当前位置:文档之家› 基于SolidWorks的CRH2轮轴过盈装配有限元分析

基于SolidWorks的CRH2轮轴过盈装配有限元分析

过盈配合件的装配办法

过盈配合件的装配方法有: 过盈配合件是依靠相配件装配以后的过盈量达到紧固联接。装配后.由于材料的弹性变形,使配合面之间产生压力,因此在工作时配合面间具有相当的联擦力来传递扭短或轴向力。过盈配合装配一般属于不可拆卸的固定连接。过盈配合件的装配方法有:(1)人工锤击法,(2)压力机压入法; (3)冷装法,(4)轴承加热器热装法。 轴承加热器热装法:? 适用过盈量较大轴承、齿轮、齿圈、电机外壳的加热器装配?? 1.做好热装前的准备工作.以保证热装工序的顺利完成?? 1?)加热温度T计算公式T=(σ+δ)/ad+T (℃)?式中d-配合公称直径(mm)?? a-加热零件材料线膨胀系数(1/℃)?常用材料线膨胀系数见有关手册σ-配合尺寸的最大过盈量mmδ-所需热装间隙(mm)?当d<200mm时,?? δ取(1"2)σ当d≥200mm时,δ取(0.001"0.0015)d2?? 2)加热时间按零件厚10mm需加热10min估算。厚度值按零件轴向和径向尺寸小者计算?? 3)保温时间按加热时间的1/4估算??? 2.包容件加热.胀量达到要求后,要迅速清理包容件和包件的配合表面,然后立即进行热装。要求操作动作迅速准确,一次热装到位,中涂不许停顿。若发生异常,不允许强迫装入,必须排除故障,重新加热再进行热装?? 3.零件热装后,采用拉、压、顶等可靠措施使热装件靠近被包容件轴向定位面。零件冷却后,其间隙不得大于配合长度的1000?? 4.钢件中装铜套时,包容件只能作一次热装,装后不允许作为二次热装的包容件再行加热?? 5.凡镶圈结构的齿轮与的热装时.在装齿圈时已加热过一次,当与轴热装时,又需二次加热,一般应采用油浴加热。若条件有限,也可采用电炉加热,但必须严格控制温升速度,使之温度均匀.且工作外表面离炉丝距离大于300mm,否则不准采用?? 6.?采用电感式加热器加热,必须适当选择设备规格,并严格遵守设备操作规程?? 冷装法:适用于包容件无法加热或加热会导致零件精度、材料组织变化、影响其力学件的装配?? 1.冷装时?? l冷冻温度TI计算公式?? T1=2σ/a1d (℃)?? 式中??? σ—最大过盈量(mm)?? d—被包容件的外径(mm) a1—被包容件冷却时? 线膨胀系数常用材料冷却时线膨胀系数见有关手册?? 冷冻时间t计算公式?? t= a'δ' (6~8)(mm)?? 式中?与材料有关的系数见有关手册被冷冻零件的特征尺寸。即零件的最大断面半径或? 壁厚尺寸(mm)?? 1)按公式计算冷冻温度T??

精讲solidworks有限元分析步骤

2013-08-29 17:31 by:有限元来源:广州有道有限元 1. 软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2. 使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。

过盈量与装配力计算公式

过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则

F f=πdlpf

因需保证F f ≥F,故 [7-8] 2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生 周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩 擦阻力矩M f 应大于或等于转矩T。 设配合面上的摩擦系数为f①,配合尺寸同前,则 M f=πdlpf·d/2 因需保证M f ≥T.故得 [7-9] ① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材料无润滑时f 有润滑时f 联接零件 材料 结合方式,润滑 f 钢—铸钢0.11 0.08 钢—钢油压扩孔,压力 油为矿物油 0.125 钢—结构钢0.10 0.07 油压扩孔,压力 油为甘油,结合 面排油干净 0.18 钢—优质结构钢0.11 0.08 在电炉中加热包 容件至300℃ 0.14 钢—青铜0.150.20 0.030.06 在电炉中加热包 容件至300℃以 后,结合面脱脂 0.2 钢—铸铁0.120.15 0.050.10 钢—铸铁油压扩孔,压力 油为矿物油 0.1 铸铁—铸钢0.150..25 0.150.10 钢—铝镁无润滑0.100.15

SolidWorks大装配体技巧

S o l i d W o r k s大装配体技 巧 Prepared on 24 November 2020

SolidWorks大装配之技巧篇 大型装配体设计对于任何三维设计软件来说都是一个艰巨的挑战,操作与计算的延迟通常让人无法忍受。本文以图文和案例的形式为大家讲解利用SolidWorks处理大装配体的各种技巧,指导工程师进行大装配体设计。 大装配体是指达到计算机硬件系统极限或者严重影响设计效率的装配体,大装配体通常造成以下操作性能下降:打开/保存、重建、创建工程图、旋转/缩放和配合。影响大装配体性能的主要因素有:系统设置、装配设计方法、装配技巧、数据管理、操作系统和计算机硬件,本文主要讲解的是装配技巧。 一、配合技巧 (1)配合的运算速度由快到慢的顺序为:关系配合(重合和平行);逻辑配合(宽度、凸轮和齿轮);距离/角度配合;限制配合。 (2)最佳配合是把多数零件配合到一个或两个固定的零件,如图1所示。避免使用链式配合,这样容易产生错误,如图2所示。 (3)对于带有大量配合的零件,使用基准轴和基准面为配合对像,可使配合方案清晰,不容易产生错误。如图3所示的某减速器,零件之间有大量的同轴心配合,配合方案不清晰,一旦某个主要零件发生修改,就会造成配合面丢失,导致大量配合错误产生。而图4的配合方案就很清晰,一旦出错,很容易修改。 (4)尽量避免循环配合,这样会造成潜在的错误,并且很难排除,如图5所示。 (5)尽量避免冗余配合:尽管SolidWorks允许冗余配合(除距离和角度配合外),冗余配合使配合解算速度更慢,配合方案更难理解,一旦出错,更难排查。 (6)尽量减少限制配合的使用,限制配合解算速度更慢,更容易导致错误。 (7)如果有可能,尽量完全定义零部件的位置。带有大量自由度的装配体解算速度更慢,拖动时容易产生不可预料的结果。对于已经确定位置或定型的零部件,使用固定代替配合能加快解算速度。 (8)避免循环参考。大部分循环参考发生在与关联特征配合的时候,有时也会发生在与阵列零部件配合的时候。如果装配体需要至少两次重建才能达到正确的结果,那么装配体中很可能存在循环参考。如图6所示,装配体中零件B 的边线和零件A的边线有一个重合的关联参考,配合时在零件A和B之间添加10mm的距离配合,那么每次重建都会出错,并且零件B每次重建都会伸长10mm,这就是循环参考的典型错误。 二、轻化装配体 使用轻化模式,可以显着提到大装配体的性能。当零部件是轻化状态,零部件只有部分模型信息被载入内存,其他信息只有在需要时才会被载入。表1所示的装配体操作不需要还原零部件。 装配体中零部件各种状态定义如下。 ◎还原状态:零部件的模型信息完全装入内存。 ◎轻化状态:零部件的模型信息部分装入内存,只在需要时才装入内存并参与运算。 ◎压缩状态:零部件的模型信息暂时从内存中清除,零件功能不再可用也不参与运算。

过盈配合零件装配

过盈配合零件装配 将具有过盈量的零件组装到设定位置上的工艺。过盈配合在机械零件连接中应用很广,如轴承、联轴器等与轴的联接常采用这种配合方式。装配后有定位精度要求或需要拆卸的,应选用过渡配合或小间隙,小过盈的配合 过盈配合零件装配方法,一般有压装、热装和冷装三种,通常依配合特性和现场条件参照表1进行选择。 d H7/K6 压装常温下将具有过盈量配合的两个零件压到装配位置。过盈量较小者,可用锤击法;过盈量稍大者,应用压力

机装配。装配前应将配合面清洗干净、清除毛刺,并涂以润滑剂。所需压力一般按下式计算:当配合件皆为钢质时 当被包容件为钢,包容件为铸铁时 式中P为压入力,kN;D为包容件外径,mm;d为被包容件外径,mm;i为平均实测过盈值,mm;L为包容件与被包容件的配合长度,mm。 热装将包容件用木炭、焦炭、蒸汽、氧乙炔焰、电感应或热油等方法均匀加热(温度应低于被加热件材料的回火温度),使其直径微量胀大,并与被包容件产生一定间隙后进行装配。所需加热温度,一般按下式计算:

mm;α为被加热件材料的线膨胀系数,1/℃;d为被加热件的公称直径,mm;t o为环境温度,℃。 在冶金设备安装中,经常遇有大型装配件,应按其外形尺寸及重量选择最适当的加热方法,准备好加热设施以及起重运输工具、测温用具和检查用样板等。 冷装当包容件因尺寸、重量或材质等原因不易或不宜加热时,可采用液氨、液氮等冷却剂将被包容件冷却到一定温度.使其外径微量减小.并与包容件之间产生一定间隙后,再装配到设定位置上。常用的冷却剂及其所能达到的冷却温度见表2。 当被冷却件温度接近或低于材料脆性转变温度时,装配中不可用锤敲击。被冷却件所需冷却温度一般按下式计算:

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

过盈配合的有限元分析

过盈配合的有限元分析 工程力学系 张晨朝 20803001

过盈配合的有限元分析 摘要: 在工程应用中,利用接触有限元法建立了内轴与外套过盈配合的有限元力学模型来判断结构设计是否符合要求。针对内轴和外套的过盈配合状态,采用大型通用有限元ANSYS 软件对组合模具进行了有限元分析, 得出了内轴与外套在过盈配合状态下的应力分布规律及接触面压力分布状况, 找到了应力集中位置和大小。结论表明结构配合尺寸设计没有使结构产生变形, 该结构完全符合产品的设计要求。 关键词: 过盈配合; ANSYS Abstract: In the project application, in order to judge whether the structural design meets the requirement, the finite element and mechanical model of the interference joint between inside lining and outside wrap is established by used contact -finite- element methods. Aimed at condition of the interference joint between inside lining and outside wrap, we carry on the finite element analysis based on ANSYS and attain the stress distribution in interference joint; the pressure distribution in contact face and the location and the size of stress concentration. It is concluded that the structure interference joint size of combined die do not make the mold have distortion and the combined die completely meets the product design requirement. Key words: interference joint; ANSYS 1 引言 过盈配合[1]是机械工业中一种常见的零部件组装方式,齿轮、轴承以及火车车轮等与其装配轴之间的配合大多采用过盈配合。在工作外载荷作用下,能产生足够的摩擦力,以保证配合件之间不发生任何相对的滑动,同时接触应力又不过大,装配件能正常工作。因此,研究配合面之间的接触应力分布规律是十分重要的。机械设备中常用到轴与孔的配合[2],为保护机体(如机架、箱体等)在设备运转中不受磨损,通常压装轴套,由轴套与轴配合。设备运转[3]一定周期轴套磨损后更换轴套即可恢复轴孔原尺寸。轴套的外径与机体通常采用静配合,而轴套内径则与轴保持不同精度的动配合。在机械设计中一般都只标出轴套内外径的尺寸及公差,以此来保证装配后形成要求的配合。由于轴套与机体[4]采用过盈配合,其过盈量(D)形成轴套与机体的装配应力,在这种装配应力的作用下,轴套内径将产生一定的收缩量(△),显然,轴套的收缩量(△)与轴套压入机体时的过盈量(D)密切相关,也与轴套和机体的几何尺寸,即两者的壁厚系数及各自材料性能相关。由于轴套的内孔收缩改变了原来的尺寸,也就改变了内孔与轴的配合关系,以致达不到原来的设计要求,容易出现间隙过小,有时甚至试车温度升高而抱轴,严重时会出现轴孔小于轴而不能装配的现象。 2 轴套装配收缩量的理论计算 工程力学中, 一般将外径与内径之比值之大于1.1的圆筒视为厚壁圆筒, 其比值为壁厚系数。在机械零件中,前述机体件之比值分布在1.1~1.5,均属厚壁圆筒,轴套类零件之比值大致分布在1.05~1.35之间。据此,可将轴套压入机体形成的结构简化为两端开口的厚壁圆筒中过盈配合组合圆筒问题。 将铜套镶入座孔在机械装配中经常遇到。过盈配合的铜套直接按图纸加工镶入座孔时,铜套对座孔为过盈配合,常温下压入或打入,内孔就收缩,改变了原来间隙配合的性质,只能重新铰孔或镗孔,才能达到孔尺寸公差要求。为保证套孔和轴的间隙配合,其内孔尺寸公差确定至关重要。 2.1 计算原理 过盈配合的铜套内径加工尺寸的计算[5]依据有四点: (1) 铜套在常温下镶入座孔后,其金属密度变化不大,可以略去不计。

SolidWorks-装配体实例详解

第9章装配体设计·97· 第9章装配体设计 装配体设计是三维设计中的一个环节,不仅可以利用三维零件模型实现产品的装配,还可以使用装配体的工具实现干涉检查、动态模拟、装配流程、运动仿真等一系列产品整体的辅助设计。 将两个或多个零件模型(或部件)按照一定约束关系进行安装,形成产品的装配。由于这种所谓的“装配”,不是真正的在装配车间的真实环境下完成,因此也称为虚拟装配。 9.1:插入零部件及配合 9.1.1 案例介绍及知识要点 组装如图9-1所示的链轮组件。 图9-1 链轮组件 知识点 ?插入零部件 ?从设计库中插入标准件 ?移动零部件和旋转零部件 ?镜向零部件 ?特征驱动零部件 ?添加配合关系

SolidWorks实用教程 ·98· 9.1.2操作步骤 <1>新建零件 单击菜单栏中的【新建】按钮,系统自动激活【新建Solidworks文件】对话框,选择【装配体】模板,如图9-2所示,单击【确定】按钮。 图9-2 文件模板 <2>插入基体零件 单击【浏览】按钮,在【查找范围】文本框中选择光盘中的“第九章/插入零部件及配合/链轮组件/支撑架”,单击【打开】按钮,如图9-3所示,再单击【确定】按钮。 图9-3 插入基体零件 <3>保存文件 Ctrl+S保存文件,如图9-4所示,命名为“链轮组件”,单击【保存】,系统将自动添加文件后缀“.sldasm”,单击【保存】按钮。

第9章装配体设计·99 · 图9-4 保存文件 <4>插入“轴组件”子装配体 按S键,出现S 工具栏,单击【插入零部件】按钮,弹出【插入零部件】属性管 理器对话框。单击【浏览】按钮,选择子装配体“轴组件”,单击【打开】按钮,在视图区域任意位置单击,如图9-5所示。 图9-5 插入“轴组件” <5>旋转插入“轴组件” 为了便于进行配合约束,旋转“轴组件” ,单击【移动零部件】 下拉按钮,选择【旋转零部件】命令,弹出【旋转零部件】属性管理器对话框,此时鼠标变为图标,旋转至合适位置,单击【确定】按钮,如图9-6所示。

过盈配合装配方法总结

过盈配合装配分析总结 摘要:由于过盈配合能承受较大的轴向力、扭矩及动载荷,应用十分广泛,并且由于它是种固定连接,因此装配时要求有正确的相互位置和紧固件,还要求装配时不损伤机件的强度和精度,装入简便迅速,还有轴承的安装是否正确,直接影响轴承使用时的精度、寿命和性能。 关键字:过盈配合;装配;热装;冷装 正文; 过盈配合的装配是将较大尺寸的被包容件(轴件)装入较小尺寸的包容件(孔件)中。如下图中间; 过盈配合能承受较大的轴向力、扭矩及动载荷,应用十分广泛,例如齿轮、联轴节、飞轮、皮带轮、链轮与轴的连接,轴承与轴承套的连接等。由于它是种固定连接,因此装配时要求有正确的相互位置和紧固件,还要求装配时不损伤机件的强度和精度,装入简便迅速。过盈配合要求零件的材料应能承受最大过盈所引起的应力,配合的 1

连接强度应在最小过盈时得到保证。常用的装配方法有压装配合、热装配合,冷装配合等。过盈配合中的公差带分布情况参考下表1 表1 过盈配合中的公差带分布状况 一、常温下的压装配合 常温下的压装配合适用于过盈量较小的几种静配合,其操作方法简单、动作迅速,是最常用的一种方法。根据施力方式不同,压装配合分为锤击法和压入法两种。锤击法主要用于配合面要求较低、长度较短,采用过渡配合的连接件;压入法加力均匀,方向易于控制,生产效率高,主要用于过盈配合,过盈量较小时可用螺旋或杠杆式压入工具压入,过盈量较大时用压力机压入。其装配工艺如下: 2

1、验收装配机件机件的验收主要应注意机件的尺寸和几何形状偏差、表面粗糙度、倒角和圆角是否符合图样要求,是否光掉了毛刺等。机件的尺寸和几何形状偏差超出允许范围,可能造成装不进、机件胀裂、配合松动等后果;表面粗糙度不符合要求会影响配合质量;倒角不符合要求或不光掉毛刺,在装配过程中不易导正和可能损伤配合表面;圆角不符合要求,可能使机件装不到预定的位置。机件尺寸和几何形状的检查,一般用千分尺或0.02mm 的游标卡尺,在轴颈和轴孔长度上两个或三个截面的几个方向进行测量,而其他检测项靠样板和目视进行检查。机件验收的同时,也就得到了相配合机件实际过盈的数据,它是计算压入力、选择装配方法等的主要依据。 2、计算压入力压装时压入力必须克服轴压入孔时的摩擦力,该摩擦力的大小与轴的直径,有效压入长度和零件表面粗糙度等因素有 关。当配合件皆为钢质时 3

过盈量与装配力计算公式

过盈量与装配力计算公式 过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。

1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。1)传递轴向力F 当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接. 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则 F =πdlpf f因需保证F≥F,故f [7-8] 2)传递转矩T 当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M应大于或等于转矩T。f①,配合尺寸同前,则设配合面上的摩擦系 数为f M =πdlpf·d/2f因需保证M ≥T.故得f [7-9] ①实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材有润滑时联接零件材无润滑时f 结合方式,润滑 f 料 f 料 油压扩孔,压力油钢—铸钢 0.11 0.08 0.125 为矿物油 油压扩孔,压力油钢—结构钢 0.10 0.07 为甘油,结合面排0.18 油干净钢—钢钢—优质结在电炉中加热包0.11 0.08 0.14 构钢 容件至300℃ 在电炉中加热包钢—青铜 0.15?0.20 0.03?0.06 容件至300℃以0.2 后,结合面脱脂 油压扩孔,压力油钢—铸铁 0.12?0.15 0.05?0.10 钢—铸铁 0.1 为矿物油 钢—铝镁合铸铁—铸钢 0.15?0..25 0.15?0.10 无润滑 0.10?0.15 金 3)承受轴向力F和转矩T的联合作用 此时所需的径向压力为

Solidworks装配体

实验四 SolidWorks 装配体 一、 实验目的 1. 掌握零件装配操作及运动模拟方法 二、 实验内容 完成零件装配与运动模拟 三、 实验步骤 1. 物质动力 物质动力是以现实的方式查看装配体零部件运动的方法之一。启动物质动力功能后,拖动一个零部件时,此零部件就会向其接触的零部件施加作用力,并使接触的零部件在所允许的自由度范围内。物质动力可以在整个装配体范围内应用,拖动的零部件依次可以顺次推动 (1) SolidWorks 文件】对话框,选择【装配体】模板,单击【确定】按钮,进入装配体窗口,出现【插入零部件】属性管理器,选中 【生成新装配体时开始指令】和【图形预览】复选框,单击【浏览】 按钮,出现【打开】对话框,在文件夹“物质动力下”选择要插入的零件“底板”,单击【打开】 1所示。 (2) 选择“底板”、“滑块”的右视图,单击【重合】按钮,单击【确定】按钮 ,完成重合配合,如图2所示。 (3) 选择“底板”上表面和“滑块 1”下表面,单击【重合】按钮,单击【确定】按钮 ,完成重合配合,如图3所示。 图1 物质动力实例 图2 “底板”、“滑块”右视图重合配合 图3 “底板”上表面、“滑块1”下表面重合配合

(4) ,如图4所示。 (5) 单击【移动零部件】按钮,出现【移动零部件】属性管理器,选择【自由拖动】 选项,指针变成形状,展开【高级配合】标签,选中【标准拖动】单选按钮,按住鼠标拖动,观察移动情况,如图5所示。 图4 完成其余零件装配 图5 【自由拖动】 (6) 选中【碰撞检查】单选按钮,选中【碰撞时停止】、【高亮显示面】和【声音】复 选框,选择“手柄”,由于销钉的影响,滑块<1>被拖动到如图6所示位置,停止并发出“叮铛”声。 图6 碰撞时停止 (7) 选中【物质动力】单选按钮,选择“滑块<1>”,在零件上出现一个符号,这个 符号代表质量中心。拖动“滑块<1>”,当“滑块<1>”移动到槽尾部时,“滑块 <1>”将拖动“滑块<2>”同时移动,直到“滑块<2>”零件到达“底板”槽的尾部,发生碰撞时停止,如图7所示。 图7 物质动力 2. 万向节装配 (1) 将万向节各零件装配起来形成装配体,如图所示;

solidworks有限元分析范例

注意:本文件内容只是一个简短的分析报告样板,其内相关的分析条件、设置和结果不一定是正确的,您还是要按本书正文所教的自行来做。 一、范例名: (Gas Valve气压阀) 1 设计要求: (1)输入转速1500rpm。 (2)额定输出压力5Mpa,最大压力10Mpa。 2 分析零件 该气压泵装置中,推杆活塞、凸轮轴和箱体三个零件是主要的受力零件,因此对这三个零件进行结构分析。 3 分析目的 (1)验证零件在给定的载荷下静强度是否满足要求。 (2)分析凸轮轴零件和推杆活塞零件的模态,在工作过程中避开共振频率。 (3)计算凸轮轴零件的工作寿命。 4 分析结果 1.。推杆活塞零件 材料:普通碳钢。 在模型上直接测量得活塞推杆的受力面积S为:162mm2,由F=PS计算得该零件端面的力F为:1620N。所得结果包括: 1 静力计算: (1)应力。如图1-1所示,由应力云图可知,最大应力为21Mpa,静强度设计符合要求。 (2)位移。如图1-2所示,零件变形导致的最大静位移为2.2e-6m。 (3)应变。如图1-3所示,应变云图与应力云图的对应的,二者之间存在一转换关系。

图1-1 应力云图图1-2 位移云图 图1-3 应变云图图1-4 模态分析 2 模态分析: 图1-4的“列举模式”对话框中列出了“推杆活塞”零件在工作载荷下,其前三阶的模态的频率远远大于输入转速的频率,因此在启动及工作过程中,该零件不会发生共振情况。模态验证符合设计要求。 2。凸轮轴零件 材料:45钢,屈服强度355MPa。 根据活塞推杆的受力情况,换算至该零件上的扭矩约为10.5N·m。 1 静力分析: 如图1-5所示为“凸轮轴”零件的应力云图,零件上的最大应力为212Mpa,平均应力约为120MPa,零件的安全系数约为1.7,符合设计要求。 图1-5 应力云图图1-6 模态分析 2 模态分析

大型齿轮与空心轴过盈连接性能分析

【48】?第39卷?第10期? 2017-10 大型齿轮与空心轴过盈连接性能分析 Performance analysis of interference fit between large gear and hollow shaft 王征兵1,刘忠明1,张志宏1,朱帅华2 WANG Zheng-bing 1, LIU Zhong-ming 1, ZHANG Zhi-hong 1, ZHU Shuai-hua 2 (1.郑州机械研究所 研发中心,郑州 450052;2.河南科技大学 机电工程学院,洛阳 471003)摘 要:采用有限元法对过盈连接进行了计算,得到了配合面的真实接触状态;结果表明,配合面接触 压力沿轴向呈U形分布,配合面中部仿真数值与理论计算值吻合较好,两端有较大应力集中。分析了离心力对配合性能的影响,结果表明,低转速时,离心力产生的影响非常有限,但转速一旦超过一定值,接触压力下降较快,此时要使连接可靠,过盈量计算必须考虑离心力作用,并给予补偿。 关键词:空心轴;过盈连接;有限元 中图分类号:TH124 文献标识码:A 文章编号:1009-0134(2017)10-0048-03 收稿日期:2017-06-02 基金项目:国家科技支撑项目:桥式起重机械轻量化减速器关键技术研究与应用(2015BAF06B02)作者简介:王征兵(1985 -),男,河南郸城人,工程师,主要从事机械传动产品的设计与研发。0 引言 空心轴结构具有质量轻、承载强度高、散热性能好等优点,被广泛地用于起重机械、高速铁路、石油装备、航空航天等领域。过盈连接承载能力强、结构简单、定心性好、无需任何紧固件,而且可避免因采用键槽削弱零件强度的缺点,在以传递动力的孔轴类、齿轮轴类等紧密装配件中得到广泛应用。 过盈配合属于边界条件高度非线性的接触问题,配合面间的接触状态和应力状态都非常复杂。传统计算方法是在假定零件处于平面应力状态、配合面压强均匀分布等前提下进行的,很难精确地计算出配合面的压力分布和应力集中情况,从而影响过盈连接的可靠性和设计质量,存在一定的局限性[1~3]。 本文采用有限元法对过盈配合真实接触状态进行计算,分析可能影响配合性能的相关因素,并与解析法计算结果进行比较分析,探索一种精确、有效、可靠的过盈连接计算方法。 1 过盈连接设计计算 以某规格起重机减速器末级传动为例,减速器额定功率为94.6kW,低速大齿轮与输出轴采用过盈连接方式,输出轴采用空心轴设计。过盈连接的结构尺寸如图1所示。齿轮材料为17CrNiMo6,空心轴材料为 42CrMo,转速为3.04r/min,传递转矩T=297642N .m。 过盈配合计算,需计算出承受传递外负荷所需的最小过盈量 min 和在保证联结件强度条件下被连接件不产 生塑性变形所允许的最大有效过盈量max ,并依此来选 择恰当的过盈配合。 1)最小过盈量 min 计算 要计算承受传递外负荷所需的最小过盈量min ,首 先要计算过盈配合面间所需的最小径向压力P min ,其公 式为: (1) 式中,F,T分别为过盈连接承受的轴向力和转矩;d,l分别为配合公称直径和配合长度;f为配合面间的摩擦系数。 则最小过盈量min 为: (2) 式中,E a 、E i 分别为包容件与被包容件的弹性模 图1 齿轮与空心轴过盈连接结构图

过盈配合件的装配方法

过盈配合件的装配方法 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

过盈配合件的装配方法有: 过盈配合件是依靠相配件装配以后的过盈量达到紧固联接。装配后.由于材料的弹性变形,使配合面之间产生压力,因此在工作时配合面间具有相当的联擦力来传递扭短或轴向力。过盈配合装配一般属于不可拆卸的固定连接。过盈配合件的装配方法有:(1)人工锤击法,(2);(3),(4)。 轴承加热器热装法: 适用过盈量较大轴承、齿轮、齿圈、电机外壳的加热器装配 1.做好热装前的准备工作.以保证热装工序的顺利完成 1)加热温度T计算公式T=(σ+δ)/ad+T (℃)式中d-配合公称直径(mm) a-加热零件材料线膨胀系数(1/℃)常用材料线膨胀系数见有关手册σ-配合尺寸的最大过盈量mmδ-所需热装间隙(mm)当d<200mm时, δ取(1"2)σ当d≥200mm时,δ取"d2 2)加热时间按零件厚10mm需加热10min估算。厚度值按零件轴向和径向尺寸小者计算 3)保温时间按加热时间的1/4估算 2.包容件加热.胀量达到要求后,要迅速清理包容件和包件的配合表面,然后立即进行热装。要求操作动作迅速准确,一次热装到位,中涂不许停顿。若发生异常,不允许强迫装入,必须排除故障,重新加热再进行热装 3.零件热装后,采用拉、压、顶等可靠措施使热装件靠近被包容件轴向定位面。零件冷却后,其间隙不得大于配合长度的1000 4.钢件中装铜套时,包容件只能作一次热装,装后不允许作为二次热装的包容件再行加热

5.凡镶圈结构的齿轮与的热装时.在装齿圈时已加热过一次,当与轴热装时,又需二次加热,一般应采用油浴加热。若条件有限,也可采用电炉加热,但必须严格控制温升速度,使之温度均匀.且工作外表面离炉丝距离大于300mm,否则不准采用 6.采用电感式加热器加热,必须适当选择设备规格,并严格遵守设备操作规程 :适用于包容件无法加热或加热会导致零件精度、材料组织变化、影响其力学件的装配1.冷装时 l冷冻温度TI计算公式 T1=2σ/a1d (℃) 式中 σ—最大过盈量(mm) d—被包容件的外径(mm) a1—被包容件冷却时 线膨胀系数常用材料冷却时线膨胀系数见有关手册 冷冻时间t计算公式 t= a'δ' (6~8)(mm) 式中与材料有关的系数见有关手册被冷冻零件的特征尺寸。即零件的最大断面半径或壁厚尺寸(mm) 1)按公式计算冷冻温度T 2)选用冷冻剂,冷冻剂的温度必须低于被包容件所需冷冻温度T1,被包容件直径大于φ50mm时优先选用液态氧或液态氮冷冻 剂温度值见有关手册 3)计算冷冻时间 2.凡冷装采用液态氧做冷冻剂时.严禁周围有易燃物和火种

solidworks有限元分析的分析方法

solidworks有限元分析的分析方法 solidworks有限元分析可应用于机械、汽车、家电、电子产品、家具、建筑、医学骨科等产品设计及研发。其作用是:确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 是产品设计研发的核心技术, 学习solidworks有限元分析最重要的是随机应变而不是根据理论一成不变的做。这是看板网经过超过十几年的实践经验和培训经验中总结出来的教训。这也是初学者常常出现的问题,过度重视理论,行为上变现为按部就班,结果往往出现问题。按部就班对于刚开始学习的人是有好处的,但是,学习一段时间后就应该学会创新。 第一步,要知道零部件之间的接触关系。 一般来讲,有限元分析的前要有符合实际的模型,再有符合实际的约束条件,如果是装配体需要知道零部件之间的接触关系。 第二步,建立有限元模型 在SW的有限元分析中可以用非常简单的步骤做到,知道零部件之间的接触关系。首先建立有限元模型,为什么叫有限元模型?因为为了节约分析的时间,降低有些应力集中区域的产生,我们需要对模型简化,所以,一般来讲有限元模型和实际的模型有一点的区别。 第三步,启动有限元分析插件 模型建好后就可以启动有限元分析插件,具体:点插件---Simulation框内打勾,启动后就可以进行边界条件的设置,然后点运行就可以了,当然,如果不设定网格精度,软件会默认网格的大小。 第四步,后处理 关于后处理:前面是i过程,而后处理就是我们要的结果,这个需要你的一些力学上的知识支撑了,比如应力、应变、位移、安全系数、作用力、反作用力等等。具体的还需要对软件进一步的了解! 看板网培训的主要Simulation有限元分析理论分类有静态分析、频率分析、扭曲分析、热分析、设计优化、掉落测试、疲劳理论、疲劳分析、振动分析。

SolidWorks-装配体实例详解 -爆炸篇

第9章装配体设计·109· 9.2:装配体检查 9.2.1案例介绍及知识要点 对如图9-93所示的链轮组件进行干涉检查并修复。 图9-93干涉检查 知识点 ?干涉检查 ?装配体中编辑零部件 9.2.2 操作步骤 <1>打开装配体 打开光盘中的“第9章/装配体检查/干涉检查/链轮组件”

SolidWorks实用教程 ·110· <2>干涉检查 切换到【评估】工具栏,单击【干涉检查】按钮,弹出【干涉检查】属性管理器对话框,单击【计算】按钮,如图9-94所示。 图9-94 干涉检查 <3>查看干涉位置 单击【结果】选项组下的目录,可以显示干涉的零件,如图9-95所示,干涉1和干涉2都为轴承和轴干涉,干涉3和干涉11都为键和顶丝干涉,干涉4和干涉12都为轴和链轮,干涉5和13干涉都为链轮和键,干涉6和干涉14都为链轮和顶丝,干涉7、干涉8、干涉9和干涉10都为连接板和螺栓干涉。 图9-95 检查干涉位置 <4>忽略干涉 在【结果】选项组下的文本框中选中“螺栓和连接板的4个干涉、顶丝和链轮的2个干涉”,单击【忽略】按钮,单击【确定】按钮。如图9-96所示

第9章装配体设计·111 · 图9-96 忽略干涉 <5>打开干涉零件 在FeatureManager设计树中展开“轴组件”特征树,单击“轴”,在关联菜单中单击【打开零件】按钮。如图9-97所示 图9-97 查看干涉零件 <6>修改干涉问题 双击轴,显示轴的直径为“36”,的确与直径为“35”的孔干涉,所以修改轴的直径为“35”,如图9-98所示,单击【重新建模】按钮并回车,单击【确定】按钮,单击【保存】按钮,保存修改的零件,单击【关闭】按钮,在对话框单击【是】按钮。

过盈配合件的装配方法优选稿

过盈配合件的装配方法集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

过盈配合件的装配方法有: 过盈配合件是依靠相配件装配以后的过盈量达到紧固联接。装配后.由于材料的弹性变形,使配合面之间产生压力,因此在工作时配合面间具有相当的联擦力来传递扭短或轴向力。过盈配合装配一般属于不可拆卸的固定连接。过盈配合件的装配方法有:(1)人工锤击法,(2);(3),(4)。 轴承加热器热装法: 适用过盈量较大轴承、齿轮、齿圈、电机外壳的加热器装配? 1.做好热装前的准备工作.以保证热装工序的顺利完成? 1)加热温度T计算公式T=(σ+δ)/ad+T (℃)式中d-配合公称直径(mm) a-加热零件材料线膨胀系数(1/℃)常用材料线膨胀系数见有关手册σ-配合尺寸的最大过盈量mmδ-所需热装间隙(mm)当d<200mm时, δ取(1"2)σ当d≥200mm时,δ取(0.001"0.0015)d2? 2)加热时间按零件厚10mm需加热10min估算。厚度值按零件轴向和径向尺寸小者计算? 3)保温时间按加热时间的1/4估算? 2.包容件加热.胀量达到要求后,要迅速清理包容件和包件的配合表面,然后立即进行热装。要求操作动作迅速准确,一次热装到位,中涂不许停顿。若发生异常,不允许强迫装入,必须排除故障,重新加热再进行热装? 3.零件热装后,采用拉、压、顶等可靠措施使热装件靠近被包容件轴向定位面。零件冷却后,其间隙不得大于配合长度的1000? 4.钢件中装铜套时,包容件只能作一次热装,装后不允许作为二次热装的包容件再行加热?

5.凡镶圈结构的齿轮与的热装时.在装齿圈时已加热过一次,当与轴热装时,又需二次加热,一般应采用油浴加热。若条件有限,也可采用电炉加热,但必须严格控制温升速度,使之温度均匀.且工作外表面离炉丝距离大于300mm,否则不准采用? 6.采用电感式加热器加热,必须适当选择设备规格,并严格遵守设备操作规程 :适用于包容件无法加热或加热会导致零件精度、材料组织变化、影响其力学件的装配? 1.冷装时? l冷冻温度TI计算公式? T1=2σ/a1d (℃) 式中? σ—最大过盈量(mm) d—被包容件的外径(mm) a1—被包容件冷却时? 线膨胀系数常用材料冷却时线膨胀系数见有关手册? 冷冻时间t计算公式? t= a'δ' (6~8)(mm) 式中与材料有关的系数见有关手册被冷冻零件的特征尺寸。即零件的最大断面半径或 壁厚尺寸(mm) 1)按公式计算冷冻温度T? 2)选用冷冻剂,冷冻剂的温度必须低于被包容件所需冷冻温度T1,被包容件直径大于φ50mm时优先选用液态氧或液态氮冷冻

ansys实例-正确地模拟过盈配合

过盈配合在机械产品的装配中使用的相当普遍。比如轴与轴承、轴与轴瓦、汽车的制动盘等,都是通过一定的过盈量来使两个装配部件紧密地连接起来。 下面讨论如何在ANSYS 中正确地模拟过盈配合。 过盈配合在有限元分析中是一种典型的非线性接触行为。在有限元分析中设定了接触,从本质上来讲就是对相互接触的两个部件施加了某种约束,不同的接触算法对于接触约束的处理方法有所不同。接触约束的理论算法的选择,在ANSYS 中是通过设置contact 单元的KEOPT(2) 选项来实现的。 在ANSYS 中目前主要有5 种接触约束算法: KEYOPT(2)=0 Augmented Lagrangian - 加强的拉格朗日算法,这是ANSYS 的缺省选择; KEYOPT(2)=1 Penalty function - 罚函算法; KEYOPT(2)=2 Multipoint constraint (MPC) - 多点约束算法; KEYOPT(2)=3 Lagrange multiplier on contact normal and penalty on tangent - 接触法向采用拉格朗日乘子,接触切向采用罚函数的综合算法。 KEYOPT(2)=4 Pure Lagrange multiplier on contact normal and tangent - 法向和切向均采用拉格朗日乘子算法。 各种不同的约束算法各有其优缺点,各有各自最适用的场合,具体情况需要具体对待。大部分情况下,默认选择KEYOPT(2)=0 就够用了。 过盈配合所致的接触分析的难点在于如何确定初始接触状态。初始

接触状态设置得不对,会导致错误的计算结果或者不准确的计算结果,下面举两个例子来说明。ANSYS仿真计算代做:模态分析,瞬态动力学,谐响应分析和谱分析、械结构的疲劳、损伤,CFD流体;结构的强度评估和优化;企鹅:690294845 例1.两个圆柱体在几何上是刚好接触,划分网格后有限元模型有间隙。如图1 所示。 这两个圆柱体,在几何上是刚好相切的,即处于几何上刚好接触的初始状态。划分网格后,由于在圆周上用小段直线代替了弧线,两个圆柱体之间产生了一定的间隙,两个圆柱体的有限元模型的初始状态不再是接触的。此时,如果接触参数设置不当,就会因为初始约束不足,圆柱体出现刚体位移,得到错误的结果。

相关主题
文本预览
相关文档 最新文档