、停车取车难耗时多,引入自动驾驶可节约时间

3、物流低速运输:封闭园区/港口/矿场及工厂等按照固定路线低速物流运输,引入自动驾驶能节约人力成本

在车联时代,全面的无线连接可以将诸如导航系统等附加服务集成到车辆中,以支持车辆控制系统与云端系统之间频繁的信息交换,减少人为干预。以自动驾驶为例,端到端价值链如上图所示。运营商在车联网领域的商业模式可以分为B2C 和B2B 两种在保障要求极高,基于高网络能力的保障下当前主流车企/巨头互联网公司锁定自动驾驶应用的三大前景场景。

2.2 V2X 是实现自动驾驶必要条件,C-V2X 或后来居上

2.2.1 DRSC 与C-V2X 并驾齐驱,两种技术各有所长

实现汽车智能互联是实现“人-车-路-云”结合为一体的新生态,其应用的技术就是V2X,V2X(包括V2N,V2I,V2P,V2V 等等)的实现主要有DSRC 和C-V2X 两类技术,C-V2X 或后来居上正成为主流方向。

1)DRSC

DSRC(Dedicated Short Range Communication)为专用短程通信,是以IEEE802.11p 协定为基础的主要用于单向或双向短程到中程的无线通信技术。在1999 年10 月,美国联邦通信委员会(FCC)在5.9GHz 频段分配了75 兆赫的频谱,将其供智能交通系统(ITS)使用,现在也是实现V2X 两种技术之一。

DSRC 在实现V2V 时,可使车辆之间相互直接通信,而不涉及蜂窝技术或其他基础设施。每辆车以安全匿名的方式每秒发送10 次其位置、航向和速度等等。一定范围内的所有车辆都将接收到该信息,并且每台接车会根据该信息自动评估发送车所带来的风险。DSRC 在实现V2I 时,使车载设备(OBU)与路侧基础设施(RSU)进行通信,路侧设施可以获取附近区域车辆的信息并发布各种实时信息。DSRC 是以网络安全最大化为准则设计的,接收信号的车辆会验证接收到消息的真实性,但不会暴露车辆的身份,因此不会侵犯司机的隐私。DSRC 生态系统实现各种功能及全面测试V2X 应用程序已超过十年。DSRC 提供了一套完备的相互操作的解决方案。DSRC 的关键优势是不需要其他传感器就可以“看到周围的角落”。拥有高机动性的DSRC 技术即使突然检测到障碍物,也会以高达500 公里/ 小时的速度来处理快速变化的环境,且其射程超过1 公里。DSRC 使马路的使用者互相连接成为可能,为V2V 和V2I 的

可靠性提供了保障。欧盟委员会认为,使用此技术有望在2050 年使当地机动车事故发生几率降至0。

2)C-V2X

C-V2X,即蜂窝车用无线通信技术。目前市场正在向4GC-V2X 升级,5GC-V2X 正在标准化过程中,未来会随着汽车智能互联的落地同步到来。C-V2X 得到了许多移动运营商、主要移动设备制造商和汽车制造商的支持,包括奥迪(Audi)、宝马(BMW)、戴姆勒(Daimler)、福特(Ford)、PSA、上汽(SAIC)、特斯拉(Tesla)和丰田(Toyota)。移动运营商、设备供应商和汽车制造商正联手对C-V2X 进行测试。中国将成为首批部署C-V2X 的国家之一,而一些欧洲国家也可能成为采用C-V2X 的先锋。2019 年,13 家中国品牌车企联合推出中国车企C-V2X 商用路标,将在2020 年下半年到2021 上半年量产支持C-V2X 的汽车。

V2X 是随802.11p 引入的,并支持一组有限的基本安全服务。随着3GPP 第14 版的发布,C-V2X 可以扩展到支持更广泛、更丰富的服务:从低带宽安全应用到高带宽应用,如多媒体信息等。3GPP 第15 和16 版通过提供更大的范围、更高的密度、更高的吞吐量、更高的可靠性、高度精确的定位和超低的延迟,将支持更多的V2X 服务,如:编队行驶、高级驾驶、传感信息交互和远程驾驶等。

2.2.2 C-V2X 或优于DRSC,中国车联网技术有望弯道超车

C-V2X 技术可检测更长的范围,使驾驶更可靠。基于链路级仿真分析,C-V2X 视距(两车之间没有遮挡时)V2V 距离长达443 米,非视距(两车之间存在障碍物遮挡时)V2V 距离为107 米;相对于此,DSRC 的视距V2V 距离仅

有240 米,非视距V2V 距离仅为60 米。C-V2X 技术拥有更长的检测范围,可以对突发的或潜在危险情况提供更早的警报以及更高的可见度,这使得机动车在高速行驶时仍能及时停止,避免危险情况。以在结冰和正常道路情况下,一辆在盲弯后的伤残车辆向驶近的车辆发送警报的场景作为例子。若使用DSRC,后面接近的车辆只能以每小时28 英里和每小时46 英里的最高速度分别在结冰和正常道路上行驶,以便遇到突发状况能及时停止。若使用C-V2X,来袭车辆可在更远的距离更早地收到警报。因此,即使应用C-V2X 技术的汽车在冰上和正常道路条件下以每小时38 英里和每小时63 英里的速度行驶,仍然能及时停下。

行径盲区提供更高可见度。在双向单车道的公路上驾驶时,若前车车辆限制了反向道路的可见性,驾驶者或难以抉择是否要超越前车,此时车联网技术或能

较好地解决该问题。通过V2V 通信,第二辆车可以发送报警信息,第一辆车通过报警信息决定是否要通过卡车。拥有更长监测范围的C-V2X 使第一辆车更早地收到警报,即使行车速度较使用DSRC 时更高,车辆仍能安全实施超车。

资源与能量分配C-V2X 表现更佳。在拥堵条件下,C-V2X 可使车辆在规定时间内定期对周边车辆发送车辆安全信息。C-V2X 的设计目的是利用周期性地发送信息的方式为后续将要到达的机动车预先分配资源。这种半持久调度机制确保后续机动车到达时有资源可用。后续机动车不需要争夺资源,因此C-V2X 在车辆密度增加时可依旧保持低延迟。

此外,当流量负载较高时为了提高信息通过量,C-V2X 技术选择机动车最合适的资源而不是第一个可用资源进行信息传输。未通过待处理的车辆首先测量短时间内平均可用信号资源的相对能量水平。然后,C-V2X 技术对信号资源块进行排序,并在那些具有最低相对能量水平的资源块中选择一个进行传输。在其他发射车辆也在发送并接收信号时,这种最小能量资源选择方案能够提供更好的信号质量。

C-V2X 数据包接受率更高,可靠性更高。无论是以每小时250 公里的速度或以每小时140 公里的速度,在DSRC 与LTE-V2V 在发射器-接收器距离相同的情况下,LTE-V2V 的数据包接收率大幅高于DSRC 的数据包接收率,这使得LTE-V2X 数据包接受范围更大,LTE-V2X 技术也更加稳定可靠,发生意外的可能性也更小。基于通信机制、车辆间的资源传输方式、信道编码、重新发送技术、波形、资源选择方式等技术特点分析,C-V2X 相对DSRC 都显得更加可靠。

C-V2X 的研发与推广获得了全球汽车和电信行业领导者的支持。中国龙头公司也着重布局C-V2X,在LTE-V2X 技术标准的研究制定过程中有中国厂商包括华为、大唐的深度参与。除此之外,中国信科集团旗下大唐高鸿与阿尔卑斯阿尔派联合宣布,双方合作打造的新一代C-V2X 车规级模组DMD3A 生产线顺利落成并投入量产使用。这意味着大唐高鸿车规级模组DMD3A 已开

始批量生产,产能提升明显,并可基本满足智能网联产业链的应用需求。且我国现已具备LTE-V2X 自主知识产权。

C-V2X 未来发展路径清晰,前景可期。对于道路运营商、汽车制造商和移动运营商,C-V2X 与其他专的车辆连接技术相比具有多种技术优势。与DSRC 不同,C-V2X 在涉及安全、导航和综合运输系统领域可以有广泛的应用。使用蜂窝系统的主要优点之一是,C-V2X 可以使用相同的技术以端到端的方式处理所有V2X 应用程序。这使得C-V2X 具有很强的可扩展性和未来的可验证性。此外,作为3GPP 标准系列的一部分,C-V2X 提供从LTE 到5G 的清晰演进路径,因此获得广泛的支持。

三、先进国家带动产业动作频频,国内政策强势扶持产业(略)

3.1 国外针对推进智能网联汽车发展动作频频

3.2 国内政策频出势头强劲,智能汽车互联先导区示范区并行

四、车联网产业链增速稳定,2025 年前规模或超万亿

4.1 车联网市场空间巨大,产业链绵长稳定

车联网目前处在萌芽期,行业增长潜力巨大。在5G 以及人工智能等新一代信息技术处于高速发展的浪潮中,在汽车行业从传统机械设备朝着智能化、网联化方向发展过程中,车联网行业作为新一代信息技术与汽车行业的新结合体,正迎来明朗的发展机遇。据英国金融时报报道,全球最大汽车零部件供应商之一的法雷奥认为,中国汽车市场在经历一段低迷期后已触底且正在反弹。从近

5 年情况来看,每年增速均超过20%。预计2020 年总规模有望达到4330 亿元。由于未来几年车联网上下游产业链逐渐完善,技术逐步成熟,且由于规模经济的原因,每年规模增速可能持续增加。就按照每年增速20%计算,2025 年车联网行业规模也将达到1.1 万亿元。

车联网产业链上游主要为元器件供应商,其中包括传感器供应商、通信芯片供应商、通信模组供应商、算法供应商。车联网产业链中游主要为终端设备供应商、整车厂商和软件开发商。其中,终端设备供应商主要包括V2X 芯片及模组供应商,V2X RSU 供应商,V2X OBU 供应商,CA 平台供应商。车联网产业链下游包括内容服务提供商、通信运营商、TSP、测试验证厂商。

4.2 车联网上游竞争激烈

传感器包括车载视觉系统、毫米波雷达系统和超声波雷达系统等。毫米波雷达传输距离远,在传输窗口内大气衰减和损耗低,穿透性强,今年市场增幅明显。根据佐思产研雷达月报的跟踪研究,77GHz 雷达与24GHz 雷达的出货量差距逐步缩小,最终在2018 年12 月实现了反超。原来预计77GHz 雷达出货量在2020 年超过24GHz 雷达,实际出货量的超越时间提前到了2019 年,超出了预期。近年来,随着国内汽车主动安全相关政策的逐步实施,以及汽车智能化向中低端车型的快速渗透,车载毫米波雷达传感器装配正在加速普及。根据《2019-2020 年全球与中国汽车毫米波雷达产业研究报告》数据显示,2019 年全年中国乘用车市场毫米波雷达安装量达517 万颗,同比增长44.37%。其中77GHz 增速显著,为69.3%。以德国大陆24GHZ-SRR308-21 毫米波雷达(售价约5500 元)和德国大陆77GHZ-ARS408-21 毫米波雷达(售价约3500 元)为例,其计算出2019 年中国毫米波雷达传感器规模约233 亿。近期,高工智能汽车研究院发布《2020 年一季度车载毫米波雷达搭载量报告》,报告数据显示,2020 年一季度自主及合资品牌前装搭载77GHZ 毫米波雷达82.34 万颗,同比上年同期增长15.94%,显示出毫米波雷达的市场需求量仍处于高增长态势。与毫米波雷达对比,超声波雷达成本虽然最低,但探测距离短,在未来高速智能互联汽车时代应用领域较狭窄,市场规模仅数十亿。摄像头因其成本较低廉,可实现特征类符号的检测与识别,如车道线检测、交通标志识别等,也受到人们的追捧。但在恶劣天气或光线较差的环境下效果较差。但单一类型传感器不能全场景适用,多传感器融合是主要发展趋势。故其市场规模也稳步增长。未来传感器行业规模有望破千亿。

除了传感器,通信芯片与通信模组也不可或缺。据移远通信2019 年年度报告数据显示,公司在2019 年营收超40 亿,上年同期为27 亿,年增幅超50%。其中研发费用高达3.6 亿元,占营收的10%,从而体现出这个芯片模组行业产业逐渐升级的进程。据专注制作物联网MCU 通信芯片华西电子公司发布的2019 年年度报告数据显示,2019 年公司实现营业收入7.57 亿元,同比增长59.49%;实现归属上市公司股东净利润1.59 亿元,同比增长68.83%。作为国内龙头企业,华为也不甘落后,华为于发布最强算力AI 芯片昇腾910、全场景AI 计算框架MindSpore,推出全球最快AI 训练集群Atlas900 及华为云昇腾集群服务。基于昇腾系列AI 芯片的AtlasAI 模块/板卡/服务器/集群、MDC 智能驾驶计算平台和华为云昇腾云服务获得广泛应用,与100 多家AI 领域ISV 伙伴形成合作,服务500 多个行业项目,与18 家主流车企和集成商在自动驾驶等领域深入合作。实现了从移动终端芯片向全场景终端芯片布局的转变,推出多款面向不同类型的终端处理器,如全球首款5GSoC 麒麟9905G,业界首款获得蓝牙5.1 标准认证的BT/BLE 双模SoC 麒麟A1 等。除此之外,2019 年10 月,华为推出全球首款5G 商用工业模组,携手50 多家合作伙伴共同开启5G 使能千行百业的时代,截至2019 年底,全球已经有超过10 个厂商发布30 多款5G 模组。通信芯片与通信模组在未来定会进一步扩大。据华为预测,2025 年物联网设备数量接近1000 亿个,故芯片模组数量至少达1000 亿个,千亿级规模的芯片模组市场将逐步形成。

算法作为车联网上游不可或缺的一部分,其应用市场潜力巨大。中科创达在智能物联网业务板块致力于开发TurboX 智能大脑平台,其中包括了核心计算模

块SoM、操作系统、算法以及SDK 的一体化解决方案。根据2019 年年度报告数据显示,中科创达营收18.29 亿元,较2018 年14.64 亿元同比增加24.74%。除此之外,根据工信部发布的《2019 年软件和信息技术服务业统计公报》,2019 年全国软件和信息技术服务业规模以上企业超4 万家,累计完成软件业务收入7.17 万亿元,同比增长15.4%。根据工信部发布的《软件和信息技术服务业发展规划(2016-2020 年)》,到2020 年,软件产业业务收入突破8 万亿元,年均增长13%以上。软件行业未来有望继续保持高速增长的态势。

4.3 车联网中游规模潜力巨大

在初期RSU 覆盖需求中,十字路口为重点区域。根据调研,一般十字路口需要较为高等级RSU 设备,并根据路口实际需求需要1-2 个RSU 设备关联信号灯、指示牌、摄像头等。考虑到城市间政府财政力度及技术水平等情况的差异,我先统计出全国一二线各城市交叉路口数量。全国一二线各城市总计交叉路口数量为662784 个。根据交通运输部《2019 年交通运输行业发展统计公报》显示,2019 年年末全国公路总里程为501.25 万公里,全国二级及以上等级公路(二级、一级和高速)里程67.1675 万公里,合计占公路总里程13.4%。三、四级公路以县、村道为主,我们暂不计入规模建设目标范围中。以RSU 覆盖半径范围300-500 米计算,为保证合理覆盖,平均一公里需要两个RSU,合计约135 万个RSU。

我们将RSU 天线布局分为三个阶段,初期保守渗透率为10%,中期保守渗透率为25%,成熟期保守渗透率为50%。初期、中期、成熟期的新建比率分别为10%、15%、25%。经市场调研,RSU 售价区间为3 到20 万不等,取众数10 万计算,初期RSU 设备建设费用为234.417 亿元,中期RSU 设备建设费用为351.627 亿元,成熟期RSU 设备建设费用为586.044 亿元。故按保守情况计算,RSU 设备各阶段建设费用总计约1172.088 亿元。若相应时期采取激进渗透率(25%、45%、75%)计算,RSU 设备各阶段建设费用总计约1758.132 亿元。若要满足在三四线城市及三四级公路或全覆盖部署RSU 的需求,RSU 设备建设规模有望破五千亿。

从市场层面来看,智能驾驶的推进进程不仅取决于RSU 的覆盖率,还取决于OBU 的渗透率。据公安部统计,2019 年全国新注册登记机动车3214 万辆,机动车保有量达3.48 亿辆。每台OBU 设备1000 元计算,2020 年OBU 设备总规模约为3480 亿元。

OBU 设备主要分为前装市场和后装市场。前装市场由汽车品牌厂商统一采购,故汽车品牌厂对产品质量要求高,产品需求量大,产品管理更细致,故唯有一些规模较大、能力较强的企业会和汽车品牌厂合作。所以前装市场主要以博世、电装等国际零部件巨头厂商为主,国内主要有慧瀚、英泰斯特等。后装市场由汽车经销商或车载电子产品经销商销售安装,生成成本较低,技术要求不高,更新频次较快,我国车载终端厂商在后装市场形成了较强的竞争力。

随着我国车载终端厂商经过多年的发展,产品质量逐年提升,产品规模逐年增加,产品技术逐步提升,产品管理逐步系统化。越来越多的国内厂商从后端市

浅析我国车联网的发展现状及未来发展趋势

浅析我国车联网的发展现状及未来发展趋势 文/李兆荣 从09年G-Book和Onstar引入中国,09年被业界定位成中国的Telematics元年以来,汽车信息化的概念就从来没有停止过,甚至越来越热,汽车行业没人不提Telematics,眼下的汽车产业,Telematics代表着先进,代表着高端,代表着创新,中国的汽车业仿佛从09年开始已然进入了T时代。T的热度在2010年逐渐被一个新的名词所取代,这就是车联网。2010年10月28日在无锡举行的中国国际物联网(传感网)大会传出消息,汽车移动物联网(车联网)项目将列为我国重大专项第三专项的重要项目,并且相关内容已上报国务院,一期拨款有望达百亿级别,预期2020年实现可控车辆规模达2亿。车联网这个名词在物联网的大背景下应运而生,车联网的概念通过这次大会逐渐被放大,现在不管是Telematics还是GPS运营,都被纳入到车联网这个范畴中了。 然而车联网这个概念,从一开始就被烙上私家车的标签。为什么这么讲呢?因为前面讲过,先有Telematics的概念,再有车联网的概念,而二者都属于汽车行业。Telematics概念是因为做乘用车的通用和丰田引入中国的,加上这两年中国乘用车销量的迅速增长,业界把眼光聚焦在乘用车这个领域,所以,提起车联网,大家不约而同想到的就是乘用车厂的Telematics系统,想到的是汽车后市场的DVD导航厂商所推出的类似G-Book这样的系统,仿佛车联网就是乘用车市场的一个系统或平台。当然,不可否认的是乘用车在我国机

动车里所占的比重,我们从中国公安部交通管理局获悉,截至今年6月底,全国机动车总保有量达2.17亿辆。其中,汽车9846万辆,摩托车1.02亿辆。全国私家车保有量达7206万辆,占汽车保有量的73.2%,比2010年底上升1.21个百分点。个人汽车拥有率不断提高,私家车作为民众出行的交通工具日益普及。正因为以上原因,业界产生了一个误区,以为车联网就是私家车的市场,管中窥豹,可见一斑。其实车联网的领域,除了私家车,还有行业用户市场,集团用户市场。 车联网在私家车领域的现状 在私家车市场,你会发现车联网企业一边高调推出车联网的产品,一边又半遮半掩,迟迟不肯全面推广。这是为什么呢?因为不管是车厂主导的车联网产品还是后装市场的车联网产品,都绕不开一个门槛,就是商业模式。有人曾说过,如果车厂标配,车联网可全面开花。情况是这样吗?答案是否定的。我们以车载导航娱乐设备为例,目前车厂只是在中高端车型上安装相应的设备,并没有全面普及到中低端车型。前装市场车载导航设备的装配量和我国汽车1800万辆的产销量相比非常低,因此,前装市场的车载导航设备渗透率也不会很高。反观后装市场,DVD导航市场以30%-50%的速度递增。另一方面,由于后装市场的产品给产业链各方带来了一定的利益,因此,目前通过车厂标配的方式让车联网遍地开花,还尚需时日。 目前国内车厂主导的车联网平台,合资品牌车厂有通用的OnStar、丰田的G-Book以及日产的CarWings+智行;自主品牌车

【完整版】2020-2025年中国车联网和自动驾驶行业市场发展战略研究报告

(二零一二年十二月) 2020-2025年中国车联网和自动驾驶行业市场发展战略研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业市场发展战略研究概述 (6) 第一节研究报告简介 (6) 第二节研究原则与方法 (6) 一、研究原则 (6) 二、研究方法 (7) 第三节企业市场发展战略的作用、特征及与企业的关系 (9) 一、企业市场发展战略的作用 (9) 二、市场发展战略的特征 (10) 三、市场发展战略与企业战略的关系 (11) 第四节研究企业市场发展战略的重要性及意义 (12) 一、重要性 (12) 二、研究意义 (12) 第二章市场调研:2018-2019年中国车联网和自动驾驶行业市场深度调研 (13) 第一节5G推动车联网与自动驾驶腾飞 (13) 第二节5G时代来临,推动车联网与智能驾驶发展 (14) 一、5G具有大流量、低时延、高可靠性等优点 (14) 二、5G赋予车联网更多功能 (16) 三、5G是自动驾驶实现的先决条件 (19) 第三节车联网C-V2X或后来居上,车载终端有望先行爆发 (21) 一、DSRC与C-V2X对比,C-V2X有望后来居上 (22) (1)DSRC (22) (2)C-V2X (23) (3)LTE-V2X完胜DSRC,为车联网的最优解 (25) 二、车联网产业链涵盖芯片模组、终端设备等主要环节 (28) 三、车联网潜在市场规模近万亿 (29) 四、车联网硬件设备有望率先受益 (30) 第四节智能驾驶产业链涵盖感知、决策、执行等环节 (35) 一、智能驾驶产业链 (35) 二、中国或成为最大的自动驾驶市场,未来规模超万亿 (37) 三、ADAS加速渗透,带来行业新机遇 (40) 第五节5G商用箭在弦上,产业链各环节蓄势待发 (44) 一、5G牌照发放,开启商用化进程 (44) 二、产业链各环节进展顺利 (48) (1)芯片及模组 (48) (2)终端设备 (49) (3)整车企业 (49) (4)基础设施 (50) 第六节部分企业分析 (53) 一、均胜电子:安全整合推动业绩增长,汽车电子前景广阔 (53) 二、德赛西威:汽车电子龙头,车联网智能驾驶逐步落地 (53) 三、华域汽车:汽车零部件龙头,智能电动打开成长空间 (54)

浅析我国车联网的发展现状及未来发展趋势

文/李兆荣 从09年G-Book和Onstar引入中国,09年被业界定位成中国的Telematics元年以来,汽车信息化的概念就从来没有停止过,甚至越来越热,汽车行业没人不提Telematics,眼下的汽车产业,Telematics代表着先进,代表着高端,代表着创新,中国的汽车业仿佛从09年开始已然进入了T时代。T的热度在2010年逐渐被一个新的名词所取代,这就是车联网。2010年10月28日在无锡举行的中国国际物联网(传感网)大会传出消息,汽车移动物联网(车联网)项目将列为我国重大专项第三专项的重要项目,并且相关内容已上报国务院,一期拨款有望达百亿级别,预期2020年实现可控车辆规模达2亿。车联网这个名词在物联网的大背景下应运而生,车联网的概念通过这次大会逐渐被放大,现在不管是Telematics还是GPS运营,都被纳入到车联网这个范畴中了。 然而车联网这个概念,从一开始就被烙上私家车的标签。为什么这么讲呢?因为前面讲过,先有Telematics的概念,再有车联网的概念,而二者都属于汽车行业。Telematics概念是因为做乘用车的通用和丰田引入中国的,加上这两年中国乘用车销量的迅速增长,业界把眼光聚焦在乘用车这个领域,所以,提起车联网,大家不约而同想到的就是乘用车厂的Telematics系统,想到的是汽车后市场的DVD导航厂商所推出的类似G-Book这样的系统,仿佛车联网就是乘用车市场的一个系统或平台。当然,不可否认的是乘用车在我国机动车里所占的比重,我们从中国公安部交通管理局获悉,截至今年6月底,全国机动车总保有量达2.17亿辆。其中,汽车9846万辆,摩托车1.02亿辆。全国私家车保有量达7206万辆,占汽车保有量的73.2%,比2010年底上升1.21个百分点。个人汽车拥有率不断提高,私家车作为民众出行的交通工具日益普及。正因为以上原因,业界产生了一个误区,以为车联网就是私家车的市场,管中窥豹,可见一斑。其实车联网的领域,除了私家车,还有行业用户市场,集团用户市场。 车联网在私家车领域的现状 在私家车市场,你会发现车联网企业一边高调推出车联网的产品,一边又半遮半掩,迟迟不肯全面推广。这是为什么呢?因为不管是车厂主导的车联网产品还是后装市场的车联网产品,都绕不开一个门槛,就是商业模式。 有人曾说过,如果车厂标配,车联网可全面开花。情况是这样吗?答案是否定的。我们以车载导航娱乐设备为例,目前车厂只是在中高端车型上安装相应的设备,并没有全面普及到中低端车型。前装市场车载导航设备的装配量和我国汽车1800万辆的产销量相比非常低,因此,前装市场的车载导航设备渗透率也不会很高。反观后装市场,DVD导航市场以30%-50%的速度递增。另一方面,由于后装市场的产品给产业链各方带来了一定的利益,因此,目前通过车厂标配的方式让车联网遍地开花,还尚需时日。 目前国内车厂主导的车联网平台,合资品牌车厂有通用的OnStar、丰田的G-Book以及日产的CarWings+智行;自主品牌车厂有上汽荣威的InKaNet、一汽奔腾的D-Partner、长安汽车的InCall、吉利的G-NetLink。合资品牌的车联网平台发展速度较快,尤其是OnStar,其用户规模已超过20万。自2010年北京车展上推出InKaNet之后,上汽对车联网的推广力度还是比较大,但也只是在荣威350上安装,并没有普及到750、550所有车型,并且在350

车联网网联自动驾驶白皮书

车联网白皮书(网联自动驾驶分册)

前言 车联网是汽车、电子、信息通信、交通运输和交通管理等行业深度融合的新型产业形态,是5G、人工智能等新一代信息通信技术在汽车、交通等行业应用的重要体现。自动驾驶是汽车智能化、网联化发展的核心应用,也是车联网部署发展的核心服务。我国在车联网技术创新、应用实践、产业生态构建等方面已经走在了世界前列,将有利于探索实现一条具有我国特色的网联自动驾驶发展路径。 本文聚焦车联网支持实现自动驾驶应用,从“协同感知、协同决策、协同控制”等不同环节,重点研究分析网联需求、典型应用场景、体系架构和核心关键技术。在此基础上,总结提炼网联自动驾驶发展面临的挑战,包括技术融合、基础设施建设以及商业运营等方面。最终以协同发展总结全文,希望我国能抓住难得的历史发展机遇,坚持网联自动驾驶的协同发展路径,影响形成全球广泛认同。

目录 一、网联自动驾驶的内涵 (1) 二、网联自动驾驶的需求及典型应用 (2) (一)单车智能自动驾驶发展现状 (2) 1.单车智能自动驾驶应用尚未成熟 (2) 2.单车智能自动驾驶仍面临诸多风险 (3) (二)单车智能自动驾驶的挑战和网联需求 (4) 1.环境感知的挑战和网联需求 (4) 2.计算决策的挑战和网联需求 (5) 3.控制执行的挑战和网联需求 (6) (三)网联自动驾驶的典型应用 (7) 三、网联自动驾驶的技术体系架构 (10) (一)网联自动驾驶的技术体系视图 (10) 1.全局视图下的网联自动驾驶技术体系 (10) 2.智能网联汽车视角下的网联自动驾驶技术体系 (12) 3.信息通信视角下的网联自动驾驶技术体系 (13) 4.交通与交管视角下的网联自动驾驶技术体系 (14) 5.网联自动驾驶技术体系的三向视图 (15) (二)网联自动驾驶的协同关键技术 (17) 1.车载视觉感知关键技术 (17) 2.车载激光雷达感知关键技术 (18) 3.车载毫米波雷达感知关键技术 (18) 4.感知融合关键技术 (19) 5.网联无线通信(C-V2X)关键技术 (19) 6.多接入边缘计算(MEC)关键技术 (20) 四、网联自动驾驶的挑战 (22) 五、网联自动驾驶的协同发展政策现状和展望 (25) (一)美欧日等发达地区或国家持续布局自动驾驶 (25)

智能网联汽车与车联网

一、智能网联汽车定义、关键技术、系统构成、功能等 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,使车辆具备复杂环境感知、智能决策、协同控制功能,能综合实现安全、节能、环保及舒适行驶的新一代智能汽车。 智能网联汽车关键技术包括环境感知技术、无线通信技术、智能互联技术、信息融合技术、人机界面技术、信息安全与隐私保护技术等;其系统一般由环境感知层、智能决策层、控制和执行层所构成。 智能网联汽车的功能: (1)交通安全:交通事故率可降低到目前的1%; (2)交通效率:车联网技术可提高道路通行效率10%,CACC系统大规模应用将会进一步提高交通效率; (3)节能减排:协同式交通系统可提高自车燃油经济性20%-30%,高速公路编队行驶可降低油耗10%-15%; (4)产业带动:智能网联汽车产业将会拉动机械、电子、通信、互联网等相关产业快速发展; (5)国防应用:无人驾驶战斗车辆; (6)交通方式的改变:减轻驾驶负担,娱乐、车辆共享,快捷出行。 车联网、智能汽车及智能交通系统的关系: (1)协同式智能车辆控制(智能网联汽车) (2)协同式智能交通管理与信息服务 (3)汽车电商、后服务、智能制造等

二、智能网联汽车、车联网相关政策 2016年7月《推进“互联网+”便捷交通促进智能交通发展的实施方案》规定:加快车联网、船联网建设,在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网的公共服务,扩大网络覆盖面。 2016年11月《关于进一步做好新能源汽车推广应用安全监管工作的通知》规定:自2017 年1月1日起对新生产的全部新能源汽车安装车载终端,通过企业监测平台对整车及动力电池等关键系统运行安全状态进行监测和管理 2017年2月《关于印发“十三五”现代综合交通运输体系发展规划的通知》规定:加快车联网、船联网等建设。在民航、高铁等载运工具及重要交通线路、客运枢纽站点提供高速无线接入互联网公共服务。建设铁路下一代移动通信系统,布局基于下一代互联网和专用短程通信的道路无线通信网。研究规划分配智能交通专用频谱。 2017年7月《国务院关于印发新一代人工智能发展规划的通知》规定:加快布局实时协同人工智能的5G增强技术研发及应用,建设面向空间协同人工智能的高精度导航定位网络,加强智能感知物联网核心技术攻关和关键设施建设,发展支撑智能化的工业互联网、面向无人驾驶的车联网等,研究智能化网络安全架构。 2017年9月,国家发改委透露,已启动国家智能汽车创新发展战略起草工作,将通过制订战略明确未来一个时期我国汽车战略方向,同时提出近期的行动计划,确定路线图和时间表。 2017年12月《国家车联网产业标准体系建设指南(智能网联汽车)》规定:到2020 年,初步建立能够支撑驾驶辅助及低级别自动驾驶的智能网联汽车标准体系。到2025 年,系统形成能够支撑高级别自动驾驶的智能网联汽车标准体系。 2017年12《促进新一代人工智能产业发展三年行动计划(2018-2020年)》,将智能网联汽车作为本次行动计划提出的第一项要大力发展的智能产品,并设定了到2020年建立可靠、安全、实时性强的智能网联汽车智能化平台,形成平台相关标准,支撑高度自动驾驶等目标。 2018年1月《智能汽车创新发展战略》(征求意见稿)规定:到2020 年大城市、高速公路的LTE-V2X 覆盖率达到90%,北斗高精度时空服务实现全覆盖;到2025 年,5G-V2X 基本满足智能汽车发展需要。

车联网及OBD现状及发展

首先讲讲车联网现状。现在行内大家对于车联网的未来看得都比较好,有一些数据也支撑了它的未来的乐观的前景,有一组数据说是到2018年,全球车联网的市场大约能够达到390亿欧元,其中83%是来自于卫星通信。国内在这方面并不落后于欧美国家:在2018年,大约有3000多万辆汽车在通信的情况下提供安全、娱乐的服务。 在2015年,我国的汽车产量预计能够到2500万辆,但是按今年的市场变化,这个数据不一定能实现,前几天我看到一个消息,汽车的库存量急剧增长,预示着它的增速会放缓。大家认为车联网是一个超级的蓝海,从车辆的保有量来看是这样的,但是从车联网市场来看,这只是一个蓝领的市场:车联网从业员工数量有30万人,从业的企业有上万家,这里面没有一家规模性的企业,在国内规模前10名的,一年也只有几个亿的销售额。到目前这一行没有特别富裕的老板,也没有特别富裕的员工。 从车联网的上下游的产业来看,深圳是仅次于上海,排名中国第二的基地,大约有30多家企事业单位,主要原因是沿海和北京、上海的车联网的意识崛起的比较早,参与的企业和单位比较多。从这几年来看,国内的车联网应用主要还集中在后装的市场,所谓的内嵌式的终端市场。这几年的市场的变化,出货量在去年大约是有700万套设备。我们有这么多从业人口,有这么多从业的企业,每一个企业占有的份额还是很低的,在目前中国跟车联网,或者是GPS终端运营商相关联的17家上市企业当中,一年的总销售额大约只有82亿,平均每家只有几个亿。 价格的恶性竞争是目前这个领域当中最显著的特点。这里给了两组数据,一个是乘用车市场,这三年价格的变化,一个是商用车的情况,出货的数量都在增加,但是市场的整体规模并没有增加。从利益链条来看,目前最大的获益者是移动运营,比如说中国移动、联通、电信。因为它是个摆渡的,大家都知道河对岸是车联网,它有一个巨大的市场,大家都要靠摆渡过去,所以它最终是最大的获益者。从第三方运营服务来看,赛格导航、九五一九零、安吉星、G-BOOK、翼卡、车友互联、车音网在国内是规模比较大的。车联网最后的落根它一定是汽车制造厂,当然现在也有几个热门的事件,腾讯、百度和厂商的合作,他们都想拿未来车联网的入口,他们现在是概念和商业意图大于短期之内的实效。 TSP的内容提供商包括地图、安防、道路救援以及还包括智能驾驶、语音识别、图象识别,将它合在一起就是智能汽车。 车联网从整体来看存在如下问题:第一个是没有清晰的商业模式,这是一个大问题,如果有一个清晰的商业模式,一定会出现两三家大的企业,没有出现就说明没有,后装市场是现在主要的情况,但是受到前装市场的挤压是非常厉害的。车联网服务的内容也比较单一,大部分的内容被手机应用取代,互联网技术的入侵会把免费的互联网概念带入移动互联网,这是非常有害的。

《国家车联网产业标准体系建设指南(智能网联汽车)(

《国家车联网产业标准体系 建设指南(智能网联汽车)(2017)》 编制说明 一、背景与概述 (一)定义与内涵 智能网联汽车(Intelligent&Connected Vehicles,简称“ICV”)是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X(人、车、路、云端等)智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能,可实现“安全、高效、舒适、节能”行驶,并最终可实现替代人来操作的新一代汽车。 (二)国内外技术及产业发展现状 作为汽车与信息、通信等产业跨界融合的重要载体和典型应用,智能网联汽车代表了汽车技术和产业未来发展的方向,也是国际汽车产业未来竞争的重要阵地。包括欧、美、日在内的汽车工业发达国家和地区都将智能网联汽车作为汽车产业未来发展的重要方向,通过加强共性技术研发、示范运行、标准法规、政策鼓励等综合措施引导和促进产业发展,并在智能网联汽车发展方面构建了协调、协作机制。 在规划和战略层面,美国从上世纪九十年代初开始,通过实施

“智能交通系统(ITS)”项目,支持智能网联汽车相关技术和产业发展,2009年和2014年分别以网联化和自动驾驶为重点发布战略研究计划,并于2016年发布自动驾驶汽车政策指南。欧盟议会早在1984年即通过关于道路安全的决议,并于1988年正式启动了“车辆安全专用道路设施(DRIVE)”项目,持续资助对智能网联汽车相关技术研发和应用。2015年,欧盟发布GEAR2030战略,聚集汽车、IT、通信、保险和政府等方面,重点关注高度自动化和网联化驾驶领域等推进及合作。日本政府也将自动驾驶和车车通信作为重要方向和目标,通过车辆信息与通信系统(VICS)、先进安全汽车(ASV)等项目支持技术研发与应用。2014年,日本发布《战略性创新创造项目(SIP)》,将自动驾驶作为十大战略领域之一。 在技术和产品层面,欧、美、日等国家和地区的整车企业,如奔驰、宝马、沃尔沃、通用、福特、特斯拉、丰田、日产等已经实现先进驾驶辅助系统,正在普及推动PA级自动驾驶产品的商业化,部分高端品牌已计划推出CA级自动驾驶产品;各国在整个产业链上的合作日益加强,相互持股与并购的情况日益普遍,通信、信息、电子、整车等行业深度融合发展。美国在网联化技术、智能控制技术、芯片技术等方面处于优势地位,产业上、中、下游实力均衡,欧洲拥有强大的汽车整车及零部件企业,日本则在智能安全技术应用上较为领先。 我国政府高度重视智能网联汽车相关技术及产业发展,工业和信息化部、发展改革委、科技部等相关政府部门,先后安排专项资

车联网发展现状调研与未来趋势分析

车联网发展现状调研与未来趋势分析 车联网(Internet of Vehicles, IOV)是将物联网技术应用在交通层面,通过和车辆相关的设备、技术等,对在网络中的行人、车辆以及道路等基础设施进行有效的辨识,并将信息在后端平台通过整合来达到智慧化管理及服务的目的。 在目前的发展中,车联网涉及到到物联网技术(Internet of Things)、智慧运输技术以及智慧城市领域等多方面,并且承担着重要的角色。目前,普遍认为车联网的架构与物联网类似,可以分成以下三层: 一、第一层即感知层,这一层是车辆的智能感测器,其作用是对车辆所需要侦测的资料进行采集与获取,从而实现感知周围状态和环境的目的。对于车辆内部状况的监测,目前主要是通过控制器区域网络(Controller Area Network, CAN)来实现。对于车辆外部环境的监测,目前使用较多的技术有雷达、GPS、方向感应器等。 二、第二层即网络层,是车辆的对外通信,解决车对车、车对基础设施以及车对人的连接,从而达到实现汽车内部于外部多重网络之间的信息传递,并在功能上保证其可服务性与即时性等。 三、第三层即应用层,是智能计算(云运算),车联网是通过云架构来实现的汽车运行讯息平台,为后台大数据提供了整合和信息传递的渠道。 从未来的发展趋势来看,虽然现阶段智慧汽车所包含的技术范围甚广,但是严格说来,真正汽车要做到智慧化,也就是要做到完全自动化并且可以感知周遭一切,这部分并不能仅仅单独依靠车辆本身的运作,还必须跟整体外在环境,包含人、事、物进行完整的关联,才有可能做到完全“智慧”的状况,因此为了达到该状况,将进一步结合更多样化的技术,这些技术包含车辆间互相信息传递与沟通、车辆与交通环境(外在状况)的信息传递与沟通、车辆与必要交通设备及公共设施的信息传递与沟通、甚至包含车辆与使用者的目的及行为的预测与沟通传递。 通过这些状况与情境叙述可发现,现阶段最为重要的关键技术将不再仅是受限于车辆本体,而是将车辆视为一个更广泛的资料集中与发散平台,该平台将可以进一步针对各类型生活状况及交通状况进行连结,甚至预测,为此将帮助车辆进一步有效结合至人们的生活,而该过程即可说是现阶段智慧汽车发展的重要发展契机,这部分的演进,现阶段逐渐以V2X(Vehicle to Everything)做为其代名词,而“V2X”就是将车辆逐渐视为一大型沟通平台,通过网络技术,将所有的相关设备进行连结与连接。 这类型思考运用模式可说是未来通讯及物联网的重要关键,整体而言这不仅是将车辆带到一个新的世代,相对而言甚至将可以有效提升整体生活环境,使得车辆不再仅是单纯的车辆,更是一个庞大的联网与互通机构,该设计将可以有效提升大众的生活品质,更可以进一步带动新一波的产业与技术革命,这或许是现阶段逐渐饱和的信息产品新的应用与新的拓展机会,而这正是为何现阶段信息厂商积极投入该领域,并积极与车商进行竞合的关键。 互联网信息科技的高速发展为人类生活提供了更多样化、更便捷化的可能,依赖于物联网,与车辆工程相关的产业链得到多方面的告诉发展,有助于在未来实现真正的智慧城市。

车联网总结

车联网的现状及趋势 当前车联网的发展应该说还处在初级阶段,对于无人驾驶、无事故、不堵车、智能停车、智能导航等理想的交通状态相比,还有很长的路要走。因此车联网的发展要更针对当前拥有的技术和需求进行设计:一方面去掉那些现阶段难以实现的功能和华而不实的功能;另一方面应用好RFID和传感器方面的最新进展。车联网是物联网的一个应用方面,因此技术上有很多重合,如RFID和传感器,;又有其特点,是对动态信息的实时采集、处理、传输,对传感器要求更高,对海量数据的处理和分析传输是个难题。 一、车联网主体功能现在对车联网的定义表述不尽相同,但主体大致是连接车和路、人和车、车和车以及车与服务中心的一个网络,主要实现车辆的安全、有序驾驶,交通的智能管理、方便的服务等功能。 二、车联网网络架构根据各个科研单位的侧重点不同,研究的目的不同,车联网的网络架构也不相同。《车联网网络架构与媒质接入机制研究》,同济大学,2011年05月18 日,作者:须超,王新红,刘富强。文章提出面向安全应用的车联网无线网络架构及其协同通信协议栈,并对车联网自适应多信道媒质接入协议进行分析。网址如下: 我们也可以按照自己的想法设计一个网络架构,如按照物联网结构也分为感知层、网络层、应用层三层结构。也可以按照功能来设计网络架构。下图为自己设计。根据具体情况可不断调整扩展。 现阶段车联网的两个关键领域为(ITS)智能交通技术和(RFID)射频识别技术。智能交通包括传感技术、通信技术、数据处理技术和信息发布技术等;射频识别技术可应用于车辆通信、自动识别、移动定位、远距离监控

等方面。中国科学院、北京邮电大学、同济大学等几所院校在物联网领域有一定能力。 国内车联网发展资金来源主要有政府专项资金、国有大企业、民间基金三个方面,主要来自于政府支持和国有企业投资。 三、车联网相关科研院校及公司 1.目前车联网终端设备领先的是金龙客车与杭州鸿泉合作开发的G-BOS 设备,即苏州金龙智慧客车3G客车。其车载设备终端整合了数据采集、硬盘录像、车辆身份信息、可视倒车、行车记录仪、GPS导航等主要功能。获得相关专利两项:司机行为监测方法和基于3G无线网络海量实时数据采控装置。 2.同济大学在车联网的应用示范与原型系统搭配方面有实力,它提出的车联网架构包括三个方面:被服务终端(汽车、列车、路上行人等),基础设施(热点接入点、基站、卫星、交通设施等),交通管理和控制实体(交通控制中心)。 3.长安汽车与清华大学:侧重于汽车安全技术,主动安全技术,国外已较为成熟。 4.力帆汽车、长安汽车与重庆邮电大学:国内首个“智能驾驶与车联网实验室”,2011年4月11日成立。 5.车联网车载系统设备产品还有中国电信、华为的车载模块/EVDO车载模块,江苏天泽的天泽星网,潍柴动力的共轨行系统等。 6.国内的宝信软件是公路信息化整体解决方案供应商,启明信息是车载端信息系统开发商,新国都开发了自助缴费系统。

5G+V2X车联网自动驾驶

人工智能及识别技术 本栏目责任编辑:唐一东 5G+V2X 车联网自动驾驶 白云龙,杨开欣,陈晓韦,董海博,郭谨玮 (天津卡达克数据有限公司,天津300393) 摘要:汽车物联网技术的发展是实现自动驾驶的基础,5G+V2X 技术将为车辆创造一个无形的安全网,加强和深化对未来 交通管理的影响,5G 高速可靠的数据传输,增强了车辆对各种场景的应变和处理能力,加快了与路侧终端和交通管理站的通信速度,使未来的汽车驾驶能够不只依赖于车身固定的传感器。关键词:5G ;V2X ;车联网;自动驾驶中图分类号:G642 文献标识码:A 文章编号:1009-3044(2019)08-0129-01 开放科学(资源服务)标识码(OSID ): 以车为载体的车联网信息化服务,可实现行人,车辆与路侧装置的信息一体化的道路交通管理体系,可实现车辆交通路况监测、运营管理、调度管理、自动驾驶以及无人驾驶技术。车联网充分展现了无线通信技术与传感器技术的融合的智能算法决策,提升了车辆辅助驾驶和自动驾驶的功能。车联网的发展趋势将人对车辆的控制降辅助角色,增添了多样的自动驾驶方式、娱乐体验和信息咨询,自动驾驶是顺应时代发展趋势的产物。 15G 通讯 随着5G 技术的快速发展,它已成为通讯技术璀璨的一颗明星,拥有较高的可靠性、低延迟、大带宽的数据通讯能力。支持大连接,可同时接入超大量数据连接形成自组织网络结构,从而使万物互联成为可能,支持车辆间交互满足毫秒级要求。5G 时代,一个崭新的汽车物联网时代呼之欲出,促进了汽车物联网的蓬勃发展,汽车的共享化、数据化、智能化、电动化。为自动驾驶,无人驾驶、V2X 、AR 、VR 等技术提供支持,使未来生活的方方面面更加美好和便捷,5G 是不可阻挡的发展趋势。 2V2X 车路协同 车路协同系统(Cooperative Vehicle Infrastructure System ,简称CVIS)是以道路车辆自身传感器的智能感知与道路交通路侧装置的信息交互数据智能为理念,其基本思想是运用多学科交叉融合的方法与无线网络先进技术。采用物联网技术实现人、车、路三位一体多组时动态信息交互与共享,实现车辆和基础设施之间的智能协调与配合。开展道路协同管理和车辆主动安全控制和,从而实现了交通资源的合理化使用,提升了道路通畅能力,并可避免交通堵塞。车联网核心技术是V2X 无线通信,应用V2X 无线短程通信技术,可打破车辆信息共享技术瓶颈和单车在智能化发展方面的非视距感知,加速实现了汽车自动驾驶功能的普及化。 V2X 技术允许车辆转发自身交通信息,行人通过手机终端接收警示信号,从而使在道路上的人与车都成为交通环境信息收发的节点。互联模式的共享数据经过处理后,可以使驾驶员 和行人更加便捷的获取益于自身出行的交通有信息,主要包括目的地路线、车距、限速限高、电子收费、交通灯、道路施工、交通事故等安全提示信息。可靠的交通辅助信息与优化的交通路线减少了出行的时间,避免了交通拥堵。 35G+V2X 车联网 随着5G 技术的发展成熟,5G 通信技术应用到车联网中,依托5G 技术的可靠性、低延迟、大带宽的数据通讯能力和V2X 短程高校的传输特性,中国汽车技术研究中心设计出国内首个5G+V2X 物联网无人驾驶技术项目试验场,基于车辆与路侧基础终端的信息交互,云平台实时上传数据结合高精度地图运算,交通信息以广播的方式下发,实现了L4级别无人驾驶业务车辆在5G 网络下的应用。 图1智慧园区—无人驾驶测试图 汽车技术不断进步,车联网,自动驾驶模式将使用5G 技术,需要考虑如下3种驾驶场景: (1)自动驾驶场景:自动驾驶需要车自身对周围道路具有“主动的”判断能力,“快速的”响应能力,“可靠的”决策能力,这些特性需要5G 通讯技术的较低的端到端数据毫秒级延迟,数据传输速度可靠性保证为每秒几十Mbit/s 。(下转第132页) 收稿日期:2019-01-05作者简介:白云龙(1989—),男,硕士研究生,工程师,研究方向:仪器仪表,电气电子,嵌入式开发。 129

中国车联网产业研究-行业概况

中国车联网产业研究-行业概况 (一)行业概况 1、车联网产业发展概况 近年来,随着中国城市化进程的推进和机动车数量的快速增长,城市道路交通量不断增加,各种交通问题凸显,例如交通拥堵、交通事故和尾气污染等,使城市承载能力与社会运行效率受到了严峻挑战。另一方面,近年来居民对交通运输的需求呈现多样化、多层次的特征,对交通的安全性、便捷性、舒适性、时效性提出了更高的要求。而智能交通可切实转变交通发展方式,通过推动交通供给侧结构性调整,增强交通对经济发展的支撑作用。尤其是智能网联汽车通过信息技术将人、车、路有机地联系在一起,在提高现有交通基础设施的运行效率的同时,提高城市承载能力,缓解交通供需矛盾。随着新型城镇化建设的推进和智慧城市相关政策的落实,智能交通行业未来发展空间广阔。 车联网是交通产业智能化的重要载体,通过移动互联技术实现实时通信、实时监测,既满足应用需求也满足监管需求。 车联网是从物联网引申出来的概念,根据中国信息通信研究院发布的《车联网白皮书(2017 年)》,车联网是指借助新一代信息和通信技术,实现车内、车与车、车与路、车与人、车与服务平台的全方位网络连接,提升汽车智能化水平和自动驾驶能力,构建汽车和交通服务新业态,从而提高交通效率,改善汽车驾

乘感受,为用户提供智能、舒适、安全、节能、高效的综合服务。车联网可以通过车辆为车主提供智能导航、娱乐信息、紧急救援以及车辆自身的安全、节能、安防等各项智能服务;车联网也可以对车辆行驶数据进行采集和处理,获取道路交通流量信息;车联网还可以为车辆安全与高效行驶提供帮助。车联网以“两端一云”为主体,路基设施为补充,包括智能网联汽车、移动智能终端、车联网服务平台等对象,涉及车-云通信、车-车通信、车-人通信、车-路通信、车内通信五个通信场景,如下图所示: 车联网产业是依托信息通信技术,通过车内、车与车、车与路、车与人、车与服务平台的全方位连接和数据交互,提供综合信息服务,形成汽车、电子、信息通信、道路交通运输等行业深度融合的新型产业形态,是全球创新热点和未来发展制高点。车联网产业链条长,产业角色丰富,跨越服务业与制造业两大领域,

5G 推动车联网与自动驾驶腾飞

5G推动车联网与自动驾驶腾飞 5G 是车联网和自动驾驶的完美搭配。5G 网络具有高传输速率、低时延、高可靠性等特点,是车联网和自动驾驶的完美搭配。车联网领域,高传输速率使得车内AR/VR、超高清流媒体等业务有望得到应用;智能驾驶领域,低时延高可靠的连接是智能汽车实现L4/5 自动驾驶的关键。5G 的持续推进,有望推动车联网与自动驾驶腾飞。 车联网C-V2X 有望后来居上,2025 年市场规模近万亿。车联网主要有DSRC 和C-V2X 两种技术,DSRC 发展较早,但C-V2X 有望凭借更多应用场景、更低延迟时间、更远通信距离等优势后来居上,成为未来主流技术标准。车联网领域,中国联通预计2020 年国内市场规模将突破2000亿元,2025 年将突破9000 亿元,终端设备OBU、RSU 市场空间分别高达280 亿、1430 亿元。 辅助驾驶加速渗透,2030 年自动驾驶规模超万亿。智能驾驶领域,IHS预计2020 年L1/2 渗透率有望达到40%,2025 年L3、L4/5 渗透率分别有望达到15%、5%。短期市场以ADAS 为主,2020 年国内市场空间约878 亿元,长期看5G 推动L4/5 自动驾驶逐步落地,2030 年国内自动驾驶出行服务收入规模有望突破万亿。 5G 商用箭在弦上,产业链蓄势待发。国内5G 牌照已经发放,C-V2X 进展顺利,第一阶段LTE-V2X 有望于2019-2020 年开始商用部署,为车联网发展奠定良好基础。产业链通信芯片及模组、终端设备、整车企业、基础设施、运营服务等各环节蓄势待发,未来有望大幅受益于车联网及智能驾驶爆发。 5G 时代来临,推动车联网与智能驾驶发展 5G 具有大流量、低时延、高可靠性等优点 5G(5th-Generation),即第五代移动电话行动通信标准,也称第五代移动通信技术,是4G 之后的延伸。根据IMT-2020(5G)推进组,5G 概念可由“标志性能力指标”和“一组关键技术”来共同定义。 其中,“标志性能力”指标指Gbps 用户体验速率,“一组关键技术”包括大规模天线阵列、超密集组网、新型多址、全频谱接入和新型网络构架。面向 2020 年及以后移动数据流量的爆炸式增长、物联网设备的海量连接,以及垂直行业应

中国商用车车联网白皮书-中国汽研

A. 中国商用车车联网行业概览4 B. 中国商用车车联网现状与发展趋势14 C. 中国商用车车联网发展启示38

执行摘要 >中国商用车车联网市场正在经历从“政策监管驱动”向“市场需求驱动”逐步转型,未来受关键技术发展、下游行业需求、各类玩家参与驱动将保持快速发展 –商用车利润来源将不断向后市场转移,相比乘用车,商用车车联网盈利模式更为清晰;从商用车的全生命周期管理角度来看,车联网对TCO潜在成本优化空间巨大,潜在市场价值可达万亿 –预计2025年中国商用车车联网硬件及服务市场规模达~806亿元(CAGR ≈ 28%),从产业链角度看来,围绕商用车全生命周期管理和行业降本增效增值服务的运营服务是未来的行业核心价值所在 –快递快运、汽车物流、电商、危化运输等下游应用行业受不同行业特征驱动,在成本、安全、货物管理和增值服务等领域呈现出不同需求和发展趋势 >从北美、欧洲等成熟市场发展经验来看,中国商用车车联网市场在单车价值等方面还有较大增长空间,同时在数据深入挖掘利用、上下游合作分工等领域有借鉴发展意义 –形成针对行业痛点和核心需求的解决方案,并通过深度挖掘数据价值带来增值服务是制胜关键 –主机厂和第三方玩家可通过安全的协议和技术通道实现数据共享,方便用户并最大化数据价值 >“提升协作整合能力”和“赋能下游行业发展”将成为未来商用车车联网行业两大关键趋势 –形成安全高效的数据共享机制、丰富产业链上下游协作方式,并通过深入挖掘数据价值、制定行业大数据指数等方式赋能行业精细管理和效率提升需求

A. 中国商用车车联网行业概览

云端 云端 管理端 智慧交通 自动驾驶智慧家居 以收集、记录数据为主数据收集和反馈 特征 1.0 基础连接 2.0 人车交互 3.0 车车交互/万物互联 车联网:基于车载设备通过无线通信技术对商用车车辆运行和使用提供服务,以“云-管-端”三部分作为核心组成 云端 数据计算、分析 提供主机厂支持、车队管理、司机用车等服务 数据搜集/处理/运算预测 导航和车辆状态监控为主搭载简单的车载联网硬件终端,以数据收集为主,配套服务较少 终端硬件功能提升,并针对各类需求服务搭载相关功能模块 数据深度挖掘带来全行业价值, 并实现自动驾驶、万物互联 >OEM 自有平台 >2G/3G 、GPS/北斗、车内网… >车机、OBD 、TBOX … >OEM 自建平台/第三方独立平台>4G/5G 、GPS/北斗、LTE-V… >传感器、ADAS 硬件、路侧终端…>第三方独立平台/企业联盟平台>方式多元、标准统一的通讯… >车载导航、通讯模块 云管端目前商用车车联网所在主要阶段 管理端 数据传输 商用车车联网定义:车联网从1.0阶段的"基础连接",到目前2.0阶段以"人车交互"为核心,并逐渐向3.0阶段的"车车交互/万物互联"发展 商用车车联网概念定义 中国商用车车联网行业概览商用车车联网定义

我国车联网现状

;自09年被行业称作车联网元年开始,到今年已经四年了,四年过去了,车联网概念从产生以来其热度从来没有没有减弱过,车联网不但被业界一路看好,甚至吸引其他行业逐步渗透到车联网行业来。车联网发展究竟如何,产业链上的企业是踌躇满志,还是彷徨在路上,甚至是匍匐在现实与理想的边缘?本文从不同角度对车联网的现状做相关的解析,以期能逐一破解车联网发展的怪局,帮助企业理性地进入车联网产业。严格意义上讲,车联网是指是利用先进的传感技术、网络技术、计算技术及控制等技术,对道路和交通进行全面感知,实现多个系统间大范围、大容量数据的交互,对每一辆汽车进行交通全程控制,对每一条道路进行交通全时空控制,以提供交通效率和交通安全为主的网络与应用。车联网有三层,第一是感知层,就是感知系统,这是很多企业正在做的,也是最简单的层面;第二层是互联互通,即车与车、车与路互联互通(注:对于车路互联互通,涉及到智能交通的整个大范畴,本文没有展开来详细分析);第三层是通过云计算等智能计算,调度、管理车辆。中国车联网的发展离不开整车厂的积极参与及推动,尤其是合资品牌,如Ontar和G-book在国内的大力宣传,培育了国内的用户市场,让消费者知道了什么是Telematics,什么是车联网。国产品牌方面,上汽从最初的积极跟进,之后推出了Inkanet,到后来居上,推出iVoKa。iVoKa也是率先将声控技术引入到车联网的国产服务品牌。整车厂的积极参与,将车联网的概念深入到每一个普通消费者。车联网的发展,有两个主要市场,一个是商用车市场,另一个是乘用车市场。商用车市场受政策的影响相对比较大,2010年交通部办公厅发布了《关于加强道路运输车辆动态监管工作的通知》,要求切实加强道路运输车辆动态监管工作,预防和减少道路交通运输事故,自这份通知出台之后,按政策要求,两客一危车辆必须安装相关的车载终端设备,且必须接入到交通部监控平台。部分省市对货运车辆也做了相关的规定,要求8吨以上的货运车辆必须安装车载终端。因此,商用车市场,政策促进了市场的发展,产品和服务平台都有一定的标准(JT/T794-2011),企业的产品都是根据部标来实现的,最终用户的可选择性不多。商用车市场,基本上以B2B的模式为主,且以自上而下的项目形式进行市场推广,无论是在收费方面还是在项目推进方面,要容易很多。而乘用车市场则不然,乘用车市场受政策的影响相对小很多,但最终用户的可选择性就非常多。乘用车市场以B2C 为主,对企业的渠道运作能力、市场推广能力、产品研发实力及商业模式等方面要求非常高,乘用车市场发展这几年没有形成一定的用户规模,就有这个原因的存在。由于商用车市场地域性很强,所以主要市场以后装为主。虽然车厂也推出了相应的品牌,如宇通的安节通,三龙的G-BOS,陕汽重卡的天行健,北汽福田的欧辉,但车厂很难做到这些车联网服务的真正落地。一方面,这些商用车的运营牌照是当地交通部门颁发的,因此,必须接受当地交通部门或安全部门的监管。另一方面,地方交通部门的监管平台必须接入到交通部平台统一监管。因此,无论车上安装了那个品牌的设备,只要不满足交通部或当地交通部门的要求,车辆就无法接入。除了欧辉还未正式上线之外,其他三个品牌的车联网目前都面临着服务的落地问题,甚至可以说,整车投入使用很长时间,但这些随整车配套的车载终端尚未投入使用。 如何加强和传统运营商的合作是整车厂的头等大事。从目前看,商用车车联网的主要目的一方面是应付交通主管部门的检查,另一方面,用于车辆的安全监控。只是实现车连网,与车联网相差还很远。尤其是对于物流行业而言,只是解决了运输过程的透明化管理,并没有为物流公司或车主带来增值服务乘用车市场也分为两大阵营,其一就是以车厂为主导的前装

基于5G的自动驾驶发展趋势

基于5G的自动驾驶发展趋势 随着5G技术和车联网的发展,传统的自动驾驶技术在5G 车联网的助推下,未来的发展前景非常值得期待。基于DSRC 的车联网技术经过十几年的发展,具备较好的覆盖范围,但是受到传输距离短的限制,发展优势不明显;另一方面,基于LTE的车联网技术具备重复利用蜂巢式基础设施与频谱的优势,网络度盖范围更大,也可以平滑演进到5G;5G网络具备高可靠低时延的优势,5G的商用将为LT&V2X提供更强大的性能和更多的可能性。基于5G车联网的自动驾駛场景,可以克服传统自动驾驶技术无法互联的缺陷,进一步提升自动驾驶的性能,减少对高精度传感器的依赖。5G车联网的最终目标是完全自动驾驶和全部联网,这对整个汽车与交通行业都具有很好的推动作用。 5G技术、车联网和自动驾驶(或无人驾驶)是最近几年的科技发展热点。基于专用短程通信(Dedicated Short Range Communications,DSRC)的车联网技术存在一些不足之处,基于5G网络的车联网技术可以提供更抉的传输速率,对自动驾驶的发展具有很好的助推作用。 一、车联网技术

在中国信息通信研究院《车联网白皮书(2017年)》中,给车联网的定义是:借助新一代信息和通信技术,实现车内、车与车、车与路、车与人、车与服务平台的V2X(Vehicleto Everything)全方位网络连接,提升汽车智能化水平和自动驾驶能力,构建汽车和交通服务新业态,从而提高交通效率,改善汽车驾乘感受,为用户提供智能、舒适、安全、节能、高效的综合服务。网络连接、汽车智能化、服务新业态是车联网的三个核心。 车联网是物联网在汽车领域的典型应用,其核心关键是V2X无线通信技术,包括DSRC、5G-V2X、LTE-V2X(Long Term Evolution,长期演进)等。借助于V2X无线通信技术,可以突破单一汽车在智能化发展方面的非视距感知、车辆信息共享等技术瓶颈,助力实现汽车自动驾驶功能的推广应用。 当前,国际成熟的V2X无线通信技术有两种技术路线选择,一是基于IEEE802.11p的DSRC技术,二是我国参与推动的基于LTE的V2X无线通信技术(LTE-V2X)。 (一)基于DSRC的车联网技术 DSRC由物理层标准IEEE802.11P和网络层标准IEEE 1609构成。在此基础上,美国汽车工程师协会(Societyof Auto-motive Engineers,SAE)发布的SAE J2735和SAE JF2945两个标准规范了信息内容和结构。DSRC系统包含了车载装置

相关主题
文本预览
相关文档 最新文档