当前位置:文档之家› 国内无线频谱资源分配图集[图]

国内无线频谱资源分配图集[图]

国内无线频谱资源分配图集[图]
国内无线频谱资源分配图集[图]

国内无线频谱资源分配图集[图]

https://www.doczj.com/doc/a86588847.html, ( 2015/4/14 11:02 ) 国内移动通信频谱分布图:

三大运营商频谱分配情况说明

TDD

FDD

国内无线频谱分析

4G频段分配表

下一代通信系统频率

前不久,国家无线电监测中心与全球移动通信系统协会(GSMA)共同发布了关于未来宽带移动通信与频谱高效利用的合作研究报告。报告显示,我国下一代移动网络将继续以6GHz以下相关频谱为主,包括现有2G/3G频谱的重耕、在《中华人民共和国无线电频率划分规定》中通过脚注标记给移动通信系统的频谱,比如3400-3600MHz、以及WRC-15上为移动通信系统新划分/规划的频谱,目前中国支持的主要有三段:3300-3400 MHz,4400-4500 MHz,4800-4990 MHz。在此基础上,下一代移动网络还将可能使用6GHz以上频谱资源,目前主要面向6-100GHz。结合中国的频率划分、规划、分配和使用情况,报告在6-100GHz提出了十余段值得研究的频率,如下图所示。

电磁波及无线电波段划分

中华人民共和国无线电频率划分图

作者:hr_opt 来源:通信技术沃

论无线电频谱资源在经济建设中的重要作用

龙源期刊网 https://www.doczj.com/doc/a86588847.html, 论无线电频谱资源在经济建设中的重要作用作者:杨宗泽 来源:《经营者》2015年第09期 摘要无线电频谱资源是一种非耗竭、易污染及稀缺的资源,对促进国家经济建设的发展具有重要的意义。文章以无线电频谱资源的特性为出发点,结合无线电频谱资源经济价值的研究基础及研究模型,探讨了无线电频谱资源的经济价值和贡献,旨在为今后的研究提供理论基础和技术指导。 关键词无线电频谱资源经济建设重要作用 一、引言 随着世界各国对无线电频谱资源重要性的认识不断提高,关于无线电频谱资源的竞争在国际日趋激烈。无线电频谱资源现已被各个国家提升到和制海权、制空权同样的地位,是保证信息化战争胜利的重要武器。国家拥有无线电频率的自然属性和经济社会属性,其拥有、配置及管理具有国家主权的特征。由于无线设备的逐日增多,使有限的频率资源日趋紧张使得无线电波也显得越为拥挤。 无线电:无线电技术是通过无线电波传播信号的技术。其原理是导体中随着电流强弱的改变会产生无线电波,在此基础上,在无线电波上可通过调制加载信息加,当电波通过空间传播到达收信端,电波引起的电磁场变化又会在导体中产生电流,通过解调将信息从电流变化中提取出来,就达到了信息传递的目的。 二、无线电频谱资源的特性 由于无线电的这些特性,使其区别于其他资源,合理利用、科学规划和有效管理无线电频谱资源,能够发挥其最大的价值,成为服务经济社会发展的重要资源。所有的无线电业务都是无线电频谱资源是所有无线电业务运行的载体。无线电频率是一种物质,是自然界存在的电磁波,是一种无形的资源,各国间享受均等的利用机会,无线电频谱资源具有以下六种特性: (1)易污染性。无线电频率假如使用不当,容易受到其他因素的干扰,使其无法正常工作,或影响信息传播的准确性及有效性。 (2)非耗竭性。无线电频谱资源既不是可再生资源,也不是不可再生资源,他能够被人们利用,但与其他资源的不同之处在于,其在被利用时不会被消耗掉。这种资源只有适当地使用,才能发挥其应有的价值,不使用及使用方法不当都是一种浪费。 (3)排他性。资源都具有排他性,无线电频谱资源也不例外。即某一频率在一定的时间、频域及地区内正在被使用中,那么其他的设备将无法再使用该频率。

我国频谱资源短缺

在我国,不仅仅是电信行业,国民经济的众多方面,无线电频谱都是无可或缺的重要资 源。随着无线电技术的进步和经济社会的发展,各种用途、各式各样的无线电设备大量涌现,各行各业对无线电频率的需求越来越多。目前的趋势是,随着我国经济的进一步发展,公路铁路运输、航空运输、航海运输对相关的通讯和导航技术,特别是新兴的G PS定位和卫星通讯的需求将进一步加大。届时与这些领域相关的通讯和导航服务,将占去部分无线电频谱频段。有部分频段已经进行了预留。因此,未来留给电信行业,特别是未来4G网络使用的 频段越来越成为稀缺资源。 对我国来说,随着无线通信的飞速发展,频谱资源重新分配利用的情况越来越多:一方 面是3G无线数据业务猛增,一方面却是带宽瓶颈逐渐浮现。长此以往,于三网融合不利, 对物联网发展有所阻碍,更对整个电信业发展不利。根据目前3G业务的发展趋势,用户除了短信和通话业务外,对无线上网业务的需求也越来越大。以此类推,随着4G业务的推出,用户会倾向于使用更多新兴的无线业务,比如视频通话。这就意味着4G网络需要更多的频谱资源,为各类业务提供足够的“车道”。 在2011北京国际4G通信大会上,中国工程院院士邬贺铨指出,TD-LTE的发展缺乏 足够的频率。目前国内已经划定2500-2690MHz的频段给TD-LTE,未来通过演进,TD-LTE 现有的2300-2400MHz的频段也可以使用。据了解,2500-2690MHz是3000MHz以下频段“最后一块地”。如果频谱资源还不能满足需要的话,将考虑从3000MHz以上的频段挤用一部分,而那里是卫星和微波的天下。届时,或出现4G与卫星争抢频谱资源的局面。 物联网是频谱的“饕餮”大户。其业务规模远远大于移动通信。据测算,到2020年,全球物物互联业务与现有人人通信互联的比例将达到30:1。因此,当物联网正式实现,有超过500亿以上的终端需要通过无线方式连接在一起,其对频谱的需求绝不是如今己分配的移动通信和无线接入频率所能承载的。 由此,移动通信的爆炸性增长,甚至物联网的快速演进已经超越了行业发展步伐。如果再不采取行动更新频谱政策,频谱危机将爆发。

解析无线电频谱资源的七大特性

解析无线电频谱资源的七大特性 于2007年颁布施行的《中华人民共和国物权法》第五章第五十条规定“无线电频谱资源属于国家所有”,这是我国首次在法律中明确规定无线电频谱资源的国有属性。那什么是无线电频谱资源呢? 电磁场产生的波在空间以不同的频率传播(电磁场变化的速率被称为频率),这些频率的集合统称为电磁频谱,电磁频谱中3000GHz以下的频率被称为无线电频谱。因此,无线电频谱是自然存在的无线电频率的集合。 无线电频率作为自然界天然存在的一种自然资源,它具有以下6种特性: 第一,有限性。由于较高频率上的无线电波的传播特性,无线电业务不能无限地使用更高频段的无线电频率,目前人类对于3000GHz以上的频率还无法开发和利用,尽管无线电频率可以根据时间、空间、频率和编码四种方式进行复用,但就某一频段和频率来讲,在一定的区域、一定的时间和一定的条件下其使用是有限的。 第二,排他性。无线电频谱资源与其他资源具有共同的属性,即排他性,在一定的时间、地区和频域内,一旦某个频率被使用,其他设备则不能以相同的技术模式再使用该频率。 第三,复用性。虽然无线电频率使用具有排他性,但在特定的时间、地区、频域和编码条件下,无线电频率是可以重复使用和利用的,即不同无线电业务和设备可以进行频率复用和共用。

第四,非耗竭性。无线电频谱资源不同于矿产、森林等资源,它可以被人类利用,但不会被消耗掉,不使用它是一种浪费,使用不当更是一种浪费,甚至由于使用不当产生干扰而造成危害。 第五,传播特性。无线电波按照一定规律传播,不受行政地域的限制,是无国界的。 第六,易污染性。如果无线电频率使用不当,就会受到其他无线电台、自然噪声和人为噪声的干扰而无法正常工作,或者干扰其他无线电台站,使之无法准确、有效和迅速地传送信息。 正是这些特性,使无线电频谱资源有别于土地、矿藏、森林等自然资源,需要对它科学规划、合理利用、有效管理,才能使之发挥巨大的资源价值,成为服务经济社会发展和国防建设的重要资源。 当前,各国尤其是发达国家对无线电频谱资源重要性的认识不断提高,国际间的频谱资源竞争日趋激烈。无线电频谱资源是支撑现代信息通信产业发展的基础资源,移动电话、集群通信、卫星通信、宽带无线接入等无线通信业务的存在和发展都有赖于频谱资源;无线电频谱资源是推动各行业信息化的重要资源,各种无线电技术的应用成为相关行业顺畅运行和效率提升的重要因素;无线电频谱资源在重大安全保障领域发挥着不可替代的作用,在诸如奥运会、世博会、汶川地震等重大社会活动中和自然灾害面前,无线电信息通信保障意义重大;无线电频谱资源是打赢信息化战争的重要保障,现代战争中制电磁权已经被提升至和制海权、制空权同等的地位。无线电频率的自然属性和经济社会属性决定无线电频谱资源归国家所有,无线电频谱资源的拥有、配置和管理带有国家主权特征。

无线电环境中的动态频谱分配

无线电环境中的动态频谱分配 林晶 北京邮电大学电信工程学院,北京(100876) E-mail:linjing0597@https://www.doczj.com/doc/a86588847.html, 摘要:本文简要介绍了为了解决无线通信频谱紧张的现状提出的动态频谱分配的方法。首先介绍了频谱分配的3种基本方法,并将他们进行比较,引出contiguous动态频谱分配。重点介绍了全局,时域和空域方面动态频谱分配的经典算法结构。 关键词:固定频谱分配,动态频谱分配,contiguous动态频谱分配 1.引言 目前的无线电频谱被划分为不重叠的区域,并把他们分配给不同的无线电标准。频谱的独有使用解决了标准之间冲突的问题,但是这种频谱固定分配(FSA)仍然存在着许多缺点。首先,先前被分离的不同无线行业现在正在有合并的趋向,由不同系统支持的服务的界限也变得模糊不清。随着核心网连接不同系统形成了一个复杂的无线网络,在将来也会有更大的兼并。它影响了过去这种对于不同服务的调整机制,使得它变得不不合时宜。其次,大部分的通信网络受限于时间和地点的变化,所以在某时某地某些用户的无线频谱处于不充分利用时,其他某个用户正处于频谱短缺的时候。基于无线频谱的商用价值和频谱利用率的重要性,诸如此类的浪费必须避免。所以,动态频谱分配(DSA)应运而生。 2.动态频谱分配的方法 对于DSA的方法,比较被给予肯定的DSA方法有两种[1]:contiguous DSA 和 fragmented DSA。如图2-1,表示了固定频谱分配(FSA),contiguous DSA 和 fragmented DSA这三种频谱分配方法的示意图。 图2-1 固定频谱分配,contiguous DSA 和 fragmented DSA的频谱分配示意图[1] 固定频谱分配将临近的频谱分配给临近的RAN,频谱之间有适当的保护频带。但顾名思义,无论业务量大小,分配给各RAN的频谱量是固定不变的。contiguous DSA可以被看成是FSA到DSA的演变阶段,它仍然使用邻近的频谱分配给不同RANs,在频谱之间也有适当的保护频带将他们分开,但是,分配给不同系统的频谱宽度可以根据业务量变化。只有

频谱定义及频谱资源的特性

频谱定义及频谱资源的特性 1.频谱的定义。 我们对电磁波频谱最为熟悉的部分就是可见光。“频谱”这个术语实际上最初只限于光。物理学家在17至19世纪首先认识到白色光实际上是由从红到紫各种不同颜色的光组成的。因此,白色光是不同颜色的频谱。光像水池中的水波纹一样表现出波的特性,波峰之间的距离就称为波长。单位时间内通过某一点的波峰数就称为频率。因此光具有波长和频率,红色光的波长最长,频率最低,而紫色光的波长最短,频率最高。 电磁频谱可以从可见光向两个方向发展,更高频率、更短波长的“光”包括紫外光、X射线以及宇宙射线,而更长波长、更低频率的“光”则首先是红外线光,然后随着波长越来越短即是无线电波。 理论和实践证明,当电子通过导线行进时其周围空间存在着电场和磁场,而且是随着时间而变化的,同时磁场的变化会产生电场,电场的变化也会产生磁场。交变的电磁场不仅存在于导体的周围,而且能够脱离其产生的波源向远方传播,这种以相同的频率向周围空间辐射传播的交变电磁场就称为电磁波。电磁波在空中以光速传播,即每秒中30万公里。1864年英国人麦克斯韦从理论上确定了电荷、电流、电场的关系,而且确定了电磁波的存在。1888年德国人赫兹使用来顿瓶做放电实验,第一次由人工产生了波长为30厘米的电磁波,从而证明了麦克斯韦的理论,因此人们在很长一段时间都把电磁波叫做赫兹波,后来把频率的单位称为赫兹,直至今天。若用f表示频率,用V表示电磁波每秒钟传播的距离(米),用λ表示波长(米),则三者之间的关系为:f=V/λ,其中频率的单位是赫兹(Hz)或周/秒,也可用千赫(KHz)、兆赫(MHz)、吉赫(GHz)表示。它们之间的关系是:1KHz=1000Hz,1MHz=1000KHz,1GHz=1000MHz。 2.无线电频谱。 电磁频谱中3000GHz以下的部分称为无线电频谱。无线电频谱可用来进行声音和图像广播、气象预报、导航、无线电通信、灾害预报、报时等业务。根据无线电波传播及使用的特点,国际上将其划分为12个频段,而通常的无线电通信只使用其中的第4到第12个频度,无线电频谱和波段的划分如表1所示。 表1

物信部公示5G频段,无线频谱那些事(附无线通信频率表)

物信部公示5G频段,无线频谱那些事(附无线通信频率表) 频谱资源是移动通信的命脉,是血液,所有的移动应用和服务都得靠它。 近日,工信部发布了《公开征求对第五代国际移动通信系统(IMT-2020)使用3300-3600MHz 和4800-5000MHz频段的意见》。拟在3300-3600MHz和4800-5000MHz两个频段上部署5G。以下是《征求意见稿》的相关内容: 1、中国5G测试进程 2012年底我国和国际同步启动5G研发,2015年9月我国完成了5G第一阶段试验,也就是一些技术概念的验证和测试。2016年底进入到第二阶段试验,更加注重技术方案的集成度和可实现性,也就是把这些技术集成在一起,对5G性能、指标进行试验。 5G频率方面,2016年4月26日工信部推动批复了在3.4-3.6GHz频段开展5G系统技术研发试验,同时工信部开展了其他有关频段的研究协调工作。工信部信息通信发展司司长闻库表示,我国5G的第二阶段技术研发试验,重点开展面向移动互联网、低时延高可靠和低功耗

大连接这三大5G典型场景的无线空口和网络技术方案的研发与试验,并将引入国内外芯片和仪表厂商,共同推动5G产业链成熟,二阶段试验预计到2017年底完成。二是进一步加大技术研发、开放合作、融合创新的力度,在ITU和3GPP的框架下,积极推动形成全球统一的5G标准,与国内外产业界共同推动移动通信产业的发展。 2、世界5G频谱重要进程 (1)、GSMA发表通用5G频谱声明 2016年11月,在筹备2019年世界无线电通信大会过程中,全球移动通信协会(GSMA)认为各政府必须商定足够的协调频谱,以实现最快的5G速度、价格适宜的设备和国际漫游,而不受跨境干扰。 GSMA概述了以下内容: ●Sub-1GHz将支持城市、郊区和农村地区的广泛覆盖,并支持物联网(IoT)服务。 ●1-6GHz范围提供了覆盖和容量优势的良好组合,包括3.3-3.8GHz范围内的频谱,预计将成为许多初始5G服务的基础。 ●满足5G超高宽带速度则需要6GHz以上的频谱;重点将是在24GHz以上的频段。 ●除了同意频率范围之外,政府还需要承诺对5G网络(包括小型基站和未来使用网络)进行投资,以进一步改进,确保行业不再遇到同样的难题。 (2)、欧盟发布5G频谱战略涉及多个频段规划 欧盟委员会无线频谱政策组(RSPG)于20年11月10日发布了欧洲5G频谱战略,确定5G初期部署频谱。 主要包括: ●3400-3800MHz频段是2020年前欧洲5G部署的主要频段,连续400MHz的带宽有利于欧盟在全球5G部署中占得先机。 ●1GHz以下频段,特别是700MHz将用于5G广覆盖。 ●24GHz以上频段是欧洲5G潜在频段,RSPG将根据各频段上现有业务和清频难度为24GHz以上频段制定时间表。 ●建议将24.25-27.5GHz频段作为欧洲5G先行频段,建议欧盟在2020年前确定此频段的使用条件,建议欧盟各成员国保证24.25-27.5GHz频段的一部分在2020年前可用于满足5G市场需求。 ●RSPG将研究对24.25-27.5GHz频段上现有的卫星地球探测业务、卫星固定业务、卫星星间链路、及无源业务的保护。 ●31.8-33.4GHz也是适用于欧洲的潜在5G频段,RSPG将继续研究此频段的适用性,建议现阶段避免其它业务往此频段迁移,保证此频段在未来便于规划用于5G。 ●40.5-43.5GHz从长期来看可用于5G系统,建议现阶段避免其它业务往此频段迁移,保证此频段在未来便于规划用于5G。 ●RSPG将制定相关技术和规则措施,保证5G系统的使用。RSPG还将研究物联网和智能交通的频谱规划。

中国无线频谱划分

谱资源是电信运营商的核心资源;这关系到各家电信运营商的天馈系统能否共址的技术基础,现将目前各电信运营商所获分配的频谱资源情况列出如下,供大家参考: 中国移动 GSM900 上行/下行:890-909/935-954 EGSM900 上行/下行:885-890/930-935(中国铁通GSM-R:885-889/930-934) GSM1800M 上行/下行:1710-1725/1805-1820 3G TDD 1880-1900MHz和2010-2025 中国联通 GSM900 上行/下行:909-915/954-960 GSM1800 上行/下行:1745-1755/1840-1850 3G FDD 上行/下行:1940-1955/2130-2145 中国电信 CDMA800 上行/下行:825-840/870-885 3G FDD 上行/下行:1920-1935/2110-2125 国家有关3G频谱的划分规定 根据2002年10月原国家信息产业部下发文件《关于第三代公众移动通信系统频率规划问题的通知》(信部无[2002]479号)中规定: FDD方式:1920-1980MHz和2110-2170MHz;补充工作频段1755-1785MHz和1850-1880MHz TDD方式:1880-1920MHz和2010-2025MHz;补充工作频段2300-2400MHz(与无线电定位业务共用) 对比运营商获得的3G频谱和国家规划的3G频谱,可以发现: 1.国家并没有将预先划分的3G频谱完全交给运营商使用; 2.中移动在频谱划分的频率宽度、频率特性上占有较大的优势; 3.中国移动获得1880-1900的TDD频谱,与目前电信和联通的小灵通(PHS)所使用频谱1900-1920并不重叠,且主要用于室内覆盖;国家在小灵通的频谱使用上仍留有余地。

最新中国2G_3G_4G频谱分配

最新中国2G_3G_4G频谱分配一、2G/3G/4G: 二、 TDD-LTE: 工信部将2500MHZ到2690MHZ频段全部划分给了TDD-LTE网络。 中国移动TDD频段为:1880 -1900 MHz、2320-2370 MHz、2575-2635 MHz;(bands:39 ,bands:40,bands:38(41)) 中国联通TDD频段为:2300-2320 MHz(仅限室内使用)、2555-2575 MHz;(bands:40,bands:41) 中国电信TDD频段为:2370-2390 MHz、2635-2655 MHz;(bands:40 ,bands:41) 注:Bands41包含Bands38 CDMA2000 CDMA2000

三、LTE-FDD: bands3(1800MHz,国际主流的FDD频段),均为中国联通和中国电信的FDD主力频段: 1、中国联通: bands3频段的前段,1755-1765MHZ(上行)/1850-1860MHz(下行),2*10M带宽,现在联通正清频GSM1800MHz中的10M*2带宽(如16个FDD试商用城市,包括石家庄),即1745-1765MHZ/1840-1860MHz,组成一个完成的2*20MHz的LTE带宽。 2、中国电信:Band3频段的后端,1765~1780MHz/1860~1875MHz,2*15MHZ带宽: 即联通和电信在Band3主流FDD-LTE频段都有一个完整的20M*2 LTE带宽 Bands1(2100MHz,国际主流的WCDMA频段),均为中国联通和中国电信的FDD补充频段: 1、中国联通:bands1频段的后段,1955--1980MHz / 2145-2170MHz,2*25MHz带宽; 2、中国电信:bands1频段的前段,将用于3G移动通信系统(CDMA2000)使用的1920-1935MHz/2110-2125MHz,2*15MHz带宽,改变频率使用的技术体制,调整用于LTE混合组网试验中LTE FDD制式。 至于剩余的Band3的20M *2 带宽怎么分配,现在不得而知。 电信获准使用Band 1频段在7城市开通 2014-12-24 10:54:00 [ 中关村在线原创] 作者:宋辰| 责编:宋辰 据悉,工信部根据《工业和信息化部关于同意中国电信集团公司在部分城市利用2100MHz频段开展LTE 混合组网试验的批复》,2014年12月9起至2015年6月30日止,在上海、广州、深圳、南京、苏州、杭州、宁波7个城市,将用于第三代移动通信系统(CDMA2000)使用的1920—1935MHz/2110-2125MHz频段,改变频率使用的技术体制,调整用于LTE混合组网试验中LTE FDD制式。

无线频谱规划及相关政策

我国无线频谱规划及相关政策 我国的频谱规划和管理由信息产业部无线电管理局统一负责,采取的是以行政手段为主的频谱指配方式,同时也在探索新的市场化的频谱分配模式。我国对无线新技术采取了积极支持发展的策略,包括对移动通信网络乃至未来3G网络频率的规划保证、对各种新兴宽带接入技术的鼓励政策。 我国频率规划基本情况 按照ITU国际无线电规则频率划分,目前各种无线业务可以使用的频率范围为9kHz至275GHz。由于技术水平的限制,绝大多数无线电设备工作在50GHz频率之下,国内主要在6GHz以下。 我国的无线电应用可划分为42种业务,其中包括固定业务、移动业务、广播业务、无线电导航业务等。由于业务繁多,所以在9kHz~50GHz的多数频段,要安排多种业务共用一个频段。 其中的无线电移动业务可分为陆地移动、水上移动以及航空移动三类。陆地移动应用最广,我国将陆地移动业务频率分别分配用于专用无线电通信网络和公众无线通信网络。专用无线电移动通信系统大量应用于军队、公安、急救等,如150MHz、350MHz、450MHz对讲机、800MHz集群通信等。公众无线电移动通信网络目前由中国移动

和中国联通运营。 公众移动通信频率的使用管理 目前我国为公众移动网划分的频率有:CDMA825MHz~835MHz/870MHz~880MHz;GSM885MHz~915MHz/930MHz~960MHz;GSM1710MHz~1755MHz/1805MHz~1850MHz,共计2×89MHz的频率。其中中国移动GSM网络拥有2×49MHz,中国联通GSM网有2×15MHz以及CDMA网的2×4MHz。其中,CDMA网络的频谱利用率要远远高于GSM网络。截至今年第一季度,上述三个网络共使用频率为2×68MHz,拥有用户数为4.1亿,还有频段没有使用,因此仍然有持续发展的能力。 同时,我国也为移动网络的未来演进做了准备,为3G网络划分了大量的频率资源。包括FDD模式的2×30MH+2×60MHz(cdma2000系统和WCDMA系统)以及为我国TD-SCDMA预留的155MHz(1880~1920(第二阶段40MHz),2010~2025(第一阶段15MHz),2300~2400(第三阶段100MHz))频段,还包括2×20M的3G卫星接入频段。 宽带无线接入频率规划管理 我国目前为宽带无线接入应用划分了4个频段,分别是 2.4GHz、

无线电频谱资源使用权的性质、权能及其限制

无线电频谱资源使用权的性质、权能及其限制

————————————————————————————————作者:————————————————————————————————日期:

无线电频谱资源使用权的性质、权能及其限制-法律 无线电频谱资源使用权的性质、权能及其限制 宁清同 摘要:无线电频谱资源是具有特定频率、波长、带宽的无线电波,无线电频谱资源使用权是一种新型的用益物权,是自然资源物权;频谱资源虽为无形之物,但权利人同样能够以一定方式实施占有,且其使用的过程即为处分;基于维护公共利益之需要,无线电频谱资源使用权在期限、用途和目的等方面受到法律上的限制,权利人应当依法行使其权利,而且还须履行节约和有效使用频谱资源的义务。 关键词:无线电频谱自然资源物权用益物权权利限制 作者简介:宁清同,海南大学法学院副院长、教授。 以无线电为代表的现代通讯技术虽然发展历史不长,却在国家的政治、国防、生产、服务和居民生活中发挥着越来越重要的作用。有限的频谱资源与社会日益增长的无线电频谱需求之矛盾越来越激烈,不断发生的频谱资源纠纷暴露出频谱资源使用权制度的苍白无力。我国《物权法》第50条只是从静态上明确了频谱资源的所有权,然对其使用权的性质、权能及其合理限制等却是一概空缺。为了满足频谱资源使用的实际需要,探讨上述问题实有必要。 一、无线电频谱资源使用权的性质 无线电频谱资源使用权是指自然人、法人、非法人组织依法利用具有特定频率、波长、带宽的无线电波进行特定营利性或非营利性行为的权利。在我国无线电频谱资源的所有权只能属于国家,但国家通常不会也难以直接实施使用、收益等行为,故在国家保留核心处分权的前提下,将其使用权分离出来,不失为合

230MHz频谱资源管理与分配技术研究 俞红生

230MHz频谱资源管理与分配技术研究俞红生 发表时间:2017-11-28T15:58:22.613Z 来源:《电力设备》2017年第21期作者:俞红生吴笑李建刚 [导读] 摘要:无线专网通信技术是中低压通信接入网络中的重要组成部分,但频谱资源的有限性是制约电力无线专网技术发展的重要因素。 (国网浙江省电力公司宁波供电公司浙江宁波 315000) 摘要:无线专网通信技术是中低压通信接入网络中的重要组成部分,但频谱资源的有限性是制约电力无线专网技术发展的重要因素。频谱感知、频谱共享等技术手段可以打破频谱的排他性占用,开放出更多的可用频谱资源,是极具潜力的提升频谱利用率的方案。基于感知无线电的共享频谱技术打破了传统无线电频谱固定分配的管理方式,为无线电频谱管理模式提供了新方向和新思路。 关键词:频谱资源;频谱感知;频谱共享 一、引言 随着经济和社会的发展,电网规模不断发展壮大,各种新业务对通信速率和质量的要求不尽相同,因此对传输带宽的需求也不尽相同。为了同时支持对速率、质量要求不同的各种业务,需要一种频谱效率更高,并且能灵活分配带宽的技术。 频谱资源是国际共用、国家支配的稀缺性战略资源,是引领整个通信信息产业持续创新发展的重要动力源泉。然而,随着无线通信新技术的不断涌现,以及移动互联网及物联网带来的数据流量的暴增,各业务对无线电频谱的需求急剧膨胀,无线电频谱资源日益稀缺。频谱资源的有限性与稀缺性已逐渐成为通信信息产业蓬勃发展的瓶颈之一,对无线电频谱的规划管理模式提出了新的挑战。 对于电力行业而言,通信骨干网络一般以光纤为主,无线通常作为末端的通信方式,以适应电力行业终端用户点多、面广且分布分散的特点。与公网类似,电力无线通信接入网目前同样存在包含公网、McWill、LTE1800及LTE230等在内的多种系统共存的情况;但与公网不同的是,对于电力无线通信来说,没有统一的、规范的互操作规程支持异频异构网络的互联互通,本研究针对不同感知系统对于频谱使用的需求不同,引入频谱感知、频谱共享等技术手段,动态分配频谱资源,提高频谱使用率。研发适应频谱感知基站原型设备及终端原型设备,以解决复杂配用电环境接入难题,通过建设实验网系统对其方法模型进行验证。 二、传统230MHz频谱资源管理分配的弊端 随着无线通信新技术的不断发展,以及移动互联网及物联网产业的蓬勃发展,各无线电业务对无线电频谱的需求急剧膨胀,频谱资源日益紧缺。特别是随着工业化和信息化的深度融合,各行业用户如电力、石油等对无线专网提出了宽带化需求,传统的专网频段已经无法满足行业用户需求。另一方面,由于行业用户的业务特征,导致频谱资源利用率不高,造成一定程度上的浪费。频谱资源的缺乏更多是由于现有的基于静态控制的频谱管理与分配策略所造成的。 基于感知无线电的共享频谱技术可以打破传统无线电频谱固定分配的管理方式,为无线电频谱管理模式提供了新方向和新思路。然而,目前对于频谱感知、频谱共享技术的研究,特别是蜂窝网络下的多系统频谱共享机制尚缺乏落地试验与实际部署经验。本研究将基于感知无线电的专网共享频谱技术,开展验证与标准化研究,进行基于频谱共享的感知系统落地验证与试验,为后续频谱共享技术的发展演进以及无线电频谱管理思路的转变打下坚实基础,对未来无线电频谱管理模式改革创新具有重要指导意义。 目前,223~235MHz频段规划给遥测、遥控、数据传输等业务,主要用于能源、气象、地震、建设、水利、地矿、轻工等重点行业。该频段采用固定分配方式进行频谱管理,频点带宽为25kHz,各行业频点处于离散分布状态。以能源行业为例,图1给出了能源行业授权频点的分布情况。 图 1 223-235MHz频段能源行业授权频点分布 随着工业化和信息化的深度融合,行业用户带宽需求日益增加,现有窄带专网系统已经无法满足行业用户需求。传统行业专网频段的窄带频点划分方式限制了先进宽带通信技术在行业专网频段的应用,制约了行业信息化的深入发展。另一方面,传统的固定分配专网频率的管理方式具有排他性,由于行业用户的业务特征,导致目前行业专网频谱资源利用率不高,存在一定程度的浪费。 三、230MHz频谱资源管理分配技术 1、规划技术特点 针对传统230MHz频谱资源管理分配存在的弊端,需要引入新的技术手段和频谱规划与管理方案,提高频谱利用率,保障专网日益增长的频谱资源需求和频谱资源有效利用。 为了实现频谱资源的科学管理,一方面要合理估计频谱需求,及时规划分配频谱资源,促进相关行业和产业的发展;另一方面,要考虑频谱规划管理模式的创新与转变,提高频谱利用率,避免频谱资源的浪费,解决未来无线通信频谱需求的瓶颈问题。 鉴于223~235MHz专网用户保障性业务和行业需求的变化,以及该频段的整体利用率并不高的特点,并结合蜂窝系统特点,将频谱资源划分为授权频谱资源和共享频谱资源。授权频谱资源固定分配给专网用户,满足其保障性业务的实时性和准确性需求,以及蜂窝网传输控制信令的资源需求。通过频谱共享实现资源为各专网用户共享使用,解决频率利用率不高问题。同时,鉴于授权窄带系统仍需要在此频段内工作,因此保留原有的25kHz频点划分方式。 为实现多系统同时工作,保证行业获得足够的资源,同时为了保证系统间授权资源的有效隔离,避免相互的干扰,需要将授权频点进

物信部公示5G频段-无线频谱那些事(附无线通信频率表)

物信部公示 5G 频段,无线频谱那些事(附无线通信频率表) 频谱资源是移动通信的命脉,是血液,所有的移动应用和服务都得靠它。 近日,工信部发布了《公开征求对第五代国际移动通信系统(IMT-2020)使用 3300-3600MHz 和 4800-5000MHz 频段的意见》。拟在 3300-3600MHz 和 4800-5000MHz 两个频段上部署 5G。以下是《征求意见稿》的相关内容: 1、中国 5G 测试进程 2012 年底我国和国际同步启动 5G 研发,2015 年 9 月我国完成了 5G 第一阶段试验,也就是一些技术概念的验证和测试。2016 年底进入到第二阶段试验,更加注重技术方案的集成度和可实现性,也就是把这些技术集成在一起,对 5G 性能、指标进行试验。

5G 频率方面,2016 年 4 月 26 日工信部推动批复了在 3.4-3.6GHz 频段开展 5G 系统技术研发试验,同时工信部开展了其他有关频段的研究协调工作。工信部信息通信发展司司长闻库表示,我国 5G 的第二阶段技术研发试验,重点开展面向移动互联网、低时延高可靠和低功耗大连接这三大 5G 典型场景的无线空口和网络技术方案的研发与试验,并将引入国内外芯片和仪表厂商,共同推动 5G 产业链成熟,二阶段试验预计到 2017 年底完成。二是进一步加大技术研发、开放合作、融合创新的力度,在 ITU 和 3GPP 的框架下,积极推动形成全球统一的 5G 标准,与国内外产业界共同推动移动通信产业的发展。 2、世界 5G 频谱重要进程 (1)、GSMA 发表通用 5G 频谱声明 2016 年 11 月,在筹备 2019 年世界无线电通信大会过程中,全球移动通信协会(GSMA)认为各政府必须商定足够的协调频谱,以实现最快的 5G 速度、价格适宜的设备和国际漫游,而不受跨境干扰。 GSMA 概述了以下内容: ●Sub-1 GHz 将支持城市、郊区和农村地区的广泛覆盖,并支持物联网(IoT)服务。 ●1-6 GHz 范围提供了覆盖和容量优势的良好组合,包括 3.3-3.8 GHz 范围内的频谱,预计将成为许多初始 5G 服务的基础。 ●满足 5G 超高宽带速度则需要 6GHz 以上的频谱;重点将是在 24GHz 以上的频段。 ●除了同意频率范围之外,政府还需要承诺对 5G 网络(包括小型基站和未来使用网络)进行投资,以进一步改进,确保行业不再遇到同样的难题。 (2)、欧盟发布 5G 频谱战略涉及多个频段规划 欧盟委员会无线频谱政策组(RSPG)于 20 年 11 月 10 日发布了欧洲 5G 频谱战略,确定5G 初期部署频谱。 主要包括: ●3400-3800MHz 频段是 2020 年前欧洲 5G 部署的主要频段,连续 400MHz 的带宽有利于欧盟在全球 5G 部署中占得先机。 ●1GHz 以下频段,特别是 700MHz 将用于 5G 广覆盖。 ●24GHz 以上频段是欧洲 5G 潜在频段,RSPG 将根据各频段上现有业务和清频难度为 24GHz 以上频段制定时间表。 ●建议将 24.25-27.5GHz 频段作为欧洲 5G 先行频段,建议欧盟在 2020 年前确定此频段的使用条件,建议欧盟各成员国保证 24.25-27.5GHz 频段的一部分在 2020 年前可用于满足5G 市场需求。 ●RSPG 将研究对 24.25-27.5GHz 频段上现有的卫星地球探测业务、卫星固定业务、卫星星间链路、及无源业务的保护。

移动通信频率分配

中国移动 GSM900 上行/ 下行:890-909/935-954 EGSM900 上行/下行:885-890/930-935(中国铁通GSM-R : 885-889/930-934) GSM1800M 上行/ 下行:1710-1725/1805-1820 3G TDD 1880-1900MHZ 和2010-2025 中国联通 GSM900 上行/ 下行:909-915/954-960 GSM1800 上行/ 下行:1745-1755/1840 —1850 3G FDD 上行/ 下行:1940-1955/2130-2145 中国电信 CDMA800 上行/ 下行:825-840/870 —885 3G FDD 上行/ 下行:1920-1935/2110-2125 国家有关3G频谱的划分规定 根据2002年10月原国家信息产业部下发文件《关于第三代公众移动通信系统频率规划问 题的通知》(信部无[2002]479号)中规定: FDD 方式:1920-1980MHZ 和2110-2170MHZ ;补充工作频段1755 —1785MHz 和1850 —1880MHz TDD方式:1880-1920MHZ 和2010-2025MHZ ;补充工作频段2300-2400MHz(与无线电定 位业务共用) 上行:1920?1980 下行:2110?2170 CDMA2000 上行:1920?1935

下行:2110?2125 TD-SCDMA不分上下行: 1880 ?1900 2010 ?2025 GSM900 上行:880?915 (基本:890?915 , 880?890为扩展频率) 下行:925?960 (基本:935?960 , 925?935为扩展频率) GSM1800 上行:1710?1785 下行:1805?1880 我国政府批准使用的频率: 上行:1710~1755 下行:1805~1850 移动公司GSM网络使用的频率资源为:EGSM[885-890 ,930-935]是5M , PGSM[890-909 ,935-954]是19M,( DCS1800[1710-1725 ,1805-1820]15M 不计),总共24M !包括5M 不合法频率。联通就是[909?915,954~960] (1800也不计)共6M频率 Agile nt资料中无线频率划分 (1)W-CDM( FDD : ( UE/BS, ARFCN IMT2000:1920?1980/ 2110?2170, 10562?10838 PCS1900 1850 ?1910/1930 ?1990 , 9662 ?9938 & 412 & 437 & 462 & 487 & 512 & 537 & 562 & 587 & 612 & 637 & 662 & 687 DCS1800 1710 ?1785/1805 ?1880 , 9037 ?9388 (2)TD-SCDMA China : 1785?1805, 1880?1900, 1900?1920, 2010?2025, 2300?2400 3GPP 1900?1920 , 2010 ?2015 (3)HSDPA( UE/BS) IMT2000:1920 ?1980/2110?2170 (832 ?870MH0 PCS1900 1850 ?1910/1930 ?1990 DCS1800 1710 ?1785/1805 ?1880 (4)IS95A/ B:( MS/ BS) US/ Korea: 824 ?849/ 869 ?894 Japan: 887?925/ 832?870 US 1850 ?1910 / 1930 ?1990

中国频谱划分

目前我国的三家运营商实际占用的频段情况如下: 中国移动: *GSM900:885-909MHz上行930-954MHz下行 *GSM1800:1710-1725MHz上行1805-1820MHz下行 *ETACS现划归中移EGSM900:885-890MHz上行930-935MHz下行 中国联通: *GSM900:909-915MHz上行954-960MHz下行 *GSM1800:1745-1755MHz上行1840-1850MHz下行 *PHS:1900-1920MHz 中国电信: *CDMA:825-840MHz 上行870-885MHz下行 *PHS:1900-1920MHz 我国3G频段划分情况: *TD-SCDMA:1880Mhz-1920Mhz; 2010Mhz-2025Mhz and 2300Mhz-2400Mhz *WCDMA和CDMA2000 EV-DO:1920MHZ-1980MHZ的FDD对称频段

国家频率规划: Wi-Fi 无线LAN 频率、波段和信道(Wi-Fi Wireless LAN Frequency, Bands and Channels)

Wi-Fi 技术被IEEE 802.11b/g/n 定义被操作在2.4 GHz 的频率中,在其中这个2.4 GHz 频谱被划分为14个交叠的、错列的20 MHz 无线载波信道,它们的中心频率分别为5 MHz。802.11a/n 被操作在有更多信道的5.0GHz 频谱中,802.11n 也使用信道焊接技术联合两个20MHz 载波信道为一个40 MHz 信道来增加吞吐量。 这些信道在一个特定的国家根据那个国家的不同法规来不同的使用。在美国,例如,FCC 法规仅允许信道1到11被使用。在欧洲1–13被允许用在802.11b 操作中(1、5、9和13经常被配置)。在日本,所有的14信道被允许用在802.11b 操作中。在下面的表格中,我们列出了信道的ID,每个信道的中心频率用于每个调整域。 针对IEEE 802.11a 的信道

无线电频率分配表

中国无线电频率分配表

6 14.25-14.35 共用20 24-24.25 次要 7 18.068-18.168 共用21 47-47.25 共用 8 21-21.45 专用22 75.5-76 共用 9 24.89-24.99 共用23 76-81 次要 10 28-29.7 共用24 142-144 共用 11 50-54 次要25 144-149 次要 12 144-146 专用26 241-248 次要 13 146-148 共用27 248-250 共用 14 430-440 次要28 *共用为业余业务作为主要业务和其他业务共用频段;专用为业余业务作为专用频段;次要为业余作为次要和其他业务共用频段。其中2-9或12可用于自然灾害通讯;160MHz-162MHz为气象频段。

*表一为我国无委会1985年制定,表二为1992年制定。规定无绳电话频道间隔为25KHz ,座机发射功率不得超过50mW ,手机发射功率不得超过20mW 。发射类别为F3E;F1D;G3E. *通信设 备发射类别:H1A;R1A;J1A;A1A;F1A;H3E;R3E;J3E;A3E;F3E. 3 45.050 48.050 4 45.075 48.075 5 45.100 48.100 6 45.125 48.125 7 45.150 48.150 8 45.175 48.175 9 45.200 48.200 10 45.225 48.225

A1A 双边带等幅键控电报A1 A2A 双边带等幅键控电报A2 H2A 单边带全载波调幅健控电报A2H A3E 双边带调幅电话A3 H3E 单边带全载波电话A3H R3E 单边带减幅载波电话A3A J3E 单边带抑制载波电话A3J F3E 调频电话F3

无线电频谱的特性

无线电频谱资源的特性。 无线电频谱是一种特殊的自然资源。说它是一种自然资源,是由于它具有一般资源的共同特性,像土地、水、矿山、森林一样是国家所有的。但从国际范围来说,它又属于人类共有的、人类共享的。此外,它还具有一般自然资源所没有的如下特性: (1)无线电频谱资源是有限的。包括红外线、可见光、X射线在内的电磁波的频谱是相当宽的,而无线电通信使用的频谱资源,最底可为3KHz,最高达3000GHz。更高的电磁频谱当然不是以3000GHz为限的,使用3000GHz以上电磁频谱的电信系统也在研究探索之中,但它最大不能超过可见光的范围。由于受到技术上和可提供能够操作使用的无线电设备方面的限制,ITU当前只划分了9KHz~400GHz范围,而且目前实用的较高的频段只是在几十GHz。根据无线电波的传播特性,像大家所熟知的蜂窝移动通信业务(俗称大哥大)一般只能工作在3GHz以下,现主要工作在800MHz、900MHz/1800MHz。另外,尽管人们可以通过频率、时间、空间这三维相互关联的要素进行频率的多次复用指配来提高频率利用率,但就某一频率或频段而言,在一定的区域、一定的时间、一定的条件下之下,它又是有限的。 (2)无线电频谱可以被利用但不会被消耗掉,是一种非消耗的资源。它不同于土地、水、矿山、森林等可以再生或非再生的资源,如果得不到充分利用,则是一种资源浪费,而若使用不当也是一中资源浪费,甚至会造成严重的危害。 (3)无线电波有固有的传播特性,它不受行政区域、国家边界的限制。因此,任何一个国家、一个地区、一个部门甚至个人都不能随意地使用,否则会造成相互干扰而不能确保正常通信。 (4)无线电频谱资源极易受到污染。它最容易受到人为噪声和自然噪声的干扰,使之无法正常操作和准确而有效地传输各类信息。 鉴于上述原因,为了加强对无线电频谱这种宝贵资源的、有限的自然资源管理和有效地利用,从便于无线电频谱的规划、管理以及设备的研制生产和使用出发,通常对无线电频谱按业务进行频段和频率的划分、分配和指配。按规定把某一频段供某一种或多种地面或空间业务在规定条件下使用,称为“频率划分”。为此,国际电联(ITU)专门制定了国际《无线电规则》,实际上这是一个各个国家都要遵守的国际上通用的无线电法规,各个国家也都据以制定了自己国家的无线电法或相关的详细管理规定,同时为各类无线电业务划分了频率或频段。ITU还专门建立了国际频率划分表,把世界划分为三个区域,第一区域包括欧洲、非洲和部分亚洲国家,第二区包括南、北美洲,第三区包括大部分亚洲国家和大洋洲。我国为第三区。使用无线电频率的无线电业务基本上分为两大类。即无线电通信业务和射电天文业务。无线电通信业务又可分为地面业务及空间业务、航空和水上安全业务等总共为37种业务。无线电频率划分表为各类无线电业务划分了频率或频段,例如我国把279~281MHz划分给移动业务,用于开放全国联网无线寻呼业务等。我国的频率划分表是1983年制定的,随着无线电事业的发展,这些年来频率的划分和使用都发生了相当大的变化,现正在积极组织修订。 把某一频段批准给一个国家或多个国家、地区或部门在规定条件下使用,称为“频率分配”。我国的频率分配是有国家无线电管理机构统一进行的,例如把87~108MHz频段分配给广播部门开发FM广播业务在全国各地统一规划和使用等。 国家或地方无线电管理机构根据设台审批权限批准某单位或个人的某一电台在规定的条件下操作使用某一无线电频率,称为“频率指配”。根据《中华人民共和国无线电管理条理》的规定,用户设置各类无线电台

相关主题
文本预览
相关文档 最新文档