当前位置:文档之家› 动三轴试验操作步骤(精)

动三轴试验操作步骤(精)

动三轴试验操作步骤(精)
动三轴试验操作步骤(精)

动三轴试验操作步骤

1 开机

1.1 开电脑

1.2 开控制器(黑色机箱中红色按钮),打开控制程序,在参数选项中选择“动态试验”;将调整部分改为变形、位移控制,如已经为此种状态,则改为负荷、围压控制,然后再改回(以防开油源时侧向活塞突然升高,水喷出)。

1.3预热15~30分钟。

1.4 开油源,按“启动”按钮,10秒后按下“高压”按钮,然后缓慢调节调压阀(油源)至5~6Mpa (可根据需要调更高),开冷却水。

2 安装试样

说明:试样必须饱和。试样饱和按照试验规程可以有多种方法,一般选用真空饱和,具体试验步骤见试验规程。如试验需要,可再进行反压饱和或者水头饱和。

2.1 控制区,调整轴向及侧向为变形、缸位置控制;拖动轴向及侧向平均值调整,使其居于最左或最低以便装样;

开上下孔压阀排除管路中气体

进行负荷、围压、上孔压、下孔压清零,变形不清零。

2.2 将饱和好的试样套好橡皮膜,两端分别放滤纸、透水石,然后将两端的橡皮膜翻转。微开下孔压阀,使试样安装底座有一层水膜,将试样平推放在底座上,翻下下端橡皮膜,缠2-3条橡皮条,每条3-4圈(橡皮条先缠在底座上)。

2.3 升底座,确认轴向控制方式为变形控制,缓缓拉动轴向调整,右移,约-30mm左右,看试样是否与上底座接触,快要接触时,鼠标点轴向调整,使缓缓上升,接触时负荷具体值与土样软硬程度相关。

2.4 翻上端橡皮膜,微开下孔压阀,向试样中缓缓注入水,以赶出试样与橡皮膜之间的气泡,可使用刷子轻轻驱赶,当无气泡时,可抽出下孔压体变管中的水,然后关下孔压阀。

2.5 盖压力室,依次拧紧6个螺丝,打开压力室右侧的进出水开关。向压力室注水,当压力室注满水时(上部排气阀出水)关闭进水阀和压力室右侧的进出水开关。拧紧排气阀。清理顶盖多余的水。

3 设置参数

3.1 调用固结参数

菜单区选择设置,选择固结方案,一般为围压、固结比、加载时间和固结时间,修改口令为213t,修改后另存在原目录下,再次调用。

菜单区选择设置,选择试验方案,一般为频率、次数、动态轴力等,选择静、动态试验,修改口令为213t,修改后另存在原目录下,再次调用。

3.2 打开固结方案,打开试验方案(否则默认为上次所用固结方案,试验方案),新建文件夹,选择目录,输入文件名,如不输入,则默认为当前日期时间。

3.3,系统参数可设置单位,保护等,采样间隔可根据试验要求设置,一般为2~20ms,可选择是否记录孔压耗散。系统参数,一般不更改;

3.4 设置原始数据,包括密度、含水率、干密度等基本的指标;

3.5 根据提示,安装主机背后的小变形传感器,接触良好,数据显示区小变形为-3mm左右,(若土样较软,加载时土样的变形较大,不易控制,有可能超量程),确认轴向为变形控制。可在侧向位置控制下缓慢加围压至10KPa左右,侧向转为围压控制。

{3.6-3.7加压,固结操作替代方法:轴向保持位移控制不变,侧向转为围压控制,设定围压加载目标及加载速度。

单击“start”开始加载围压。加载到自动停止。围压加到后,开上

下孔压阀排水。轴向转负荷控制。保持负荷及围压不变进入固结阶段。对于偏压试验稳定一段时间后补充加载偏压部分。等待至固结结束(通常要1—4小时)。

}

3.6 单击“下一步”,确认围压和固结比,单击“下一步”根据提示选择是否排水,一般为不排水,然后单击“下一步”,加围压。

3.7围压加到后,开上下孔压阀排水,轴向转负荷控制,进入加轴压过程记录固结开始时刻。若有偏差可手动(键盘)稍加至设定值。

3.8 固结结束,记录上下孔压排水管高度,计算排水量,关闭上下孔压阀。

3.9 单击“下一步”,输入排水量,单击“下一步”。

3.10设置轴向和侧向的振动次数、幅值。(这一步可提前,但振前须确认)。

3.11一般轴向振动,侧向围压的幅值为0,若做侧向振动,轴向幅值为0;也可做侧向轴向同时振动试验。振动幅值视土样的软硬程度设定,一般要大于0.5倍的轴向应力,但是要低于轴向应力。

3.12 单击“试验开始”,达到结束条件,则自动停止,也可人为停止(认为其达到破坏标准)

4 卸样

4.1 稍卸轴向和侧向压力,然后将轴向转为变形控制(可防止试样被过度挤压或拉伸),轴压、围压循环卸载,直至围压接近0。或设置自动卸载(围压卸载速度要少快于轴压)。

4.2 打开排水阀,排气阀,放出压力室的水

4.3 打开压力室,卸样。清理现场。

5 关机

5.1 调油源,将压力调至0Mpa,按“卸压”,按“停止”(均为红色按钮),关冷却水。

警告:严禁在关油源前关主程序及控制器。

5.2 退出程序,关控制器;关计算机,总电源。

实验说明:

1. 做动强度试验(液化试验),要求在一个振级内达到破坏标准,必须选择合适的振动幅值,可根据试样的软硬程度和经验计算选择。

2. 做阻尼(动模量)试验,为分级加载,每一级的振动次数可设置在6~10次左右。

注意事项:

1.不允许未开控制器及程序前开油源。

2.油源运行中或试验中不允许关控制器。

3.控制器先开后关(开控制器—打开程序---开油源---工作结束---关油源---关程序---关控制器)。

4.发生异常应先关油源,压力降至最低位置,卸除动力。(若使用“安全开关”关油源,电机停止后应将调压旋钮逆时针旋转到零位,以防下次开启时油压骤升。

动三轴实验步骤(带拉伸帽)

动三轴基本操作步骤 一、仪器介绍 基本配置: (1)驱动装置:2/5/10HZ;5/10/20/40KN (2)压力室 (3)水下荷重传感器 (4)DCS数字控制系统 颜色/通道传感器固定DTI 增益(DTI 传感器满量程) ?黑色(Ch 0) - 荷重传感器x333.33 (30mV) ?棕色(Ch 1) - 轴向霍尔效应传感器1 x10 (1000mV) ?红色(Ch 2) - 轴向霍尔效应传感器2 x10 (1000mV) ?橙色(Ch 3) - 径向霍尔效应传感器x10 (1000mV) ?黄色(Ch 4) - 孔隙水压力1 x100 (100mV) ?绿色(Ch 5) - 孔隙水压力2 x100 (100mV) ?灰色(Ch 6) - 备用A/D 通道1 x1 (10000mV) ?白色(Ch 7) - 备用A/D 通道2 x1 (10000mV)

(5)围压和反压控制器 控制器基本操作主要是充水、排水和施加目标压力。其操作可以通过软件控制,也可采用智能键盘操作。控制器打开电源之后,按命令键CMD ,会出现上图所示的快捷菜单,点击相应按键即可操作。 Tareget Pressure=7:设置目标压力,按“7”之后按照提示输入目标压力值并按绿色确认键开始加载; Fast Fill=6:快速填充,按“6”之后控制器将开始吸水; Fast Empty=3:快速排空,按“3”之后控制器将开始排水; (6)平衡锤:平衡锤的主要功能就是在加载过程中保持围压的恒定。 平衡锤配置图

二、安装试样 1.控制器充排水:试验之前先将控制器中的水排出一部分然后再吸水,确保控 制器中水装满2/3且无气泡,在排控制器水时将控制器管路这端抬升以便气泡充分被排除; 2.排气泡:通过控制器排除顶帽、底座以及设备管路中的气泡; 3.安装试样:安装试样时小心土颗粒,特别是砂子掉入压力时内部,试样两端 都需要垫放浸湿的透水石和滤纸,安装试样尽量采用三半模以减小对试样的扰动,安装顶帽之前用软毛刷轻轻刷橡皮膜以排除橡皮膜与土样之间的气泡,两端用O型圈或者橡皮筋扎紧; 4.安装喇叭口:将喇叭口内壁涂一层硅脂,切记不可涂太多,将平口那端安装 到试样帽上; 5.安装外压力室:安装压力室之前确保轴向力传感器处于最上位置,安放压力 室时观察拉伸帽是否压住试样,螺栓需要对称拧紧; 6.荷重传感器清零:通过软件对力传感器清零; 点击左侧Object Diisplay,出现右侧的的硬件显示窗口。 点击力传感器上部的眼睛,然后点击Advanced选项,单击右下角Set Zero 清零。

三轴实验报告精编版

三轴试验报告 课程高等土力学 授课老师冷伍明等 指导老师彭老师 学生姓名刘玮 学号 114811134 专业隧道工程

目录 1.试验目的 (1) 2.仪器设备 (1) 3.试样制备步骤 (1) 4.试样的安装和固结 (2) 5.数据处理(邓肯—张模型8大参数的确定) (2) 6.注意事项 (9) 7.总结 (10)

1.试验目的 (1).三轴压缩试验室测定图的抗剪强度的一种方法,它通过用3~4个圆柱形试样,分别在不同的恒定周围压力下,施加轴向压力,进行剪切直至破坏;然后根据摩尔-强度理论,求得土的抗剪强度参数;同时还可求出邓肯-张模型的其它6个参数。 (2).本试验分为不固结不排水剪(UU);固结不排水剪(CU或CU)和固结排水剪(CD)等3种试验类型。本次试验采用的是固结排水剪(CD)。 2.仪器设备 本次实验采用全自动应变控制式三轴仪:有反压力控制系统,周围压力控制系统,压力室,孔隙压力测量系统,数据采集系统,试验机等。 3.试样制备步骤 (1).本次试验所用土属于粉粘土,采用击实法对扰动土进行试样制备,试样直径39.1mm,试样高度80mm。选取一定数量的代表性土样,经碾碎、过筛,测定风干含水率,按要求的含水率算出所需加水量。 (2).将需加的水量喷洒到土料上拌匀,稍静置后装入塑料袋,然后置于密闭容器内24小时,使含水率均匀。取出土料复测其含水率。 (3).击样筒的内径应与试样直径相同。击锤的直径宜小雨试样直径,也允许采用与试样直径相同的击锤。击样筒在使用前应洗擦干净。 (4).根据要求的干密度,称取所需土质量。按试样高度分层击实,本次试验为粉粘土,分5层击实。各层土料质量相等。每层击实至要求高度后,将表面刨毛,然后再加第2层土料。如此继续进行,直至击完最后一层,并将击样筒中的试样取出放入饱和器中。 表1 含水率记录表 试验要求干密度为1.7g/cm3,饱和器容积为96cm3,所以所需湿土质量为: + ? = + mρ(g) w =v 1(= ? ) 188 8. 7.1 96 ) .0 1( 1575 分5层击实,则每层质量为37.76g。 (5).试样饱和:采用抽气饱和,将装有试样的饱和器置于无水的抽气缸内,进行抽气,当真空度接近当地1个大气压后,应继续抽气1个小时。抽气完成后徐徐注入清水,并保持真空度稳定。待饱和器完全被水淹没即停止抽气,并释放

土动力学动三轴液化试验报告

泥质粉砂岩液化动三轴试验报告 一 实验器材 振动三轴仪(包括控制部分,加载部分),泥质粉砂岩,托盘天平,游标卡尺,击实仪,真空泵等。 二 实验原理 当土体同时受到纵向和横向荷载作用时,土层中土单元应力状态可看为如下图一所示的简化。异向荷载被看为由自下而上的剪切波引起的,是一种幅值,频率不断变化的不规则运动。当在振动三轴仪上模拟这种应力状态时,将不规则振动简化为等效常幅有限循环次数的振动,即在试件上模拟两种应力状态,有效覆盖压力引起的静应力0γσ和00K γσ,均匀循环剪应力为hv τ。 图一 水平土层土单元应力状态 试件本身应在密度,饱和度和结构等方面尽可能模拟现场土层的实际状况。除取原状土做实验外,在实验室内也须准备重塑试件。考虑荷载作用过程时间短暂,产生的超孔压来不及消失,所以实验室在不排水条件下进行的试验。 为实现上述模拟,本实验采用不排水循环载荷三轴试验来实现上述模拟。假如在试件上先施加各项均等固结压力0σ,后在垂直方向施加2d σ± 循环载荷的同时,横向也施加2 d σ 的荷载,如下图二所示,试件45度斜面上的应力状态与图一相似,其初始法向应力为0σ,初始剪应力为零,与前单元水平面承受的0γσ相当,双向循荷载2 d σ作用并不该变45度倾斜面上的法向应力0σ值,而只产生循环剪应力2 d d στ= ,相当于图一中右图的受力情况, 即图二中第(1)栏所示在三轴试验中为了模拟所要求的应力状态。 σ0 τσ

显然,双向振动三轴仪能方便地实现这种应力状态。而在饱和不排水情况下,单项振动的三轴试验通过空压修正也能获得同样的应力状态。此时,施加的应力状态如同图二中(4)栏所示,只在垂直方向施加动荷载d σ±,当轴向增加d σ时,设想各向均等压力减少 2 d σ,所构成的等效应力状态恰好与所要求的相同;于此相似,轴向减少d σ时应当增加各向均等压力 2 d σ,由于是饱和不排水的,各向均等压力的变化只能引起试件中空隙水压力的相应变化,对有效应力,也即对试件的强度和变形并无影响。换句话说,可以获得与双向振动三轴仪试验完全相同的强度和变形值。对单项振动三轴试验中的实测孔压值进行修正即可获得双向振动时的相应孔压值,轴向加d σ时的修正值为 2d σ,减d σ时修正值为2 d σ -。但是,实际上很少作这种修正,因人们关心的主要是强度和变形值。 不难看出,只是在三轴试件45度斜面上才大体模拟了现场应力状态。实际上还存在若干重要的区别,例如现场土层静测压力系数0k 一般取0.4(随土的性质而变),最大和最小主应力方向分别为垂直和水平方向,振动时主应力方向的摆动不超过40度等,但在振动三轴试验中,试样的0k 等于1,主应力方向不断作90度变换。因此,在应用此试验结果于现场时,必须考虑这种差别而做相应的修正,此外,完全可以不拘泥于上述应力状态的模拟,而把单项振动液化试验只看做是在这种特定状态下的一种液化过程,进而着重研究这种液化过程与其他条件下液化过程的异同。 图二 轴实验中土单元应力状态的模拟 三 试验条件

动三轴试验操作步骤

动三轴试验操作步骤 1 开机 1.1 开电脑 1.2 开控制器(黑色机箱中红色按钮),打开控制程序,在参数选项中选择“动态试验”;将调整部分改为变形、位移控制,如已经为此种状态,则改为负荷、围压控制,然后再改回(以防开油源时侧向活塞突然升高,水喷出)。 1.3 预热15~30分钟。 1.4 开油源,按“启动”按钮,10秒后按下“高压”按钮,然后缓慢调节调压阀(油源)至5~6Mpa(可根据需要调更高),开冷却水。 2 安装试样 说明:试样必须饱和。试样饱和按照试验规程可以有多种方法,一般选用真空饱和,具体试验步骤见试验规程。如试验需要,可再进行反压饱和或者水头饱和。 2.1 控制区,调整轴向及侧向为变形、缸位置控制;拖动轴向及侧向平均值调整,使其居于最左或最低以便装样; 开上下孔压阀排除管路中气体 进行负荷、围压、上孔压、下孔压清零,变形不清零。 2.2 将饱和好的试样套好橡皮膜,两端分别放滤纸、透水石,然后将两端的橡皮膜翻转。微开下孔压阀,使试样安装底座有一层水膜,将试样平推放在底座上,翻下下端橡皮膜,缠2-3 条橡皮条,每条3-4 圈(橡皮条先缠在底座上)。 2.3 升底座,确认轴向控制方式为变形控制,缓缓拉动轴向调整,右移,约-30mm左右,看试样是否与上底座接触,快要接触时,鼠标点轴向调整,使缓缓上升,接触时负荷具体值与土样软硬程度 相关。 2.4 翻上端橡皮膜,微开下孔压阀,向试样中缓缓注入水,以赶出试样与橡皮膜之间的气泡,可使用刷子轻轻驱赶,当无气泡时,可抽出下孔压体变管中的水,然后关下孔压阀。 2.5 盖压力室,依次拧紧6个螺丝,打开压力室右侧的进出水开关。向压力室注水,当压力室注满水时(上部排气阀出水)关闭进水阀和压力室右侧的进出水开关。拧紧排气阀。清理顶盖多余的水。 3 设置参数 3.1 调用固结参数 菜单区选择设置,选择固结方案,一般为围压、固结比、加载时间和固结时间,修改口令为 213t,修改后另存在原目录下,再次调用。 菜单区选择设置,选择试验方案,一般为频率、次数、动态轴力等,选择静、动态试验,修改口令为213t,修改后另存在原目录下,再次调用。 3.2 打开固结方案,打开试验方案(否则默认为上次所用固结方案,试验方案),新建文件夹,选择目录,输入文件名,如不输入,则默认为当前日期时间。 3.3,系统参数可设置单位,保护等,采样间隔可根据试验要求设置,一般为2~20ms,可选择是否记录孔压耗散。系统参数,一般不更改; 3.4 设置原始数据,包括密度、含水率、干密度等基本的指标; 3.5 根据提示,安装主机背后的小变形传感器,接触良好,数据显示区小变形为-3mm左右,(若土样较软,加载时土样的变形较大,不易控制,有可能超量程),确认轴向为变形控制。可在侧向位置控制下缓慢加围压至10KPa 左右,侧向转为围压控制。 {3.6-3.7加压,固结操作替代方法:轴向保持位移控制不变,侧向转为围压控制,设定围压加载目标及加载速度。

三轴实验-1讲解

土工试验 Wi ndows视窗版 [程序控制(全自动)三轴仪〗 使用说明书 十二年不断研究改进的技术成果 集300家试验室应用的点滴经验 Windows 平台增强系统应用功能 南京智龙科技开发有限公司 2005年3月南京

3.3 三轴试验(含无侧限抗压强度试验) 三轴试验采样程序用于常规三轴(uu、cu、c D试验、无侧限压缩试验的数据采集,亦支持个试样多级加载三轴试验的数据采集。本节还介绍使用程序控制三轴仪(全自动三轴仪)的过程控制和数据采集。 同一土样的各试样试验的v土样编号〉输入必须一致。 3.3.1 使用常规三轴仪三轴试验的采样过程,参见“三轴试验数据采集程序流程示意图”。

程序流程示意图 程序控制下的试验是使用全自动三轴仪进行的。 3.3.1.1 试验参数、动态显示、操作指令 ⑴ 试验参数的设置 轴向应变一一试验终点的最大应变,是控制采样设置的条件。程序的设置是,应力如出现峰值将再经 3%的应变结束采样;否则按设置的应变结束采样。对于一个试样多级加载试验,应是各级应变量累加值。 加荷级数一一程序区别是否做一个试样多级加载试验的参数。正常试验设1,大于1的数表示是多级 加载。一个试样最多可设6级。 三轴试验数据采集 打开三轴米样视窗 输入试验参数 无侧限压缩试验设围压为零其余同 UU 试验) 检查或作饱和处理 一 指令:放弃试验(通道恢复空闲) y —?I 指令:开始试验 设置压力参数 设置主机速率 >记录初始孔压与量管读数 ?轴压前仪器调试 输入固结排水量 多级剪? 线过零点? 多级剪? 指令:开始剪切 * 指令:倒车后退 ____ n 数据存盘 现异常 试验终点? 多级剪? 结束试验? 压力稳定 指令:开始剪切 数据存盘* 指令:放弃试验 1 通道恢复空闲H 系统待命 +试验结束关机 设置自控参数 加围压 *排水固结、测孔压 读数、关排水阀 n 指令:结束固结 设置轴向应变 指令:开始剪切 y n d= 加下级围压 y 加密采样 指令:修正零点或应变■^n 选定终点控制标准 d=3mm 1 T 辛采集数据文件 y y < 试验? 一*指令:暂停剪切 y n 停机转入次级试验 忆设定步长采样匚 n 加下一级围压 排除故障 继续试验?

完整word版动三轴数据处理说明

动三轴数据处理说明 1.动强度(液化)数据处理 动强度(液化)数据处理需要有足够的数据,如同一固结比,同一围压下不同动应力数 据若干;同一固结比,不同围压下不同动应力数据若干; 应力数据若干; 同一固结比, 不同围压下不同动应力数据若干; 每一固结比下 3个不同围压, 每一围压下3个不同动应力,每个动应力下三个样的数据。 把做好的3X 3X 3试验数据文件 *.csvlc )放在同一文件夹下, 打开动强度 (液化) 数据处理 程序选择文件夹所在的路径 选择数据文件 ,双 击所选文件列表文件,或点击“数据计算”按扭开始数据计算处理,改变 破坏标准,在计算结果行列表 中点击文件所在的行列即重新对该文件按改后的破坏标准进 行计算。 点击关系曲线则根据计算结果生成图表。 图表可保存为图片, 以便打印或编辑。 点 击“保存图形及数据”则把数据及图形存入 word 中。输入振次点击“莫尔圆”则自动计算 动应力,进入莫尔圆数据处理 。 2.阻尼比 (模量 )数据处理 阻尼比 (模量 )数据处理对单个试验数据进行处理,打开阻尼比 (模量 )数据处理程序,点 击“选择数据文件”后,打开所要处理的数据文件,程序开始计算,并把结果以行列表及应 力应变曲线格式显示 。在计算结果行列表中点击某以周的数据在图形区自动显示该周数据 的应力应变图形。计算结果可逐个选用或全部选用,也可选取每级指定周的的数据, 变形几个毫米内的数据可 100%选用小变形传感器数据计算阻尼比, 对于变形大的数据可在 后一段数据选用变形传感 器数据计算阻尼比大变形可设“前 0%选用小变形传感器数据计 处理保存结果” 按扭,输入保存结果文件名, 保存后显示各种曲线关系图表,及拟合的曲线 方程。 图表可保存为图片,以便打印或编辑。数据存在文本文件和 改出图等操作。点击“存入 word 文档,则把数据及图形存入 word 中 3.莫尔圆处理 输入几组数据( 2--9 组) ,点击“画莫尔圆 "即计算和画图 . 点击"保存数据及图形 "则同 时保存.bmp 格式的图形及几组数据(.moer ).点击”打开数据”即计算和画图. 不同同固结比,不同围压下不同动 对于 算阻尼比”,若阻尼比计算全部采用大变形数据。泊松比可修改,默认为 0.5。 点击“数据 excel 中,以便今后查

动三轴操作流程

动三轴操作流程 一、开机 1、开电脑。 2、开控制箱。 刚开始第一个INTERLOCK(红灯)亮,第三个CONTROL(绿灯)不亮,等红灯熄灭,绿灯亮起后,开机完成。 3、打开桌面GCTS软件,密码:gcts。 4、打开气泵上3个按钮,将液压站开关手柄调到ON位置。 二、开启液压站 点击Hydraulic图标,选择Low P(低压)。 三、开启轴向作动器 点击Outputs Function图标,选择Output:Axial Actuator,Feedback:Axial Displacement (位移反馈),点击Reset,最后点击On打开轴向作动器。 四、开启围压作动器 1、点击Outputs Function图标,选择Output:Cell Pressure,Feedback:Cell Pressure Disp.(位移反馈),点击Reset,最后点击On打开轴向作动器。 2、点击PVC Status图标,在PVC下拉菜单中选择PVC-1:Cell Press.PVC,查看Tank中的水量,若水量少于80%,则在位移反馈状态下(即:Feedback:Cell Pressure Disp.)点击Recharge 补足水量。 五、开启反压作动器 1、点击Outputs Function图标,选择Output:Back Pressure,Feedback:Back Pressure Disp.(位移反馈),点击Reset,最后点击On打开反压作动器。 2、点击PVC Status图标,在PVC下拉菜单中选择PVC-2: Back Press.PVC,查看Tank中的水量,若水量少于80%,则在位移反馈状态下(即:Feedback:Back Pressure Disp.)点击Recharge 补足水量。 六、排气、传感器清零 1、围压 围压管路排气:连接好围压管路(将管路控制柜上的cell孔K5连接到底座围压孔),分别打开控制柜和压力室底座上的围压阀门,点击Outputs Function图标,选择Output:Cell Pressure,Feedback:Cell Pressure Disp.,点击Reset,然后点击位移调节滑块的向上箭头,排出围压管路里的气泡,直至压力室底座上的围压孔出水为止。 围压传感器清零:点击Inputs Offset图标,找到第3项,AI-3: Cell Pressure,点击Offset 一列的0,在弹出的Software Offset选项卡里置0,即:选择Set current value :0 kPa,然后点击OK,完成围压传感器清零。 2、反压 反压和孔压管路排气:连接好反压管路(将管路控制柜上的pore孔K3连接到底座下孔压孔),打开管路上的所有阀门(包括上孔压孔),拧开孔压传感器上的两个排气螺丝。点击

非饱和试验步骤-动三轴

非饱和土试验步骤 1.控制器充排水:试验之前先将控制器中的水排出一部分然后再吸水,确保控制器中水装满2/3且无气泡; 2.饱和陶土板::施加不超过50kPa的反压,打开孔压传感器端阀门,排出管路和底座内部的气泡,然后关闭阀门,当发现陶土板上表面完全被水覆盖表明陶土板基本饱和; 3.安装试样:安装试样时小心土颗粒,特别是砂子掉入压力时内部,安装试样尽量采用三半模以减小对试样的扰动; 4.内压力室和参照管注水:试样装好之后安装内压力室,将差压传感器的两根管道分别与内压力室和参照管相连,给内压力室和参照管注水,打开湿湿差压传感器上部的堵头,排出管路中的气泡,气泡排完后保证参照管水位大约在2/3位置,内压力室水位在细管中间位置; 5.安装外压力室:安装压力室之前确保轴向力传感器处于最上位置,安放压力室时观察拉伸帽是否压住试样,螺栓需要对称拧紧; 6.荷重传感器清零:通过软件对力传感器清零; 7.调接触:调节荷重传感器位置,观察荷重传感器读数,当读数达到0.005左右时锁紧轴向加载杆; 8.压力室充水:打开压力室顶部排气孔的堵头,打开进水阀门给压力室注水,装满之后关闭进水阀门和排气孔的堵头; 9.加压检查:通过电脑施加20kPa围压,观察压力室是否漏水,观察孔压传感器读数是否迅速上升到与围压值相等,如果相等则橡皮膜破裂; 10.吸力平衡:吸力平衡阶段主要的目的是给试样施加一个基质吸力让试样由饱 和状态变成非饱和状态。为了保护设备并让试样与压力杆接触,在设置压力时应该遵循一个原则:轴向压力>径向压力>孔隙气压>反压; 11.等吸力固结:等吸力固结也采用应力控制模块。等吸力固结时反压和孔隙气 压保持不变,同步增大围压和轴向压力,过观察反压体积是否稳定来判断固结是否完成; 12.等吸力剪切:剪切包括应力控制和应变控制。剪切过程一定要比较缓慢避免

土三轴压缩试验报告完整版

土三轴压缩试验报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验六土三轴压缩试验 实验人:学号: (一)、试验目的 1、了解三轴剪切试验的基本原理; 2、掌握三轴剪切试验的基本操作方法; 3、了解三轴剪切试验不同排水条件的控制方法和孔隙压力的测量原理; 4、进一步巩固抗剪强度的基本理论。 (二)、试验原理 三轴剪切试验是用来测定试件在某一固定周围压力下的抗剪强度,然后根据三个以上试件,在不同周围压力下测得的抗剪强度,利用莫尔-库仑破坏准则确定土的抗剪强度参数。 三轴剪切试验可分为不固结不排水试验(UU)、固结不排水试验(CU)以及固结排水剪试验(CD)。 1、不固结不排水试验:试件在周围压力和轴向压力下直至破坏的全过程中均不允许排水,土样从开始加载至试样剪坏,土中的含水率始终保持不变,可测得总抗剪强度指标和UCU; 2、固结不排水试验:试样先在周围压力下让土体排水固结,待固结稳定后,再在不排水条件下施加轴向压力直至破坏,可同时测定总抗剪强度指标和CUCCU或有效抗剪强度指标和C及孔隙水压力系数; 3、固结排水剪试验:试样先在周围压力下排水固结,然后允许在充分排水的条件下增加轴向压力直至破坏,可测得总抗剪强度指标和dCd。(三)、试验仪器设备 1、三轴剪力仪(分为应力控制式和应变控制式两种)。

应变控制式三轴剪力仪有以下几个组成部分(图8-1): 图8-1 应变控制式三轴剪切仪 1-调压桶;2-周围压力表;3-周围压力阀;4-排水阀;5-体变管;6-排水管;7-变形量表;8-测力环;9-排气孔;10-轴向加压设备;11-压力室;12-量管阀;13-零位指标器;14-孔隙压力表;15-量管;16-孔隙压力阀;17-离合器;18-手轮;19-马达;20-变速箱。 (1)三轴压力室压力室是三轴仪的主要组成部分,它是由一个金属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压力室底座通常有3个小孔分别与围压系统以及体积变形和孔隙水压力量测系统相连。 (2)轴向加荷传动系统采用电动机带动多级变速的齿轮箱,或者采用可控硅无级调速,根据土样性质及试验方法确定加荷速率,通过传动系统使土样压力室自下而上的移动,使试件承受轴向压力。 (3)轴向压力测量系统通常的试验中,轴向压力由测力计(测力环或称应变圈等等)来反映土体的轴向荷重,测力计为线性和重复性较好的金属弹性体组成,测力计的受压变形由百分表测读。轴向压力系统也可由荷重传感器来代替。 (4)周围压力稳压系统采用调压阀控制,调压阀当控制到某一固定压力后,它将压力室的压力进行自动补偿而达到周围压力的稳定。 (5)孔隙水压力测量系统孔隙水压力由孔隙水压力传感器测得。 (6)轴向应变(位移)测量装置轴向距离采用大量程百分表(0~30mm百分表)或位移传感器测得。 (7)反压力体变系统由体变管和反压力稳定控制系统组成,以模拟土体的实际应力状态或提高试件的饱和度以及测量试件的体积变化。

动三轴仪(循环三轴仪)美国GEOCOMP

美国GEOCOMP应力路径三轴仪简介 用途: 循环三轴系统由LoadTrac II加载架和 FlowTrac II流量泵组成,该系统可以全 自动完成土的循环(动)三轴试验,例如 土的动强度试验与砂土的抗液化强度 试验,从而得到土的动强度参数或剪切 模量与阻尼比等。 环球香港科技是美国GEOCOMP在中 国的唯一的,独家代理。 概述: LoadTrac II + FlowTrac II循环三轴试 验系统包括:安放试样的三轴压力室、 计算机控制的加载架、计算机控制的分别施加围压和反压的两个液压泵、提供循环加载的高性能线性的伺服作动器(更新速率为每秒500次)、精确控制循环加载的微处理器、以及控制试验并采集数据的电脑。 特点: 用户geocomp专业控制软件设置试验参数、数据记录方式及处理试验报告。用户可以设置饱和、固结和循环加载试验的参数。试验过程中可以显示当前值和系统实时状态信息。采集的数据可以储存在系统的硬盘中。 技术参数:

cyclic triaxial testing of soils. Minimum man-time is required. The LoadTrac II/FlowTrac-II Cyclic consists of a triaxial cell to retain the sample, a load frame with computer-controlled platen for static loading, two computer-controlled flow pumps to control chamber pressure and back pressure, a high performance linear actuator servo control actuator for cyclic loading with update rates of 500 times per second, a micro-processor for accurately controlling cyclic loading, a PC with a Pentium processor to control the test, and to log test data. Editing and reporting is built-in to the test and control software program. The unit arrives in a completely self-contained system with all necessary equipment. The LoadTrac II/FlowTrac II Cyclic system is menu driven. The Windows? XP, Vista, 7 based software allows users to define the conditions for running the test, logging test data and reporting results. Users can specify the values for controlling the saturation, consolidation and cyclic loading of a test. During testing, current data and system status information is displayed. Collected data are written to a file on the system's hard drive. The reporting software performs all required calculations and permits users a variety of options in graphing and generating test data. (US) / 220 VAC/50Hz (international) TYPE OF CY-CLIC Load controlled sinusoidal shape LOAD-ING CYCLIC RATE Up to 10 Hz OPTIONS TO END TEST ④Maximum number of cycles ④Maximum strain REPORTING OPTIONS ④Load, displacement, sample, and cell vs. cycle number ④Shear stress, strain, p-p strain, excess pore pressure vs. cycle number ④Shear stress vs. axial strain ④Shear stress vs. normal stress ④Automatic or user specified scaling on any of above plots ④Plotting to monitor, printer, plotter, or file TEST CELL Modified triaxial cell with accessories UNIT SYS-TEMS U.S., English, metric and SI changeable at any time before, during

三轴压缩实验

实验四 三轴压缩实验 (实验性质:综合性实验) 一、概述 1910年摩尔(Mohr )提出材料的破坏是剪切破坏,并指出在破坏面上的剪应力τ是为该面上法向应力σ的函数,即 ()f f τσ= 这个函数在f τσ-坐标中是一条曲线,称为摩尔包线,如图4-1实线所示。摩尔包线表示材料受到不同应力作用达到极限状态时,滑动面上法向应力σ与剪应力f τ的关系。土的摩尔包线通常可以近似地用直线表示,如图4-1虚线所示,该直线方程就是库仑定律所表示的方程(c tg τσ?=+)。由库仑公式表示摩尔包线的 土体强度理论可称为摩尔-库仑强度理论。 图4-1 摩尔包线 当土体中任意一点在某一平面上的剪应力达到土的抗剪强度时,就发生剪切破坏,该点也即处于极限平衡状态。 根据材料力学,设某一土体单元上作用着的大、小主应力分别为1σ和3σ,则在土体内与大主应力1σ作用面成任意角α的平面a a -上的正应力σ和剪应力τ,可用 τσ-坐标系中直径为13()σσ-的摩尔应力圆上的一点(逆时针旋转2α,如图4-2 中之A 点)的坐标大小来表示,即 13131311 ()()cos 2221 ()sin 22 σσσσσα τσσα =++-=- 将抗剪强度包线与摩尔应力画在同一张坐标纸上,如图4-3所示。它们之间的关系可以有三种情况:①整个摩尔应力圆位于抗剪强度包线的下方(圆Ⅰ),说明通过该点的任意平面上的剪应力都小于土的抗剪强度,因此不会发生剪切破坏;②摩尔压力圆与抗剪强度包线相割(圆Ⅲ),表明该点某些平面上的剪应力已超过了土的抗剪强度,事实上该应力圆所代表的应力状态是不存在的;③摩尔应力圆与抗剪强度包线相切(圆Ⅱ),切点为A 点,说明在A 点所代表的平面上,剪应力正好等于土的抗剪强度,即该点处于极限平衡状态,圆Ⅱ称为极限应力圆。

动三轴沙土液化实验报告

砂土液化动三轴实验报告 、实验目的 通过试验,掌握试样的制备方法、动三轴试验仪的使用方法、动三轴测定土的抗液化强度的基本操作以及试验数据的处理。 二、实验仪器 振动三轴仪,托盘天平,游标卡尺,击实仪等。 三、实验原理振动液化是饱和土在动荷载作用下丧失其原有强度而转变为一种类似液体状态的现象。 在本试验中,借助动三轴仪对已饱和的砂土施加振动荷载,观察并记录土样中孔隙水压力的变化,一旦试验内部的超静孔隙水压力到达试样的围压,则出现液化现象。 如果将地震作用视为由基岩向上传递的剪切波,则当地面近于水平时,在地基内任一水平面上,地震前只有法向应力σ,没有剪应力T错误!未找到引用源。即τ=0;地震时的地震作用将引起一个反复循环作用的剪应力±τ而法向应力仍然保持σ不变。这样我们可以通过动三轴仪试样中45o面上应力的变化来模拟地震时地基中任一水平面上的应力状态。此时,地震前的应力状态就相当于在试样上施加一个均等的固结应力,即σc= σc= σ;在地震期间,可以用在轴向施加轮番增加和减少的动应力也,径向压力保持不变。此时单向激震动三轴的应力条件可视为与地震时的应力条件相等效。 四、实验步骤 1.试样制备

(1)用托盘天平称取153g干砂和10ml水,将两者均匀混合。 (2)将土样分成4份依次装入击实筒中,分层击实,每次击实高度为2cm,为了防止土样分层,每层击实后应将试样表面打毛。最后一次击实后,土柱高度为8cm,直径为3.91Cm,密度为1.697g∕cm3 (3)用抽气法使乳胶薄膜与样模的周壁紧贴,形成要求的体积和形状的空腔,将压实制备好的土样放入样模中,然后在负压下进行脱模。 (4)在套有乳胶模的试样两侧安装上透水石。 2.试样安装 将制备好的套有乳胶薄膜和安好透水石的试样,固定在三轴仪上,将试样的乳胶薄膜分别套在三轴仪的试样帽和试样座上,并用橡皮条将乳胶薄膜与试样帽和试样座勒紧。 3.试样饱和 试样采用抽气法使试样饱和。具体步骤如下: (1)关闭排水阀,打开抽气阀,从试样的上部抽气,向三轴试验仪的压力室内充水,使水没过试样少许即可。 (2)抽气持续15-20 分钟后,打开排水阀,使水缓慢的从试样底进入试样,使土样饱和。注意玻璃管内的水位变化,及时向玻璃管内加水。 (3)当水从试样顶部的抽气管流出后,关闭抽气阀。此时玻璃管内的水位仍在下降,说明水仍在流入试样中,先不要关闭排水阀,持续一段时间,待玻璃管内的水位与压力室内的水位持平,并且不再下降时,关闭排水阀。 4.试样固结 (1)保持排水阀、抽气阀关闭,将控制柜上显示的孔隙水压力调零。 (2)保持排水阀、抽气阀关闭,向试样施加100kPa 的围压。观察控制柜上显示的空隙水压力的最终值,如果孔隙水压力大于或等于95kPa,此时认为土样 已经充分饱和。 (3)如果土样充分饱和,则打开排水阀,进行排水固结。

土动力学动三轴液化试验报告

砂土液化动三轴试验报告 一 实验器材 振动三轴仪(包括控制部分,加载部分),粉砂,托盘天平,游标卡尺,击实仪,真空泵等。 二 实验原理 地震时,土层中土单元应力状态可看为如下图一所示的简化。地震荷载被看为由自下而上的剪切波引起的,是一种幅值,频率不断变化的不规则运动。当在振动三轴仪上模拟这种应力状态时,将不规则振动简化为等效常幅有限循环次数的振动,即在试件上模拟两种应力状态,有效覆盖压力引起的静应力0γσ和00K γσ地震均匀循环剪应力为hv τ。 图一 水平土层土单元应力状态 试件本身应在密度,饱和度和结构等方面尽可能模拟现场土层的实际状况。除取原状土做实验外,在实验室内也须准备重塑试件。考虑地震过程时间短暂,地震产生的超孔压来不及消失,所以实验室在不排水条件下进行的试验。 为实现上述模拟,本实验采用不排水循环载荷三轴试验来实现上述模拟。假如在试件上先施加各项均等固结压力0σ,后在垂直方向施加2 d σ± 循环载荷的同时,横向也施加2 d σ 的荷载,如下图二所示,试件45度斜面上的应力状态与图一相似,其初始法向应力为0σ,初始剪应力为零,与地震前单元水平面承受的0γσ相当,双向循荷载2 d σ作用并不该变45 度倾斜面上的法向应力0σ值,而只产生循环剪应力2 d d στ= ,相当于图一中右图的受力情 况,即图二中第(1)栏所示在三轴试验中为了模拟所要求的应力状态。 显然,双向振动三轴仪能方便地实现这种应力状态。而在饱和不排水情况下,单项振动 0γσ0 τ0 γσ

的三轴试验通过空压修正也能获得同样的应力状态。此时,施加的应力状态如同图二中(4)栏所示,只在垂直方向施加动荷载d σ±,当轴向增加d σ时,设想各向均等压力减少 2 d σ, 所构成的等效应力状态恰好与所要求的相同;于此相似,轴向减少d σ时应当增加各向均等压力 2 d σ,由于是饱和不排水的,各向均等压力的变化只能引起试件中空隙水压力的相应变 化,对有效应力,也即对试件的强度和变形并无影响。换句话说,可以获得与双向振动三轴仪试验完全相同的强度和变形值。对单项振动三轴试验中的实测孔压值进行修正即可获得双向振动时的相应孔压值,轴向加d σ时的修正值为 2 d σ,减d σ时修正值为2 d σ- 。但是,实 际上很少作这种修正,因人们关心的主要是强度和变形值。 不难看出,只是在三轴试件45度斜面上才大体模拟了现场应力状态。实际上还存在若干重要的区别,例如现场土层静测压力系数0k 一般取0.4(随土的性质而变),最大和最小主应力方向分别为垂直和水平方向,振动时主应力方向的摆动不超过40度等,但在振动三轴试验中,试样的0k 等于1,主应力方向不断作90度变换。因此,在应用此试验结果于现场时,必须考虑这种差别而做相应的修正,此外,完全可以不拘泥于上述应力状态的模拟,而把单项振动液化试验只看做是在这种特定状态下的一种液化过程,进而着重研究这种液化过程与其他条件下液化过程的异同。 图二 轴实验中土单元应力状态的模拟 三 试验条件 1 土样选择为饱和土样,在制备土样过程不受扰动。

动三轴沙土液化实验报告

砂土液化动三轴实验报告

一、实验目的 通过试验,掌握试样的制备方法、动三轴试验仪的使用方法、动三轴测定土的抗液化强度的基本操作以及试验数据的处理。 二、实验仪器 振动三轴仪,托盘天平,游标卡尺,击实仪等。 三、实验原理 振动液化是饱和土在动荷载作用下丧失其原有强度而转变为一种类似液体状态的现象。 在本试验中,借助动三轴仪对已饱和的砂土施加振动荷载,观察并记录土样中孔隙水压力的变化,一旦试验内部的超静孔隙水压力到达试样的围压,则出现液化现象。 如果将地震作用视为由基岩向上传递的剪切波,则当地面近于水平时,在地基内任一水平面上,地震前只有法向应力σ0,没有剪应力τ0错误!未找到引用源。,即τ0=0;地震时的地震作用将引起一个反复循环作用的剪应力±τ0,而法向应力仍然保持σ0不变。这样我们可以通过动三轴仪试样中45o面上应力的变化来模拟地震时地基中任一水平面上的应力状态。此时,地震前的应力状态就相当于在试样上施加一个均等的固结应力,即σ1c=σ3c=σ0;在地震期间,可以用在轴向施加轮番增加和减少的动应力σd,径向压力保持不变。此时单向激震动三轴的应力条件可视为与地震时的应力条件相等效。 四、实验步骤 1.试样制备 (1)用托盘天平称取153g干砂和10ml水,将两者均匀混合。 (2)将土样分成4份依次装入击实筒中,分层击实,每次击实高度为2cm,为了防止土样分层,每层击实后应将试样表面打毛。最后一次击实后,土柱高度为8cm,直径为3.91cm,密度为1.697g/cm3。 (3)用抽气法使乳胶薄膜与样模的周壁紧贴,形成要求的体积和形状的空腔,将压实制备好的土样放入样模中,然后在负压下进行脱模。

试验六三轴试验

实验六:三轴试验 一、基本原理 三轴剪切试验是用来测定试件在某一固定周围压力下的抗剪强度,然后根据三个以上试件,在不同周围压力下测得的抗剪强度,利用莫尔-库仑破坏准则确定土的抗剪强度参数。 三轴剪切试验可分为不固结不排水试验(UU )、固结不排水试验(CU )以及固结排水剪试验(CD )。 1、不固结不排水试验:试件在周围压力和轴向压力下直至破坏的全过程中均不允许排水,土样从开始加载至试样剪坏,土中的含水率始终保持不变,可测得总抗剪强度指标U C 和U φ; 2、固结不排水试验:试样先在周围压力下让土体排水固结,待固结稳定后,再在不排水条件下施加轴向压力直至破坏,可同时测定总抗剪强度指标CU C 和CU φ或有效抗剪强度指标C ′和φ′及孔隙水压力系数; 3、固结排水剪试验:试样先在周围压力下排水固结,然后允许在充分排水的条件下增加轴向压力直至破坏,可测得总抗剪强度指标d C 和d φ。 二、试验目的 1、了解三轴剪切试验的基本原理; 2、掌握三轴剪切试验的基本操作方法; 3、了解三轴剪切试验不同排水条件的控制方法和孔隙压力的测量原理; 4、进一步巩固抗剪强度的基本理论。 三、试验设备 1、三轴剪力仪(分为应力控制式和应变控制式两种)。 (1)三轴压力室:压力室是三轴仪的主要组成部分,它是由一个金属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压力室底座通常有3个小孔分别与围压系统以及体积变形和孔隙水压力量测系统相连。 (2)轴向加荷传动系统:采用电动机带动多级变速的齿轮箱,或者采用可控硅无级调速,根据土样性质及试验方法确定加荷速率,通过传动系统使土样压力室自下而上的移动,使试件承受轴向压力。 (3)轴向压力测量系统:通常的试验中,轴向压力由测力计(测力环或称应变圈等等)来反映土体的轴向荷重,测力计为线性和重复性较好的金属弹性体组成,测力计的受压变形由百分表测读。轴向压力系统也可由荷重传感器来代替。 (4)周围压力稳压系统:采用调压阀控制,调压阀当控制到某一固定压力

电机控制的动三轴试验系统

)将三轴压力室和动力驱动器合为一体,从压力室底座施加轴向力和轴向变形。压力室由装有马达驱动的基座螺旋传动。当没 独立闭环控制轴向应力和围压(动态或静态) 可以施加正弦波、半正弦波、三角波和方波 平衡锤维持围压恒定 2Hz 5Hz 10Hz 10kN 40kN 16kN 60kN 20kN 2000kPa 5000kPa 38, 50, 70, & 100mm 150mm 2Hz,40kN,2MPa DYNTTS 系统

技术特征概述 性能特征与ASTM规程3999-91“使用循环三轴设备测定土的模量及阻尼特性的标准试验方法”的要求相符合。 可以选择适合从非常软的土到非常硬的土试验所需的可互换荷重传感器,可选量程包括:1, 2, 4, 8, 10, 16, 25, 40 和60kN 可以选择局部应变测量和中平面孔压测量传感器。 可以选择弯曲元件系统进行P和S波测量。. 可以选择差压传感器精确控制低固结应力。直接闭环控制轴向位移、偏应力、围压和反压。 所有的试验都通过GDSLAB控制和数据采集软件来设置。数据输出为ASCII 格式,可以与Excel和其它行业标准的电子制表软件兼容。 通过更换底座和三轴拉伸试样帽,可以适用于38、50、70、100mm直径的试样。 通过12通道环可以使传感器、阀门和管路很容易地连接。还配有8通道16bit 数据采集板。 GDSLAB 目标显示 DYNTTS 的设置情况 (可从GDSLAB产品资料上获得更详细的信息) 显示一个正在进行的动态试验

详细介绍 ?轴向荷载/变形控制次级系统是通过压力室底座的螺杆来驱动的。内置动力轴向加荷系统,由无电刷直流电动马达驱动。通过装在PC机里的GDS数据采集系统和控制卡进行手控或程控。该控制通过GDSLAB软件完成。GDS数字控制系统下载控制信号到硬件,产生2Hz、5Hz或10Hz(取决于系统型号)的正弦波、方波、三角波和用户自定义波形等。通过内置荷载传感器控制闭合回路荷载的反馈。而闭环变形的反馈控制则由轴向马达高速转换码实现。对于2Hz和5Hz的系统,轴向荷载可以选择10kN, 16kN, 20kN, 40kN 和 60kN ,对于10Hz的系统,轴向荷载可以选择10kN 或 20kN。轴向位移的冲程范围为±50mm。 ?围压和反压控制次级系统是通过GDS 200cc/2MPa数字压力/体积控制器来精确控制压力,分辨率可以到1kPa。可以通过16键40字符的LCD手动控制。计算机控制则通过IEEE-488 GP-IB计算机接口完成。功能包括:目标压力、目标体变、斜率/循环压力和斜率/循环体变。 ?可以选择动态围压控制系统。详细资料请参见下面的介绍。 ?如果不选择动态围压控制系统,压力室中将配备一个平衡棰。它主要是用来补偿加载杆进出压力室引起的体积变化。该平衡锤中心是空的,压力室内的液体通过该通道与底部空腔连接。在空腔中,有一个环行活塞与平衡锤连接。环行的面积刚好等于平衡锤的面积。当平衡锤在压力室内移动时,就会产生一个体变,此时,环行活塞将产生一个相等的反向的体积变化。这样,压力室内的净体积变化为零。另外,作用在环上的围压自动补偿作用在平衡锤上的围压。这意味着压力室的轴向力相对于围压来说,是独立的。 ?计算机控制通过GDS数字控制系统(GDS DCS)实现。 压力/体积控制器 围压和反压控制器可在0.5MPa、1MPa、 2MPa、3MPa标准压力/体积控制器的任意两个控制器中相匹配,这些控制器配有一系列PC接口,其体积容量是200cc。 2MPa, 3MPa 和 4MPa,高级数字压力/体积控制器,它的体积容量为200cc,并配有IEEE PC接口(2MPa高级控制器配有1000cc体积容量) 反压控制器在施加反压的同时也可以测量试样的体变。GDS DCS – 数字控制系统 GDS动态系统全以GDS DCS 高速数字控制系统为基础,该系统有位移和荷载闭环反馈。 GDS DCS配有16bit数据采集(A/D)和16bit 控制输出(D/A)装置,以每通道10Hz的控制频率运行。这意味着当以10Hz运行时,每个循环可以有1000个控制点;1Hz时每个循环可以有10000个控制点。 GDS DCS的优势是不管购买哪个动态系统,他们都应用同样高速的控制系统。这就确保了系统具有高水准的功能和可靠性,因为所有的动态系统都采用同样规格的控制系统。试验的精度和分辨率只与采用驱动器的种类有关,即是采用低价的气动驱动器,还是采用高精度的电机驱动器,或是采用高能量的液压驱动器。

相关主题
文本预览
相关文档 最新文档