当前位置:文档之家› 先进结构陶瓷复习 (答案汇总)

先进结构陶瓷复习 (答案汇总)

先进结构陶瓷复习 (答案汇总)
先进结构陶瓷复习 (答案汇总)

1、传统陶瓷与先进陶瓷如何划分?它们的发展过程有何特点?

答:先进陶瓷与传统陶瓷的区别,可以从以下几方面来说明。

①原料:传统陶瓷以天然的粘土为主要原料,而先进陶瓷原料是人工提纯、人工化合

成的高纯度物质。

②粒度:传统陶瓷的粉粒大小在0.1毫米以上,而先进的粉粒大小在0.01以下,有的

达到纳米级别。

③制作工艺:先进陶瓷的成型方法也很多,有模压成型、等静压成型、注射成型、热压

铸、流涎成型等,在烧结方面,温度要求更高,条件要求更严,方法也很多,

有热压烧结、热等反应烧结、真空烧结、微波烧结、等离子烧结、自蔓燃烧结

等,突破了传统陶瓷以炉窑为主要生产的烧结方式。

④加工:传统陶瓷一般不需要二次加工,先进陶瓷烧结成型后,能够进行切割、打孔、

磨削、抛光等精密加工。(5、6点为资料中追加)

⑤性能应用:先进陶瓷具有不同的特殊性质和功能,如高强度、高硬度、耐腐蚀、导电、

绝缘以及在磁、电、光、声、生物工程各方面具有的特殊功能,从而使其在高

温、机械、电子、计算机、宇航、医学工程等各方面得到广泛的应用。

⑥显微结构:普通陶瓷主要由莫来石以及SiO2为主,而先进陶瓷则以单一相构成。

2、与金属比,陶瓷的结构和性能特点?为什么陶瓷一般具有高强度和高硬度?答:①结构:金属内部原子间结合的化学键为金属件,陶瓷材料的原子间结合力主要为离子键、共价键或离子–共价混合键;

陶瓷材料显微结构的不均匀性和复杂性(书P1-2)

性能:优点:高熔点、高强度、耐磨损、耐腐蚀;

缺点:脆性大、难加工、可靠性与重现性差(书P2)

②原因:上述陶瓷内部的几种结合键具有很高的方向性,结合力较强,破坏化学键所需

能量较大,故硬度与硬度都较高,同时陶瓷材料化学键决定了其在室温下几乎

不能产生滑移或位错运动,因此很难产生塑性变型,室温下只有一个较高的

断裂强度。

3、如何评价陶瓷材料的力学性能?如何提高材料力学性能?

答:强度方面从抗拉、抗压、抗弯以及抗热冲击性能评价;韧性方面通过单刃开口梁法或压痕法测量评价,硬度则主要通过维氏硬度和洛氏硬度进行评价;

通过颗粒弥散、纤维及晶须强化增韧来改善陶瓷的力学性能(求补充)

4、影响陶瓷抗热震性的因素主要有哪些?

答:影响因素主要有热应力、导热系数、热膨胀系数、弹性模量、断裂能、强度和韧性等;

①导热系数高,材料各部分温差较小,抗热震性较好;②热膨胀系数较小,材料内部热

应力较小,抗热震性较好;③弹性模量较小,在热冲击中可以通过变形来部分抵消热应力,从而提高抗热震性;④强度大,韧性强都能使材料抗热应力而不至于破坏,改善热震性。(答案为材料物理性能书P133)

5、目前先进陶瓷的发展趋势和研究热点有哪些?

答:课本P1:①组成复合化;②结构纳米化;③结构可设计(功能化)

PPT:①结构微细化、纳米化;②结构—功能一体化;③组成可设计、复合化;

④制备低成本化;⑤性能挖掘潜力大,发现新材料几率高

6、比较注浆成型、热压铸成型、胶态凝固成型和流延成型技术的异同。

答:①注浆成型:分散介质是水、模具材料为石膏;对浆料的要求为流动性好、稳定性好、触变小、渗透性好、脱模性良好、尽量不含气泡,同时在保证流动性的情况下,含水量尽可能小;

②热压铸成型:分散介质是石蜡、模具材料为钢;这种方法生产的产品尺寸精确、光洁

度高、结构致密

③胶态凝固成型:模具为有机、无机混合;成品有一下特点①适用于各种陶瓷粉体,成

形各种复杂形状和尺寸的陶瓷零件;②成形坯体组份均匀,密度均匀,缺陷少;③料的凝固定型时间可通过调节聚合温度和催化剂的加入量来控制;④该工艺对模具无特殊要求,可以是金属、玻璃或塑料;⑤成形坯体具有较高的强度;⑥这是一种净尺寸成形技术,在干燥和烧结过程中收缩均匀,变形极小,烧结体可保持成形时的形状和尺寸比例。

④流延成型:陶瓷粉、塑料膜混合(由粘结剂、塑化剂和溶剂组成)。粉料要求细、

粒形圆润,这样才能得到良好流动性的料浆。流延成形设备简单,工艺稳定,可连续操作,便于自动化,生产效率高。但粘结剂含量高,因而收缩率大,可达 20-21%;

7、如何提高陶瓷材料的烧结密度?

答:①烧结助剂:添加适量烧结助剂,可以引入的添加剂使晶格空位增加,易于扩散,烧结速度加快,降低烧结温度,还可以使液相在较低的温度下生成,出现液相后晶体能做粘性流动,因而促进了烧结致密化。

②细化颗粒:粉末颗粒的微细化,使得成型后的坯体所含气孔率降低,还可以加速粉料

在烧结过程中的推动力,降低烧结温度和缩短烧结时间,提高陶瓷材料的烧结密度。

③改变烧结方式:可以使用热压烧结、微波加热烧结和微波等离子体烧结等烧结方式来

提高材料的烧结密度。

8、纳米陶瓷粉体的制备方法有哪些?

答:①物理方法:机械粉碎法、蒸发-冷凝(PVD)法

②化学方法:沉淀法、溶胶-凝胶法、水热法、热分解法、溶剂蒸发法、高温自蔓燃

法、化学气相沉积法

9、比较透明氧化铝陶瓷与石英玻璃和水晶的异同?

答:①从表观上观察,三者均为透明物质;

②从化学组成上分析,透明氧化铝陶瓷主要为氧化铝化合物,而石英玻璃和水晶的主要

成分则是二氧化硅;

③从结晶形态上看,透明氧化铝陶瓷是多晶体,石英玻璃是非晶体,而水晶是单晶体

③从适应温度上看,透明氧化铝陶瓷能适应1600~1700℃,石英玻璃能适应

1200~1300℃,水晶能适应1400℃左右的温度。除了适应温度不同外,其三者在力学性能和电学性能等方面也不一样。(此点为上课笔记,适应温度不太肯定)

10、相变增韧的机理是什么?

答:概念:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。

机理:以ZrO2为例子,当部分稳定ZrO2陶瓷烧结致密后,四方相ZrO2颗粒弥散分布于其他陶瓷基体中,(包括ZrO2本身),冷却时,亚稳四方相颗粒收到基体的抑制而处

于压应力状态,这时基体沿颗粒连线方向也处于压应力状态。材料在外力作用下所产生的裂纹尖端附近由于应力集中作用,存在张应力场,从而减轻了对四方相颗粒的束缚,在应力诱发下会发生向单斜相的转变并发生体积膨胀,相变和体积膨胀的过程除了消耗能量外,还将在主裂纹作用区产生压应力,二者均阻止裂纹的扩展,只有增加外力做功才能使裂纹继续扩展,于是材料的强度和断裂韧性大幅度提高。

11、如何提高陶瓷材料的强度和韧性?

答:在晶体结构既定的情况下,控制强度的主要因素有三个:弹性模量E、断裂功(断裂表面能)和裂纹尺寸。提高晶体的完整性,晶粒越细、密度越高、结构越均匀、成分越纯,其含有的缺陷就越少,其强度与韧性也越好。

强化方式有①复合强化(通过成分复合、产生协同增韧补强效应);②热韧化(通过一定加热、冷却制度在表面人为地引入残余压应力,淬冷不仅在表面造成压应力,而且还可使晶粒细化。利用表面层与内部的热膨胀系数不同,也可以达到预加应力的效果。);

③表面强化(通过化学或机械抛光技术,以及表面氧化技术等可消除陶瓷材料的表面缺

陷或使尖端钝化,达到增强增韧的目的);④相变增韧(利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果);⑤弥散强化(在陶瓷基体中引入高度分散的第二相粒子来达到增强增韧的目的);⑥纤维强化(将高强度的纤维或晶须加到陶瓷基体中,使其均匀分布有机结合,可使其强韧性提高纤维的强度高,在工作时可承担大部分负荷,减轻了基体的负担。纤维和基体结合,在结合面上具有一定的结合强度。即使陶瓷基体出现细微裂纹,纤维仍能将其紧紧拉住,防止裂纹进一步扩展。);

12、什么是微晶玻璃,它与玻璃和陶瓷在结构和性能上有何异同?

答:概念:微晶玻璃也称为玻璃陶瓷,是通过加入晶核剂等方法,经过热处理过程在玻璃中形成晶核,再使晶核长大而形成的玻璃与晶体共存的均匀多晶材料。

微晶玻璃它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。

结构上:①微晶体由玻璃相与结晶相组成。两者的分布状况随其比例而变化。

②玻璃是一种无规则结构的非晶态固体(从微观上看,玻璃也是一种液体),

其分子不像晶体那样在空间具有长程有序的排列,而近似于液体那样具有短程

有序。玻璃像固体一样保持特定的外形,不像液体那样随重力作用而流动。

③陶瓷材料是由晶粒和晶间相组成的烧结体,其含有少部分的玻璃相和气孔

相,大部分为晶相的多晶材料。

性能上:①微晶玻璃——机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高。

②玻璃——机械性能差,强度低,常温为绝缘体,熔融状态下可以导电,熔点

低,膨胀系数小,抗热震性差,透光性能好,化学稳定性较高。

③陶瓷——耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好,硬度高,弹性模量高,

塑性韧性差,强度可靠性差。

13、微晶玻璃的制备技术主要有哪些?各有何特点?

①熔融法:熔融法的最大特点是可采用技术成熟的玻璃成形工艺方法,如压延、压制、吹制、拉制、浇注等,便于机械化生产。与通常的陶瓷成形工艺如挤压、旋压和注浆相比,其成形速度快,适合自动化操作和制备形状复杂、尺寸精确的制品。由玻璃坯体制备的

微晶玻璃在尺寸上变化不大,组成均匀,不存在气孔等陶瓷中常见的缺陷,因而微晶玻璃不仅性能优良且具有比陶瓷更高的可靠性

②烧结法:将熔制玻璃粒料与晶化分成二次完成,故又称为二次烧结法。烧结法还有一个显著的特点,即水淬后的玻璃颗粒细小,表面积增加,比熔融法制得的原始玻璃更易于晶化,因而有时可以少加甚至不加晶核剂。烧结法解决了传统熔融法工艺中存在的熔融和成形不可分、高温成形难以生产形状复杂的制品以及必须加入晶核剂才能核化和晶化等问题。它可以采用陶瓷传统的低温成形方法从而制备出形状复杂的制品。但相对于熔融法而言,该、工艺方法的致命缺点是存在气孔,导致生产中出现大量不合格产品,但适合制造多孔的微晶玻璃。

③溶胶—凝胶法:其制备温度比传统方法低很多,可防止某些组分挥发并减少污染;可获得均质的高纯材料;可扩展组成范围,制备传统方法无法制备的材料,如不能形成基础玻璃的系统和具有高液相组成系统的微晶玻璃;用溶胶-凝胶法制备的微晶玻璃主要为具有高温、高强、高韧性以及其它特殊性能的高新技术材料。

14、碳化物陶瓷主要有哪些(列出常用的4种)?它们共同特点是什么?

答:主要有碳化硅(SiC)、碳化硼(B4C)、碳化钛(TiC)、碳化钒(WC)

①具有熔点高,许多碳化物的熔点都在30000C以上,例如碳化钛的熔点为34600C

②具有较高的硬度,例如碳化硼是仅次于金刚石和立方氮化硼的最硬材料,但碳

化物的脆性一般较大。

③具有良好的导电性和导热性以及化学稳定性,几乎大多数碳化物陶瓷在常温下不

与酸反应。

15、碳化硅的合成方法有哪些?各有何特点?

①化合法:将单质Si和C在碳管电炉中直接化合而成,其反应式如下:

Si+C === β-SiC

②碳热还原法:这种方法是由氧化硅和碳反应生成碳化物,反应式如下:

SiO2+C===SiO(g)+CO(g) , SiO 继续被碳还原:SiO+2C===SiC+CO(g)

目前为止碳热还原法所需的温度较高,该法生产的颗粒较小,可提高产物纯度和电导率的新型制备方法

③气相沉积法:气相沉积法可以分为化学气相沉积法(CVD)和物理气相沉积法(PVD),PVD 主要利用了蒸发-冷凝机理,而CVD法则是利用硅的卤化物(SiX)和碳氢化物(C n H m)及氢气在发生分解的同时,相互反应生成SiC。这些方法可以制备高纯度的SiC粉末,也可以得到晶须或者薄膜。

④有机硅前驱体:将有机金属化合物在真空、氢或者惰性气氛中在相对较低的温度下进行热解反应,从而得到相应的制品。

⑤自蔓延高温合成法(SHS法):是一种化合反应方法,一般化合法是依靠外部热源来维持反应的进行,而 SHS 法则是依靠反应时自身放出的热量维持反应的进行,计算表明 SiC 的绝对温度为1800o C(放热反应使产物达到的最高温度)

⑥溶胶-凝胶法:采用溶胶-凝胶工艺可得到平均晶粒尺寸为 10nm 的β-SiC 纳米粉体。

16、氮化硅的主要晶型有哪些?对氮化硅陶瓷的结构和性能有何影响?

答:氮化硅有两种晶型,即针状结晶的α-Si3N4和颗粒状结晶的β-Si3N4.

①它们均属于六方晶系,都是以[SiN4]四面体共用顶角构成的三维空间网络。Si3N4是

以共价键为主的化合物,氮原子与硅原子间的键力很强,因而,Si3N4具有许多优异

性能,如耐磨、高硬度、高强度、耐化学腐蚀和很好的高温稳定性具有较高的硬度。

②α型结构内部的应变较大,故自由能比β型高,即体系的稳定性比较差,当加热至

1500℃时,α-Si3N4将转变为β-Si3N4,且这种转变是不可逆的。高α相含量Si3N4粉烧结时可得到细晶、长柱状β-Si3N4晶粒,提高材料的结构稳定性和断裂韧性。

17、氮化硅的烧结方法有哪些?如何获得致密烧结的氮化硅陶瓷?

烧结方法有:反应烧结、常压烧结、热压烧结、重烧结、热等静压烧结

①改变烧结方式,反应烧结制得的氮化硅一般气孔率较高,可采用常压烧结、热压烧结等致密性烧结方式,降低气孔率,进而获得致密性高的烧结体;

②添加烧结助剂,促进烧结反应的进行;

③常压烧结时埋粉;

④在氮气气氛下烧结,抑制氮化硅的热分解;

⑤采用均匀、尺寸小的氮化硅粉末,提高烧结驱动力。

18、如何提高氮化铝陶瓷的热导率?

①清洁晶界,提高AlN粉末的纯度、适量添加烧结助剂,减少杂质相的引入;

②添加烧结助剂,可降低AlN晶格的氧含量,同时使AlN颗粒间相互接触从而提高热导率,使用适当的复合添加剂也可以提高其热导率;

③孤立第二相或使第二相处于三角境界处,也可改变添加剂和工艺条件使第二相完全被排除;

④粗化晶粒,减少晶界;

⑤提高其致密性,降低气孔率可提高其热导率;

⑥采用一些后处理措施,从而提高热导率,如在还原气氛中可出去AlN中氧和第二相以提高热导率。

19、简述氮化硼的结构特点。

氮化硼有两种晶型:立方BN和六方BN,在高温高压下六方BN可转变为立方BN。

①立方BN:其结构与金刚石类似,即碳原子按四面体成键方式互相连接,组成无限的

三维骨架。每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。结构中C-C键很强,所有的价电子都参与了共价键的形成,没有自由电子。所以立方氮化硼的硬度仅次于金刚石,化学惰性比金刚石和硬质合金好。

②六方氮化硼:其结构与石墨类似,即每个碳原子的周边连结着另外三个碳原子,排列方式呈蜂巢式的多个六边形,每层间有微弱的范德华引力。六方氮化硼是良好的高温润滑材料和高温电绝缘材料。

20、硼化物陶瓷主要有哪些?其结构特点是什么?

①硼化物陶瓷是一类新型结构陶瓷,常见的有TiB2、ZrB2、HfB2、TaB2和LaB6等,主要是硼和过渡金属形成的二硼化物,多属于六方晶系。

②硼化物的结构特点:硼的电子构型为2s22p1,主要采用sp2杂化方式与其他原子成键。sp2电子杂化导致平面B3X3六角形成为BN、B2O3、H3BO3以及有关化合物的主结构单元,以及导致B3三角形成为元素硼、硼烷族及其衍生物的典型五倍对称二十面体中的一部分。

21、简述硼化物陶瓷的主要性能特点。

①高熔点和难挥发:几乎所有硼化物的熔点都高达2000℃以上,可用于火箭喷嘴、内燃机

喷嘴、高温轴承等高温部件。

②高硬度:二硼化物的硬度比较高,TiB2的维氏硬度达到33.5GPa,比β-SiC的硬度高约30%, ZrB2-B4C复合陶瓷的耐磨耗指数是SiC和Si3N4的2倍左右,也比部分稳定氧化锆(PSZ)陶瓷高。

③高导电性:二硼化物具有很低的电阻率,特别是ZrB2和TiB2与金属铁、铂的电阻率相当,导电机制为电子传导,呈正的电阻温度系数。作为电阻发热体时,温度易于控制,可用作特殊用途的电极材料。

④高耐腐蚀性:硼化物陶瓷对熔融金属具有良好的耐腐蚀性,与熔融铝、铁、铜、锌几乎不反应。硼化物的这一特性可应用于金属铝、铜、锌、铁的冶炼。在钢铁冶金中,可用它来制作铁水测温热电偶的保护管、喷嘴和吹气管等。在炼铝工业中,炼铝槽的阴极材料采用硼化物陶瓷后,节电可达30%以上。

22、什么是陶瓷基复合材料?它们是如何分类的?

①陶瓷基复合材料主要指由无机非金属材料作基体材料,通过颗粒弥散、纤维及晶须强化增韧等来改善陶瓷材料的力学性能,特别是脆性的一类复合材料。

②按符合效果可分为力学型复合材料和功能型复合材料;按材料在复合结构中的作用,可分为基体材料和增强材料。

23、纳米复相陶瓷的结构特点是什么?

答:纳米复相陶瓷是将纳米级的颗粒分散到纳米或微米级陶瓷基体中,经成型和烧结制成的。由于纳米颗粒能够抑制基体颗粒的长大,使结构均细化,从而改善材料的力学性能。纳米增强相与基体之间具有非常良好的化学相容性;

纳米增强颗粒与基体在热膨胀系数上有差异;纳米复合后基体晶粒很小、材料显微结构呈现均匀化、基体晶界强化。

24、如何获得(制备)陶瓷晶须?晶须补强增韧的机理是什么?

答:晶须增韧陶瓷基复合材料是以陶瓷为基体,以晶须为增强体,通过复合工艺制备的新型复合材料。制备方法通常有熔融法、气相法、内熔剂法、水压热法、常压酸化法、烧结法、KDV法、助溶剂法、溶体法、水热法、急冷烧结结晶法、缓冷烧结结晶法等

作用机理为:

①裂纹桥接机理:晶须的存在使裂纹尖端尾部存在一晶须-基体界面解离区,在此区域

内,晶须把裂纹桥接起来并在裂纹表面产生闭合应力。

②裂纹偏转机理:晶须会导致裂纹发生弯曲和偏转,从而干扰应力场,导致基体的应力

强度降低,起到阻碍裂纹扩展的作用。

③晶须拔出机理:晶须在外应力作用下沿着它和基体的界面滑出的现象。晶须的拨出增

加了裂纹的路径和材料的断裂功。

25、影响纤维补强陶瓷基复合材料性能的主要因素有哪些?

①纤维尺寸:直径、长度、晶须尺寸

②纤维的排列方向:排列方向与应力方向平行

③晶须含量及分布的均匀性:含量的增加,韧性增大,强度降低。均匀性改善,强度提高,韧性值提高不大

④纤维和基体间的物理相容性:热膨胀性能的匹配

⑤纤维与基体间的化学相容性:不发生化学反应,性能不退化

⑥界面性质:界面对传递应力、裂纹扩展与能量吸收或分散起重要作用。界面层的性质可以用纤维与基体之间结合力的大小来衡量。只有纤维与基体之间保持适中的结合强度,其中的纤维可承担大部分外加应力,又能在断裂过程中以“拔出功”的形式消耗能量时,才能获得既补强又增韧的陶瓷基复合材料。

26、设计纤维或晶须补强陶瓷基复合材料应遵循的原则有哪些?

①尽量使纤维在基体中均匀分散;

②弹性模量要匹配,纤维的强度和弹性模量应大于基体材料;

③纤维与基体要有良好的化学相容性,无明显的化学反应或形成固溶体;

④纤维与基体热膨胀系数要匹配,只有不大时才能使纤维与界面结合力适当,保证载荷转

移效应,并保证裂纹尖端应力产生偏转及纤维拔出;

⑤适量的纤维体积分数,过低则力学性能改善不明显,过高则纤维不易分散,不易致密烧

结;

⑥纤维直径必须在某个临界直径以下。

27、高性能陶瓷涂层具有哪些特点?

①能将金属材料的强韧性、易加工性、导电、导热性等和陶瓷材料的耐高温、高耐磨、高耐特点有机结合,发挥两类材料的综合优势,同时满足产品对结构性能(强度、韧性等)和环境性能(耐磨、耐蚀、耐高温等)或特种功能(红外辐射、微波吸收、热敏、光敏等)的需要。

②能够用于制备陶瓷涂层的材料品种多,包括各种氧化物和复合氧化物、碳化物、氮化物、硼化物、硅化物以及金属陶瓷和金属间化合物。

③制备陶瓷涂层的工艺方法多,且投资小,灵活方便。

固相沉积:如热喷涂、高温自蔓延法、电火花表面强化法等

气相沉积:如化学气相沉积(CVD)、物理气相沉积(PVD)、真空离子沉积等;

液相法:如溶胶法、电化学沉积法、化学自催化沉积法(化学镀)等。

④能够在不同的基体材料上沉积陶瓷涂层。

⑤涂层功能极广。能够制备陶瓷涂层的材料很多,并能根据需要采用不同的涂层制备工艺,获得具有表面强化或特种功能的陶瓷涂层,如高耐磨、自润滑、密封、制动、耐腐蚀、抗氧化、耐高温、绝热、绝缘、屏蔽及微波吸收、敏感元件(压敏、气敏、光敏等)、红外辐射、防辐射、催化、超导及生物功能等。

⑥涂层成分较容易调整。可以通过调整涂层材料的种类、配比及涂覆工艺等,比较容易地实现涂层成分和涂层性能的调整。

⑦物耗少、物流小、附加值高、经济效益突出。

⑧陶瓷涂层厚度可控

⑨能够实现制品的局部改性与表面强化,容易成型。

⑩容易与原有金属加工的工装条件结合,企业的技术改造易于实现。

不足之处:

①陶瓷涂层有着陶瓷材料塑性变形能力差、对应力集中和裂纹敏感、抗热震和抗疲劳性能差。

②陶瓷涂层与金属材料的热物理性能(如膨胀系数、热导率等)差别大,在使用过程中可能产生不同的应力状态,影响其使用性能和寿命。

③陶瓷涂层与基体材料的结合主要为机械嵌合或分子力结合,结合强度不高。

27、何谓梯度功能涂层?有何特点?

梯度功能涂层是采用热喷涂技术,特别是等离子喷涂技术,使用送粉量连续可变的送粉

装置,将至少两种组分的涂层材料连续的喷涂在芯模上,使涂层的成分变化实现由 0~100%的连续积分式均匀递变,以达到两种不同涂层材料特别是金属与陶瓷材料的物理力学性能特别是热物理性能优化匹配的目的。将喷涂的涂层从芯模上取下,就获得了梯度功能材料。

梯度功能材料主要用作高温端和冷端温差特别大、热流量很大工况下的高温结构材料,防止因热膨胀系数相差过大而产生高的热应力使高温部件过早破坏或失效。实质上,梯度功能就是材料承受的高温连续递变的温度梯度功能。其特点是:

①降低热应力。能使不同材料特别是金属与陶瓷材料之间的热膨胀系数的差值降至最

小,从而使热应力降至最小。

②简化复合材料的制造工艺。克服了采用不同整体材料靠层层粘结、压制、烧结等过程

制造复合材料的诸多问题,流程和工序大大简化。

③热流传输损失小。解决了高热流传输过程中通过复合材料中不同材料的结合点所产生

的热流损失问题,有利于提高热效率。

④容易进行无损检测。梯度功能材料具有连续过渡的梯度结构,没有明显的界面和结合

点,容易使用无损检测技术如超声检测技术进行检测。

⑤可以制造复杂形状部件。如近网状结构,叶片结构等。

⑥优化材料设计。能将最好但却昂贵的材料用在最需要的地方。

《陶瓷工艺学》试题

陶瓷工艺学试题库一.名词术语解释 1. 陶瓷制品——以粘土类及其它天然矿物岩石为原料,经加工烧制成的上 釉或不 上釉硅酸盐制品(如日用陶瓷、建筑卫生陶瓷、普通电瓷等)。 2. 胎——经高温烧成后构成陶瓷制品的非釉、非化妆土部分。 3. 釉——融着在陶瓷制品表面的类玻璃薄层。 4. 陶瓷显微结构——在显微镜下观察到的陶瓷组成相的种类、形状、大小、数 量、 分布、取向;各种杂种(包括添加物)与显微缺陷的存在形式、分布;晶界特征。 5. 胎釉适应性——釉层与胎具有相匹配的膨胀系数,不致于使釉出现龟 裂或剥 落的性能。 6. 实验式——表示物质成分中各种组分数量比的化学式。陶瓷物料通常以 各种氧 化物的摩尔数表示。 7. 坯式——表示陶瓷坯料或胎体组成的氧化物按规定顺序排列的实验式。 8. 釉式——表示陶瓷釉料或釉组成的氧化物按规定顺序排列的实验式。 9.--------------------- 粘土矿物颗粒大小在2口m以下,具有层状结构的含水铝硅酸盐晶 体矿物

10. 粘土—一种天然细颗粒矿物集合体,主体为粘土矿物,并含有部分非粘 土矿物和有机物。与水混合具有可塑性。 11. 一次粘土——母岩经风化、蚀变作用后形成的残留在原生地,与母岩未 经分离 的粘土。 12. 二次粘土——一次粘土从原生地经风化、水力搬运到远地沉积下来的粘 土。 13. 高岭石一一一种二层型结构的含水铝硅酸矿物(Al 2Q ? 2SO2- 2"0),因 首次在我国江西景德镇附近的高岭村发现而命名。 14. 瓷石——一种可供制瓷的石质原料,主要矿物为绢云母和石英,或含有少量长石、高岭石和碳酸盐矿物。 15. 釉石——制釉用瓷石, 其矿物组成与瓷石相似, 但具有较低的熔融温度, 熔融物具有较好的透明度。 16. 石英——天然产出的结晶态二氧化硅。 17. 长石——一系列不含水的碱金属或碱土金属铝硅酸盐矿物的总称。 18. a—半水石膏——石膏在水蒸气存在的条件下加压蒸煮而得到的晶体呈 针状、 结晶尺寸较大的半水石膏(a-CaSO? 1/2H2O) 19. B—半水石膏——石膏在常压下炒制而得到的晶体为不规整碎屑、比表面积较大的半水石膏(B—CaSO?1/2出0)。 20. 陶瓷颜料——以色基和熔剂配合制成的有色无机陶瓷装饰材料。 21. 陶瓷工艺——生产陶瓷制品的方法和过程。

陶瓷选修课复习重点

1.材料:材料是能为人类社会经济地、用于制造有用物品的物质。 2.工程材料:按属性可分为三类:金属材料、陶瓷材料和高分子材料。也可由此三类相互组合而成复合材料。 3.功能材料:功能材料是与结构材料相对应的另一大类材料,主要利用材料的光学、电学、磁学等性能。 4.先进陶瓷(特种陶瓷): 一类“采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造技术加工,便于进行结构设计的并具有优异特性的陶瓷”。因此,先进陶瓷一般由功能陶瓷和结构陶瓷二大类陶瓷构成。 5.结构陶瓷:结构陶瓷是指作为工程结构材料使用的陶瓷材料,主要利用其高机械强度、耐高温、耐腐蚀、耐摩擦,以及高硬度等性能。陶瓷虽然抗压强度相当高,但抗拉强度却很小,是一种脆性材料。 或者说,结构陶瓷是指具有一种或多种力学与机械性能的陶瓷,能作为工程结构材料使用的陶瓷材料,实用时主要利用陶瓷的力学与机械性能。结构陶瓷按其组份可分为氧化物陶瓷和非氧化物陶瓷,有些结构陶瓷也具有功能陶瓷的性能如“二氧化锆陶瓷”等。 6.先进结构陶瓷是指具有高强度、高硬度、耐高温、耐磨损、耐冲击、抗腐蚀、抗氧化、低热导等系列独特优异性能,可承受金属材料和高分子材料难以承受的严酷的工作环境,已成为新兴工业与某些高新技术产业发展的关键性支撑材料或先导性材料,在国防、能源、航空航天、冶金、机械、汽车、电子、石化等行业具有广阔的发展应用。 7.新型结构陶瓷材料,其化学组成和制造工艺都大不相同,其成分主要是Al2O3、SiC、Si3N4等。这种新型结构陶瓷有许多优良性能,如:①重量轻;②压缩强度可和金属相比,甚至超过金属;③熔点高,能耐高温;④耐磨性能好,硬度高;⑤化学稳定性高,有很好的耐蚀性,⑥是电与热的绝缘材料。 8.先进结构陶瓷大致分为氧化物陶瓷、非氧化物陶瓷和结构用的陶瓷基复合材料等系列。 9.先进结构陶瓷的缺陷:即不易加工成型性和脆性大。陶瓷若要大力发展,必须克服这两个缺陷。 10.功能陶瓷:具有一种或多种非力学性能的陶瓷材料,实用时主要利用陶瓷的非力学性能。 11.非力学性能主要是指功能陶瓷具有下述一种或多种功能:即优良的电学、光学、声学、磁学、热学、化学和生物医学功能及其相互转化的压电、压磁、热电、电光、声光、磁光的耦合功能。 12.力学性能通常指强度、塑性、韧性、蠕变、弹性、硬度、疲劳等。 13.功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物仿生技术、吸声技术、核放射性技术和环境科学技术等高技术领域中得到广泛应用。 14.先进陶瓷的致命弱点:脆性是所有陶瓷材料的一个无法避免的致命弱点。 15.陶瓷脆性直观表现是:在外载负荷作用下的断裂是无先兆的、爆发性的;间接表现是无机械冲击性与温度急变性。 16.脆性的本质是由陶瓷材料的化学键性和晶体结构决定的。陶瓷材料多半是键合力很强的离子键和共价键化合物,有明显的方向性,缺少独立的滑移系统。 17.工业生产规模最大的功能陶瓷是在电子、微电子、光电子信息和自动化技术中的新型元器件用的陶瓷材料,即电子信息陶瓷或电子陶瓷。 18.电子陶瓷按功能和用途可以分为五类:绝缘装置瓷、电容器瓷、铁电陶瓷、半导体陶瓷和 离子陶瓷。 19.电子陶瓷按特性可分为高频和超高频绝缘陶瓷、高频高介电陶瓷、铁电和反铁电陶瓷、压电陶瓷、半导体陶瓷、光电陶瓷、电阻陶瓷等。 20.电子陶瓷按应用范围可分为固定用陶瓷、电真空陶瓷、电容器陶瓷和电阻陶瓷。 21.电子陶瓷按微观结构可分多晶、单晶、多晶与玻璃相、单晶与玻璃相,无玻璃相陶瓷属于固相烧结,有玻璃相陶瓷属于液相烧结。

陶瓷工艺学及答案

1. 陶瓷原料按工艺特性可分为哪四类原料? 一般按原料的工艺特性分为:可塑性原料、瘠性原料、熔剂性原料和功能性原料四大类。 2. 传统陶瓷的三大类原料是什么? 答:粘土、石英、长石 3. 指出粘土、粘土矿物、高岭土、高岭石的差异 答:黏土是一类岩石的总称,这有利于区分黏土、黏土矿物、高岭土、高岭石等这些名词的不同 黏土矿物:含水铝硅酸盐,组成黏土的主体,其种类和含量是决定黏土类别、工业性质的主要因素。高岭土主要由高岭石组成的黏土称为高岭土。 4. 说明原生粘土和次生粘土的特点 答:原生粘土:一次粘土,母岩风化后在原地留下来的粘土,产生的可溶性盐被水带走,因此质地较纯,耐火度高,颗粒较粗,可塑性差; 次生粘土:二次粘土、沉积粘土,由河水或风力将风化产生的粘土迁移至低洼地带沉淀所成。颗粒较细,可塑性好,夹杂其它杂质,耐火度差。 5. 粘土按耐火度可分为哪几类,各自特点是什么?P17 6. 粘土的化学组成主要是什么?主要化学成分为SiO2、A12O3和结晶水(H2O)。 分别说明氧化铝、二氧化硅、氧化铁/二氧化钛、碱金属/碱土金

属氧化物、有机质对粘土烧结的影响 (1)SiO2 :若以游离石英状态存在的SiO2多时,黏土可塑性降低,但是干燥后烧成收缩小。 (2)Al2O3 :含量多,耐火度增高,难烧结。 (3)Fe2O3<1%,TiO2 <0.5%:瓷制品呈白色,含量过高,颜色变深,还影响电绝缘性。 (4)CaO、MgO、K2O、Na2O:降低烧结温度,缩小烧结范围。(5)H2O、有机质:可提高可塑性,但收缩大。 7. 粘土中根据矿物的性质和数量可以分为哪两类?哪些是有益杂质矿物,哪些是有害杂质? 根据性质和数量分为两大类:黏土矿物和杂质矿物 有益杂质:石英、长石 有害杂质:碳酸盐、硫酸盐、金红石、铁质矿物 8. 指出碳酸盐、硫酸盐对陶瓷烧结的影响 碳酸盐主要是方解石、菱镁矿;硫酸盐主要是石膏、明矾石等。一般影响不大,但以较粗的颗粒存在时。往往使坯体烧成后吸收空气中的水分而局部爆裂。 9. 粘土矿物主要有哪三类?各自结构上有什么特点?试用材料分析手段说明如何鉴别高岭石、蒙脱石等 粘土矿物。a.高岭石类: b.蒙脱石类: c.伊利石类:杆状以及蠕虫状。二次高岭土中粒子形状不规则,

陶瓷工艺学

一、填空题 1、添加瘠性原料则降低塑性泥料的塑性变形,增加水含量则泥料的屈服值降低,延伸变形量增大。(降低或升高、增大或减少) 2、钾长石的矿物实验式为K2OAl3O26SiO2。 3、按照陶瓷坯体结构不同和坯体致密度的不同,把所有的陶瓷制品分为两大类:陶器和瓷器。 4、干燥过程主要排除坯料内部的自由水。 5、玻璃相在日用瓷胎显微结构中所占的比例最大,它的数量、化学组成与分布状态决定着瓷胎的性能。 6、绢云母质瓷采用还原焰烧成,具有白里泛青特色,成为中国瓷的传统风格和独有特点。 7、造粒的方法目前常用的有三种,即喷雾造粒、普通造粒法、加压造粒法。 8、乳浊釉根据产生乳浊方法不同可分为:气相乳浊、液相乳浊、固相乳浊。 9、滚压成形按模型的凹凸可分为阳模滚压和阴模滚压。 10、陶瓷颜料用的原料一般分为色基、载色母体和矿化剂。 11、压力制度是保证温度制度及气氛制度实现的条件。 二、判断题 1、远红外线干燥,是辐射干燥的一种。(√) 2、为保证匣钵在使用温度下体积的稳定性,匣钵必须在高于制品烧成温度下预先烧制。(√) 3、精陶质釉面砖一般采用二次烧成。(√) 4、热压铸成形的坯体,要预先进行排蜡。(√) 5、锂辉石是一种良好的助熔原料。(√) 6、釉粘度过大,易产生釉面不光滑和橘釉等缺陷,釉粘度过小,易产生流釉、堆釉和干釉 等缺陷。(√) 7、窑内气氛对釉面的表面张力有影响,在还原气氛下的表面张力比在氧化气氛下的表面张 力大。(√) 8、在制作裂纹艺术釉时,使釉的膨胀系数大于坯的膨胀系数。(√) 9、由于釉面砖制品表面施乳浊釉遮盖坯体,因此对坯体质量没有什么要求。(×) 10、青釉,天目釉,铜红釉均属于低温釉。(×) 11、通常用热空气干燥,湿扩散和热扩散的方向一致,有利于干燥的进行。(×) 12、釉的膨胀系数大于坯时,釉面会产生龟裂和剥落。(×) 13、一般的红色颜料如锆铁红,锰桃红,镉硒红等都可以用于高温烧成制品的装饰。(×) 14、天然粘土不能用一个固定的化学式来表示,同时它也无一定的熔点。(√) 15、钾长石和钙长石在任意情况下可以任意比例互溶。(×)

先进陶瓷应用[1]

先进陶瓷应用 引言 在千姿百态的物质界,大自然所恩赐的天然材料(如矿物、岩石、木材、丝棉等)虽数量大,品种多,但就其品种远不能满足社会发展的需求。现代科技和人类生存所应用的材料,绝大多数品种是以自然资源和传统材料为基础,经加工改造而成的人工合成材料。正是这些人工材料,支撑着整个社会的科技与文明。故而,对自然资源的开发、传统材料的改造和新型材料的研制,已成为当今人们获取新材料的系统工程。材料工程技术将为科技进步不断开发出形形色色的具有特殊功能的新型材料和先进材料。功能奇异的先进陶瓷便是新材料技术发展的典范。 陶瓷是用无机化合物粉料经高温烧结而成的、以多晶聚集体为基本结构的固体物质。传统陶瓷是以天然硅酸盐矿物(瓷石、粘土、长石、石英砂等)为原料,经粉碎、磨细、调和、塑形、干燥、锻烧等传统工艺制作而成。实际上瓷是在陶的基础上发展而成的比陶白净、细腻、质地致密且性能更为优良的硅酸盐材料。先进陶瓷与传统陶瓷区别在于:先进陶瓷是以高纯、超细的人工合成的无机化合物(可含或不含硅化物)为原料,采用精密控制的先进工艺烧结而成的、比传统陶瓷结构更加精细、性能更加优异的新一代陶瓷。先进陶瓷又称为精细陶瓷或高性能陶瓷。 先进陶瓷按使用性能可分为先进结构陶瓷(其使用性能主要指强度、刚度、硬度、弹性、韧性等力学性能)和先进功能陶瓷(其使用性能主要指光、电、磁、热、声等功能性能)两大类;按其化学成分又可分为:氧化物陶瓷、氮化物陶瓷、氟化物陶瓷、碳化物陶瓷、硅化物陶瓷、硼化物陶瓷、铝酸盐陶瓷等。 先进结构陶瓷是指以其优异的力学性能而用于各种机械结构部件的新型陶瓷。应用领域如陶瓷质密封套管、轴承、缸套、活塞及切削刀具等;先进功能陶瓷则是指利用材料的电、磁、光、声、热等直接的性能或其耦合效应来实现某种使用性能的新型陶瓷。如电容器陶瓷以其极高的抗电击穿性能用来制作高容抗陶瓷电容器;压电陶瓷以其能利用机械撞击或机械振荡产生电效应来制作压电点火装置的发火元件或传感器元件;热敏陶瓷可感知微小的温度变化,用于测温、控温;气敏陶瓷制成的气敏元件能对易燃、易爆、有害气体进行监测、控制和实现自动报警;而用光敏陶瓷制成的电阻器可用作光电控制,自动曝光和自动记数;磁性陶瓷是重要的信息记录材料,在计算机中完成记忆功能。 此外,先进陶瓷材料还有高绝缘陶瓷、半导体陶瓷、超导陶瓷、介电陶瓷、耐热透明陶瓷、发光陶瓷、滤光陶瓷、吸波陶瓷、激光用陶瓷、核燃料陶瓷、推进剂陶瓷、太阳能光转换陶瓷、贮能陶瓷、陶瓷固体电池、阻尼陶瓷、生物技术陶瓷、催化陶瓷、特种功能薄膜陶瓷、纤维补强陶瓷、烧蚀陶瓷等。这些特种陶瓷在自动控制装置、仪器仪表、精密机械、电子、通讯、能源、交通、冶金、化工、航空航天技术等部门均发挥着重要作用。 随着材料科学的发展和制造工艺的改进,陶瓷的内部组织构造渐趋精细化、致密化而使材料性能大幅度提高,以致出现新的特殊功能。在其发展过程中,大批的多功能、高性能先进陶瓷应运而生。 压电陶瓷及其新型压电元器件 基于过渡液相烧结机制,通过精选材料组成体系和添加物改性,研制了一系列高性能与低温烧结兼优的压电陶瓷材料。其中铌镁-锭镍-锆钛酸铅(pmn一pnn一pzt)四元系压电陶瓷通过添加适量lico3,和zno,烧结温度降至820一960℃,材料仍有很好的压电性能。例如:当烧结温度为900℃,压电常数(d33)为700pc /n,机电耦合系数kp为0. 74,室温介电常数(ε33 /εo)为3590,介电损耗(tanδ)为210 x 10-4。该低温烧结压电瓷料用于制备压电厚膜微泵。适当改性的铌镁-铌锌-锆钛酸铅(pmn一pzn一pzt)压电陶瓷为低烧片式多层压电变压器mpt提供了关键材料。该材料烧结温度在1000℃左右,kp为0.60, d33为300pc/n, tan

《陶瓷工艺学》试题

陶瓷工艺学试题库 一.名词术语解释 1.陶瓷显微结构——在显微镜下观察到的陶瓷组成相的种类、形状、 大小、数量、分布、取向;各种杂种(包括添加物)与显微缺陷的存在形式、分布;晶界特征。 2.胎釉适应性——釉层与胎具有相匹配的膨胀系数,不致于使釉出现 龟裂或剥落的性能。 3.实验式——表示物质成分中各种组分数量比的化学式。陶瓷物料通 常以各种氧化物的摩尔数表示。 4.坯式——表示陶瓷坯料或胎体组成的氧化物按规定顺序排列的实验 式。 5.釉式——表示陶瓷釉料或釉组成的氧化物按规定顺序排列的实验 式。 6.粘土矿物——颗粒大小在2μm以下,具有层状结构的含水铝硅酸盐 晶体矿物。 7.粘土—一种天然细颗粒矿物集合体,主体为粘土矿物,并含有部分 非粘土矿物和有机物。与水混合具有可塑性。 8.一次粘土——母岩经风化、蚀变作用后形成的残留在原生地,与母 岩未经分离的粘土。 9.二次粘土——一次粘土从原生地经风化、水力搬运到远地沉积下来 的粘土。 10.高岭石——一种二层型结构的含水铝硅酸矿物(Al 2O 3 ·2S? O2·2H 2 O),因首次在我国江西景德镇附近的高岭村发现而命名。 11.瓷石——一种可供制瓷的石质原料,主要矿物为绢云母和石英,或 含有少量长石、高岭石和碳酸盐矿物。 12.石英——天然产出的结晶态二氧化硅。 13.长石——一系列不含水的碱金属或碱土金属铝硅酸盐矿物的总称。 14.陶瓷工艺——生产陶瓷制品的方法和过程。 15.坯釉配方——坯料,釉料中各种原料配合的重量百分数。 16.细度——指固体颗粒的大小。陶瓷生产中习惯用标准筛的筛余量来 表示。 17.成型——将坯料制成具有一定形状和规格的坯体的操作。 18.可塑成型——在外力作用下,使可塑坯料发生塑性变形而制成坯体 的方法。 19.滚压成型——用旋转的滚头,对同方向旋转的模型中的可塑坯料进 行滚压,坯料受压延力的作用均匀展开而形成坯体的方法。 20.注浆成型——将泥浆注入多孔模型内,当注件达到所要求的厚度时, 排除多余的泥浆而形成空心注件的注浆法。 21.实心注浆——泥浆中的水分被模型吸收,注件在两模之间形成,没 有多余的泥浆排出的注浆法。 22.干压成型——将含水率低于6%的粒状粉料,放在模具中直接受压而 成型的方法。 23.等静压成型——粒状粉料在有弹性的软模中受到液体或气体介质传 递的均衡压力而被压实成型的方法。

陶瓷工艺学试题

陶瓷工艺学试题 一.名词术语解释 1.触变性:黏土泥浆或可塑泥团受到振动或搅拌时,黏度会降低而流动性增加,静置后逐渐恢复原状,泥料放置一段时间后,维持原有水分下也会出现变稠和固化现象,这种性质统称为触变性。 2.晶界:结晶方向不同的、直接接触的同成分晶粒间的交界处称为晶界。3.白度:白度指陶瓷坯体表面对白光的漫反射能力,是陶瓷对白光的反射强度与理想的白色标准物体所反射白光强度之比的百分数。 4.等静压成型:等静压成型是装在封闭模具中的粉体在各个方向同时均匀受压成型的方法。 5.快速烧成:烧成时间大幅缩短而产品性能与通常烧成的性能相近得烧成方法称为快速烧成。 6.陶瓷的显微结构:显微结构是指在光学或电子显微镜下分辨出的试样中所含相的种类及各相的数量、颗粒大小、形状、分布取向和它们相互之间的关系。 7.微波干燥:微波干燥是以微波辐射使生坯内极性强的分子,主要是水分子的运动随交变电场的变化而加剧,发生摩擦而转化为热能使生坯干燥的方法。 8.烧成温度:烧成温度是指陶瓷坯体烧成时获得最优性能时的相应温度(即烧成时的止火温度)。 9.一次粘土——母岩经风化、蚀变作用后形成的残留在原生地,与母岩未经分离的粘土。 10.二次粘土——一次粘土从原生地经风化、水力搬运到远地沉积下来的粘土。 11.陶瓷工艺——生产陶瓷制品的方法和过程。 12.粉碎——使固体物料在外力作用下,由大块分裂成小块直至细粉的操作。 13.练泥——用真空练泥机或其他方法对可塑成型的坯料进行捏练,使坯料中气体逸散、水分均匀、提高可塑性的工艺过程。 14.陈腐——将坯料在适宜温度和高湿度环境中存放一段时间,以改善其成型性能的工艺过程。 15.筛余量——指物料过筛后,筛上残留物的重量占干试样总重量的百分数。 16.成型——将坯料制成具有一定形状和规格的坯体的操作。 17.可塑成型——在外力作用下,使可塑坯料发生塑性变形而制成坯体的方法。 18.注浆成型——将泥浆注入多孔模型内,当注件达到所要求的厚度时,排除多余的泥浆而形成空心注件的注浆法。 19.干燥制度——为达到最佳的干燥效果,对干燥过程中各个阶段的干燥时间和速度、干燥介质的温度和湿度等参数的规定。 20.烧成制度——为烧成合格陶瓷制品和达到最佳烧成效果,对窑内温度、气氛、压力操作参数的规定。 21.一次烧成——施釉或不施釉的坯体,不经素烧直接烧成制品的方法。 22.氧化气氛——窑内气体具有氧化能力,其空气过剩系数大于1,称窑内气氛为氧化气氛。 23.陶器——一种胎体基本烧结、不致密、吸水率大于3%、无透光性、断面粗糙无光、敲击声沉浊的一类陶瓷制品。 24.瓷器——陶瓷制品中,胎体玻化或部分玻化、吸水率不大于3%、有一定透光性、断面细腻呈贝壳状或石状、敲击声清脆的一类制品。

2011陶瓷工艺学考试重点

2011陶瓷工艺学考试重点 黏土原料的化学组成:SiO2、Al2O3、Fe2O3(TiO2)、CaO、MgO、K2O、Na2O、烧失量I.L.。 黏土的工艺性质:可塑性、结合性、离子交换性、触变性、膨胀性、收缩、烧结性能、耐火度。 (高岭土的理论化学通式Al2O3-2SiO2-2H2O) (可塑性:是指黏土粉碎后用适量的水调和、混炼后捏成泥团,在一定外力的作用下可以任意改变其形状而不发生开裂,除去外力后,仍能保持受力时的形状和性能。 触变性:黏土泥浆或可塑泥团受到振动或搅拌时,黏度会降低,而流动性增加,静置后又能逐渐恢复原状;反之,相同的泥料放置一段时间后,在维持原有水分的情况下会增加黏度,出现变稠和固化现象;可以重复无数次上述情况的性能。)Β石英——α石英(573o C) 釉式是将各助溶剂的系数和调整为1,坯式是将中性氧化物的系数调整为1。 1、试简述陶瓷三大原料名称及硅质原料在陶瓷生产中的作用。 硅质原料(石英)、粘土类原料、熔剂性原料(长石) 烧成前,石英为瘠性料,可调节泥料的可塑性,是生坯水分排出的通道,降低坯体的干燥收缩,增加生坯的渗水性,缩短干燥时间,防止坯体变形;利于施釉。烧成时,石英的加热膨胀可部分抵消坯体的收缩;高温时石英部分溶解于液相,增加熔体的粘度,未溶解的石英颗粒构成坯体的骨架,防止坯体软化变形。 可提高坯体的机械强度,透光度,白度。 釉料中,SiO2是玻璃质的主要成分,提高釉料的机械强度,硬度,耐磨性,耐化学侵蚀性;提高釉料的熔融温度与粘度。 2、试述青花瓷的主要特征。 青花又称白地青花瓷器,属釉下彩瓷,是用含氧化钴的钴矿为原料,在陶瓷坯体上描绘纹饰,再罩上一层透明釉,经高温还原焰一次烧成。钴料烧成后呈蓝色,

陶瓷工艺学及答案

1、陶瓷原料按工艺特性可分为哪四类原料? 一般按原料的工艺特性分为:可塑性原料、瘠性原料、熔剂性原料与功能性原料四大类。 2、传统陶瓷的三大类原料就是什么? 答:粘土、石英、长石 3、指出粘土、粘土矿物、高岭土、高岭石的差异 答:黏土就是一类岩石的总称,这有利于区分黏土、黏土矿物、高岭土、高岭石等这些名词的不同 黏土矿物:含水铝硅酸盐,组成黏土的主体,其种类与含量就是决定黏土类别、工业性质的主要因素。高岭土主要由高岭石组成的黏土称为高岭土。 4、说明原生粘土与次生粘土的特点 答:原生粘土:一次粘土,母岩风化后在原地留下来的粘土,产生的可溶性盐被水带走,因此质地较纯,耐火度高,颗粒较粗,可塑性差; 次生粘土:二次粘土、沉积粘土,由河水或风力将风化产生的粘土迁移至低洼地带沉淀所成。颗粒较细,可塑性好,夹杂其它杂质,耐火度差。 5、粘土按耐火度可分为哪几类,各自特点就是什么?P17 6、粘土的化学组成主要就是什么?主要化学成分为SiO2、A12O3与结晶水(H2O)。 分别说明氧化铝、二氧化硅、氧化铁/二氧化钛、碱金属/碱土金属氧化物、有机质对粘土烧结的影响

(1)SiO2 :若以游离石英状态存在的SiO2多时,黏土可塑性降低,但就是干燥后烧成收缩小。 (2)Al2O3 :含量多,耐火度增高,难烧结。 (3)Fe2O3<1%,TiO2 <0、5%:瓷制品呈白色,含量过高,颜色变深,还影响电绝缘性。 (4)CaO、MgO、K2O、Na2O:降低烧结温度,缩小烧结范围。 (5) H2O、有机质:可提高可塑性,但收缩大。 7、粘土中根据矿物的性质与数量可以分为哪两类?哪些就是有益杂质矿物,哪些就是有害杂质? 根据性质与数量分为两大类:黏土矿物与杂质矿物 有益杂质:石英、长石 有害杂质:碳酸盐、硫酸盐、金红石、铁质矿物 8、指出碳酸盐、硫酸盐对陶瓷烧结的影响 碳酸盐主要就是方解石、菱镁矿;硫酸盐主要就是石膏、明矾石等。一般影响不大,但以较粗的颗粒存在时。往往使坯体烧成后吸收空气中的水分而局部爆裂。 9、粘土矿物主要有哪三类?各自结构上有什么特点?试用材料分析手段说明如何鉴别高岭石、蒙脱石等 粘土矿物。a.高岭石类: b.蒙脱石类: c.伊利石类:杆状以及蠕虫状。二次高岭土中粒子形状不规则,边缘折断,尺寸较小。为Al2O3·4SiO2·nH2O 高岭石属三斜晶系,常

陶瓷工艺学》试题

陶瓷工艺学试题库一.名词术语解释 1.陶瓷制品——以粘土类及其它天然矿物岩石为原料,经加工烧制成的上釉或 不 上釉硅酸盐制品(如日用陶瓷、建筑卫生陶瓷、普通电瓷等)。 2.胎——经高温烧成后构成陶瓷制品的非釉、非化妆土部分。 3.釉——融着在陶瓷制品表面的类玻璃薄层。 4.陶瓷显微结构——在显微镜下观察到的陶瓷组成相的种类、形状、大小、数 量、 分布、取向;各种杂种(包括添加物)与显微缺陷的存在形式、分布;晶界特征。 5.胎釉适应性——釉层与胎具有相匹配的膨胀系数,不致于使釉出现龟裂或 剥 落的性能。 6.实验式——表示物质成分中各种组分数量比的化学式。陶瓷物料通常以各种 氧 化物的摩尔数表示。 7.坯式——表示陶瓷坯料或胎体组成的氧化物按规定顺序排列的实验式。

8.釉式——表示陶瓷釉料或釉组成的氧化物按规定顺序排列的实验式。 9.粘土矿物——颗粒大小在2μm以下,具有层状结构的含水铝硅酸盐晶体矿 物。 10.粘土—一种天然细颗粒矿物集合体,主体为粘土矿物,并含有部分非粘土矿 物 和有机物。与水混合具有可塑性。 11.一次粘土——母岩经风化、蚀变作用后形成的残留在原生地,与母岩未经分 离 的粘土。 12.二次粘土——一次粘土从原生地经风化、水力搬运到远地沉积下来的粘土。 13.高岭石——一种二层型结构的含水铝硅酸矿物(Al 2O 3 ·2S?O2·2H 2 O),因首 次 在我国江西景德镇附近的高岭村发现而命名。 14.瓷石——一种可供制瓷的石质原料,主要矿物为绢云母和石英,或含有少量 长 石、高岭石和碳酸盐矿物。 15.釉石——制釉用瓷石,其矿物组成与瓷石相似,但具有较低的熔融温度,熔

第二十四章-新材料产业篇之先进结构材料产业

第二十二章先进结构材料产业 王一德屠海令陈祥宝周玉 孙蓟泉米绪军包建文唐荻贾德昌苏岚张荻乔金粱李腾飞 【内容提要】新材料是指新出现的具有优异性能和特殊功能的材料,或者是传统材料由于成分或工艺改进使其性能明显提高或具有新功能的材料[1]。《2013战略性新兴产业发展研究报告》[2]系统阐述了信息功能材料、新能源材料、特种功能材料、稀土及功能陶瓷材料、生物医用材料等先进功能材料产业的发展现状,梳理了产业发展存在的突出问题,提出了发展重点及政策建议。本文将重点论述先进钢铁材料、高端轻质合金材料、高性能复合材料及特种结构材料等先进结构材料在国民经济建设以及战略性新兴产业中的地位、作用和面临的突出问题,并提出相应的政策建议。 22.1.发展现状和趋势 结构材料是以力学性能为基础,以强度、硬度、塑性、韧性等力学性能为主要性能指标的工程材料的统称,其应用量大面广,是各类基础设施、装备及重大工程的主体构架材料。先进结构材料是我国发展新能源、现代交通运输、航空航天、船舶及海洋工程等战略性新兴产业的基础。 22.1.1发展现状 (一)先进钢铁材料 我国钢铁工业取得了举世瞩目的成就,本世纪以来钢产量年增长率达到20%,并一直保持钢产量世界第一,2012年产量达7.16亿吨,占世界钢产量的46%,为我国国防工业及国民经济建设提供了重要的原材料保障。先进钢铁材料是指较传统钢铁材料具有更高强度、韧性和耐高温、抗腐蚀等性能的材料[3,4]。

根据战略性新兴产业的需求,现对能源、交通、海洋以及航空航天用先进钢铁材料进行阐述。 先进能源用钢主要包括风电、水电、核电装备用钢。我国已具备了风电用宽厚板、高级别Φ80mm风电轴承用钢(GCr15SiMn)的批量生产能力。自主生产的600MPa级压力钢管能满足使用要求,800MPa级的压力钢管正在开发中。基本掌握了水电、核电装备所用的大型不锈钢铸锻件的生产技术,改变了依赖进口的局面。 现代交通用钢包括高速轨道用钢和汽车用钢。高速轨道用钢主要有列车转向架、车轮、掣肘、轴承、弹簧及钢轨用钢。目前我国自主研制的微合金化车轮用钢已成功用于时速200km的列车,时速高于200km以上的车轮用钢正在研发中;对于高端车轴用钢S38C,我国正处于工业试验阶段;车辆轴承用钢的高端产品GCr18Mo能够立足国内生产;高铁弹簧钢研究已有重大突破,有望实现国产化;高铁用钢轨的产能我国已达到世界第一,质量水平也处于国际先进水平。在汽车用钢方面,其强塑积20GPa %的第一代汽车用钢,强塑积在60GPa %的第二代汽车用钢,均可实现国产化,强塑积在30~40GPa %以上的第三代高性能汽车用高强度钢的研发已接近国际先进水平[4]。 海洋用钢主要包括海洋平台、海底油气管线、特种船舶用钢[4]。目前屈服强度355MPa以下平台用钢基本实现国产化,占平台用钢量的90%;海底管线钢X65、X70、X80及厚壁海洋油气焊管均已实现国产化;化学品船用中厚板已实现国产化,自主研制的2205型双相不锈钢,已成功地应用在化学品船上[5];液化天然气LNG船用9%Ni钢和液化乙烯储罐用12Ni19钢已经能够批量生产。 航空、航天用钢方面大部分都已实现国产化,但在大型客机的轴承、连接螺栓、着陆齿轮等部件所用的结构钢,燃气涡轮发动机中高压涡轮叶片用高温合金材料等方面还依赖进口。对于大推比运载火箭系统壳体、动力连接装置、发动机部件、星箭或船箭解锁包带等部件用特殊钢,以及各类空间环境设施用高品质特殊钢和高温合金还有待于进一步开发。

功能陶瓷复习题

《功能陶瓷》复习题 1.电容器陶瓷与电绝缘陶瓷在性能要求上有何不同? 2.简述莫来石、刚玉-莫来石电绝缘陶瓷配方中粘土、工业氧化铝、氧化钙、氧化镁、滑 石、白云石和碳酸钡的作用。 3.简述滑石瓷生产中滑石预烧的目的。 4.电容器陶瓷有哪几类?举出典型材料。 5.温度补偿电容器陶瓷与温度稳定电容器陶瓷的性能特点有何不同? 6.微波介质陶瓷具有什么性能特点?列出以上典型的陶瓷材料体系,说明其应用背景。微 波介质陶瓷的低温烧结工艺有哪些方法?有何意义? 7.说明金红石电容器陶瓷的配方中各组成的作用及在生产中应该注意的问题。 8.什么是介电常数的温度系数αε?为什么在高频稳定电容器陶瓷钛酸镁瓷和锡酸钙中加 入钛酸钙可以调节αε?有什么实际意义? 9.为什么PZT压电陶瓷中PbZrO3含量在53%mol时(Zr/Ti=53/47)时,压电性能最好? 三元系压电陶瓷PMN-PT-PZ的组成如何?相对于二元系压电陶瓷,有何特点? 10.什么是PZT陶瓷?软性添加物和硬性添加物对材料的性能和烧结工艺有哪些影响? 11.什么是热释电陶瓷?热释电系数P的物理意义是什么?具有压电性的晶体一定有热释电 性吗?为什么?举出你所知道的热释电陶瓷材料。 12.什么是PTC陶瓷?简述BaTiO3陶瓷产生PTC效应的条件和半导化途径。说明移峰剂对 PTC陶瓷的居里温度的影响。其烧成工艺有何要求? 13.简要说明Co-MnO-O2系NTC热敏电阻陶瓷的导电机理。在NTC陶瓷生产中为什么要 进行敏化处理和老练处理? 14.列出典型的四种气敏陶瓷材料,说明它们各有何特点? 15.ZnO系气敏陶瓷元件主要特点是什么?如何实现其对气体的选择性?。 16.简要说明γ-Fe2O3的气敏机理。 17.常见的湿敏陶瓷有哪些?有何特点? 18.简述Si-Na2O-V2O5系和ZnO-Li2O-V2O5系湿敏陶瓷各组分的作用和感湿机理。 19.什么是压敏陶瓷?简要说明 ZnO压敏陶瓷的压敏机理。 20.什么是导电陶瓷?简述常见材料及其应用。 21.说明氧化锆导电陶瓷的导电机理。简述其制备方法。简述其氧气敏原理及应用。 22.说明高磁导率铁氧体的晶粒大小和磁导率的关系。超高磁导率陶瓷的显微结构有什么特 点?矫顽力与晶粒大小什么关系? 23.软磁铁氧体有哪些特性?常见材料有哪些体系?常用的掺杂组分有哪些? 24.锰铁氧体在冷却时容易出现什么问题?应采取什么措施? 25.硬铁氧体有哪些特性?常见材料有哪些体系? 26.制备各向异性的铁氧体有什么意义?如何制备?

陶瓷工艺学试题库

瓷工艺学试题库 一.名词术语解释 1. 瓷制品以粘土类及其它天然矿物岩石为原料,经加工烧制成的上釉或不 上釉硅酸盐制品(如日用瓷、建筑卫生瓷、普通电瓷等)。 2. 胎——经高温烧成后构成瓷制品的非釉、非化妆土部分。 3. 釉融着在瓷制品表面的类玻璃薄层。 4. 瓷显微结构一一在显微镜下观察到的瓷组成相的种类、形状、大小、数量、分布、取向;各种杂种(包括添加物)与显微缺陷的存在形式、分布;晶界特征。 5. 胎釉适应性一一釉层与胎具有相匹配的膨胀系数,不致于使釉出现龟裂或剥落的性能。 6. 实验式一一表示物质成分中各种组分数量比的化学式。瓷物料通常以各种氧化物的摩尔数表示。 7. 坯式表示瓷坯料或胎体组成的氧化物按规定顺序排列的实验式。 8. 釉式表示瓷釉料或釉组成的氧化物按规定顺序排列的实验式。 9. 粘土矿物——颗粒大小在2卬田以下,具有层状结构的含水铝硅酸盐晶体矿物。 10. 粘土一一种天然细颗粒矿物集合体,主体为粘土矿物,并含有部分非粘土矿物和有机物。与水混合具有可塑性。 11. 一次粘土一一母岩经风化、蚀变作用后形成的残留在原生地,与母岩未经分离的粘土。 12. 二次粘土一一一次粘土从原生地经风化、水力搬运到远地沉积下来的粘土。 13. 高岭石一一一种二层型结构的含水铝硅酸矿物(Al 2C3 -2S?O^ ^HbO),因首次 在我国附近的高岭村发现而命名。 14. 瓷石一一一种可供制瓷的石质原料,主要矿物为绢云母和石英,或含有少量长石、高岭石和碳酸盐矿物。 15. 釉石一一制釉用瓷石,其矿物组成与瓷石相似,但具有较低的熔融温度,熔融物具有较好的透明度。 16. 石英——天然产出的结晶态二氧化硅。 17. 长石一一一系列不含水的碱金属或碱土金属铝硅酸盐矿物的总称。 18. l半水石膏一一石膏在水蒸气存在的条件下加压蒸煮而得到的晶体呈针状、结晶尺寸较大的半水石膏(l CaSO ?1/2H2。)。 19. 6一半水石膏——石膏在常压下炒制而得到的晶体为不规整碎屑、比表面积较大的半水石膏(6 —CaSO?1/2H2。)。 20. 瓷颜料一一以色基和熔剂配合制成的有色无机瓷装饰材料。 21. 瓷工艺一一生产瓷制品的方法和过程。 22. 釉料经加工精制后,施在坯体表面而形成釉面用的物料。 23. 熔块——水溶性原料、毒性原料与其他配料熔制而成的物料。 24. 熔块釉一一以熔块为主加适量生料制成的釉料。 25. 生料釉一一以生料为主不含熔块的釉料。 26. 乳浊釉——釉料中加乳浊剂,烧成后釉中悬浮有不熔性微粒子,釉呈乳浊状态。 27. 长石釉一一以长石类原料为主要熔剂的釉。 28. 石灰釉一一以钙质原料为主要熔剂的釉。 29. 颜色釉(色釉)——釉中含有适量着色剂,烧成后釉面呈彩色的釉。 30. 花釉(复色釉)——釉面呈多种色彩交混、花纹各异的颜色釉。 31. 无光釉一一釉面反光能力较弱,表面无玻璃光泽而呈现柔和丝状或绒状光泽的艺术釉。 32. 碎纹釉一一釉层呈现清晰裂纹而使制品具有独特的艺术效果的釉。 33. 结晶釉一一釉层含有明显可见晶体的艺术釉。 34. 化妆土敷施在瓷坯体表面的有色土料。烧成后不玻化,一般起遮盖或装饰作用。 35. 粉碎一一使固体物料在外力作用下,由大块分裂成小块直至细粉的操作。 36. 真空入磨一一利用真空效应使浆料进入球磨机的加料方式。 37. 压力放浆一一采用压缩空气加快球磨机出浆速度的方法。 38. 练泥一一用真空练泥机或其他方法对可塑成型的坯料进行捏练,使坯料中气体逸散、水分均匀、提高可塑性的工艺过程。 39. 腐一一将坯料在适宜温度和高湿度环境中存放一段时间,以改善其成型性能的工艺过程。 40. 坯釉配方——坯料,釉料中各种原料配合的重量百分数。 41. 筛余量指物料过筛后,筛上残留物的重量占干试样总重量的百分数。 42. 细度一一指固体颗粒的大小。瓷生产中习惯用标准筛的筛余量来表示。 43. 成型一一将坯料制成具有一定形状和规格的坯体的操作。 44. 可塑成型一一在外力作用下,使可塑坯料发生塑性变形而制成坯体的方法。 45. 刀压成型一一用型刀使放置在旋转的石膏模中的可塑坯料受到挤压、刮削和剪切的作用展开而形成坯体的方法。 46. 滚压成型一一用旋转的滚头,对同方向旋转的模型中的可塑坯料进行滚压,坯料受压延力的作用均匀展开而形成坯体的方法。 47. 注浆成型一一将泥浆注入多孔模型,当注件达到所要求的厚度时,排除多余的泥浆而形成空心注件的注浆法。

陶瓷工艺学复习题

陶瓷工艺学 1、传统陶瓷? 传统上,陶瓷的概念是指所有以粘土为主要原料及其它天然矿物原料经过粉碎混炼—成形—煅烧等过程而制成的各种制品。 普通陶瓷即为陶瓷概念中的传统陶瓷,这一类陶瓷制品是人们生活和生产中最常见和使用的陶瓷制品,跟据其使用领域的不同,又可分为日用陶瓷(包括艺术陈列陶瓷)、建筑卫生陶瓷、化工陶瓷、化学瓷、电磁及其它工业用陶瓷。 2、粘土在陶瓷生产中的作用? 粘土在陶瓷中的作用主要有五个方面: a.粘土的可塑性是陶瓷坯泥赖以成型的基础; b.粘土使注浆泥料与釉料具有悬浮性与稳定性; c.粘土一般呈细分散颗粒,同时具有结合性; d.粘土是陶瓷坯体烧结时的主体,粘土中AL2O3含量和杂质含量是决定陶瓷坯体的烧结程度、烧结温度和软化温度的主要因素。 e.粘土是形成陶瓷主体结构和陶瓷中莫来石晶体的主要来源。 3、石英原料在陶瓷生产中的作用? 石英原料在陶瓷生产中的作用主要有四个方面: a.再烧成前是瘠性原料,可对泥料的可塑性起调节作用,能降低坯体的干燥收缩,缩短干燥时间并防止坯体变形; b.在烧成时,石英的加热膨胀可部分地抵消坯体收缩的影响,当玻璃质大量出现在高温下石英能部分熔解于液相中,增加熔体的粘度,而未熔解的石英颗粒,则构成坯体的骨架,可防止坯体发生软化变形等缺陷; c.在陶瓷中,石英对坯体的力学强度有着很大的影响,合理的石英颗粒能大大提高瓷器坯体的强度,否则效果相反。同时,石英也能使瓷坯的透光度和白度得到改善; d.在釉料中二氧化硅是生成玻璃质的主要部分,增加釉料中石英含量能提高釉的熔融温度与粘度,并减少釉的热膨胀系数。同时它是赋予釉以高的力学强度,硬度、耐磨性和耐化学侵蚀性的主要因素。 4、长石原料在陶瓷生产中的作用? 长石原料在陶瓷生产中的作用主要有五个方面: a.长石在高温下熔融,形成粘稠的玻璃熔体,是坯料中碱金属氧化物的主要来源,能降低陶瓷坯体组分的熔化温度,有利于成瓷和降低烧成温度; b.熔融后的长石熔体能熔解部分高岭土分解产物和石英颗粒;

陶瓷工艺学试题重点

1、按照工艺特性的不同,陶瓷原料一般分为哪三类?并举例说明? 答:⑴可塑性原料:粘土 ⑵非可塑性原料:石英 ⑶熔剂性原料:长石 2、粘土在陶瓷生产中的作用? 答:①粘土的可塑性是陶瓷坯体成型的基础。②粘土使注浆泥料和釉料具有悬浮性和稳定性。③粘土的结合性使坯体具有一定的干燥强度,利于成型加工,烧结。 ④粘土是陶瓷坯体烧结的主体,含有较高的氧化铝。⑤粘土是陶瓷坯体中莫来石晶体的主要来源。 3、长石在陶瓷生产中的作用? 答:①长石是坯料中氧化钾和氧化钠的主要来源;起熔剂作用,有利于成瓷和降低烧成温度。②长石熔体能溶解部分高岭土分解产物和石英颗粒,在液相中氧化铝和氧化硅相互作用,促进莫来石生成。③长石熔体填充于各晶体颗粒之间,提高坯体致密度、透明度等,减少空隙。④在釉料中长石是主要熔剂。⑤起瘠性物料作用,在生坯中可以缩短坯体干燥时间,减少坯体的干燥收缩和变形等。 4、如何改善坯料的可塑性以满足成型工艺的要求? 答:提高可塑性的措施:⑴将粘土原矿淘洗,除去所夹杂的非可塑性物料,或进行长期风化。⑵将润湿的粘土或坯料长期陈腐。⑶将泥料进行真空处理,并多次练泥。⑷掺用少量强可塑性粘土。⑸必要时加入适当的胶体物质。 降低坯料可塑性的措施:⑴加入非可塑性原料,如石英等;⑵将部分粘土预先煅烧。 5、粘土的工艺性质有哪些? 答:①可塑性:粘土与适量的水混练以后形成泥团,这种泥团在一定外力作用下产生形变而不开裂,除去外力后仍保持其形状不变。 ②结合性:是指粘土能粘结一定细度的瘠性物料,形成可塑泥团并有一定干燥强度的性能。 ③离子交换性:粘土颗粒由于其表面层的断键和晶格内部离子的被置换,粘土表面总是带有电荷同时又吸附一些反离子。在水溶液中。这种吸附的离子又可被其他相同电荷的离子所置换。 ④触变性:粘土泥浆或可塑泥团受到振动和搅拌时,粘度降低,流动性增加,静置一段时间后,泥浆又重新稠化的性能。 ⑤干燥收缩和烧成收缩:粘土泥料干燥时,因包围在粘土颗粒间的水分蒸发,颗粒相互靠拢引起体积收缩,称为干燥收缩。粘土泥料在煅烧时,由于发生一系列的物理化学变化,因而粘土再度收缩,称为烧成收缩。 ⑥烧结温度与烧结范围:粘土完全烧结时的温度称为烧结温度。烧结温度到软化温度之间粘土试样处于相对稳定阶段的温度范围称为烧结范围。 ⑦耐火度:材料在高温下,虽已发生软化而没有全部熔融,在使用中所能承受的最高温度称为耐火度。 6、石英在加热过程中的晶型转变以及对陶瓷生产的影响? 答:石英晶型转化主要有高温型的缓慢转化(体积效应值大)和低温型的快速转化(体积效应值小)。高温型的缓慢转化是由表面开始向内部进行的,发生结构变化,形成新的稳定晶型,其体积膨胀大,但时间长,同时生成缓冲液,使得体积膨胀进行缓慢,因而对陶瓷制品影响不大。相反,低温型的快速转化是晶体表里瞬间同时发生转化,无结构变化,虽然体积膨胀小,但反应是瞬间的,又无液

陶瓷材料的分类及发展前景

陶瓷材料的分类及发展前景 学校: 太原理工大学 学院: 材料科学与工程 专业:无机0801 姓名:孙佩

摘要: 根据陶瓷材料的不同特性及用途对其进行了较为准确的分类,并对各类陶瓷的应用进行了概述。通过对各类陶瓷特性及应用领域的总结,对陶瓷材料未来的发展作出了新的展望,揭示了陶瓷材料的应用方向及发展趋势。 引言 陶瓷材料在人类生活和现代化建设中是不可缺少的一种材料。它是继金属材料,非金属材料之后人们所关注的无机非金属材料中最重要的材料之一。它兼有金属材料和高分子材料的共同优点,在不断改性的过程中,已经使它的易碎性有了很大的改善。陶瓷材料以其优异的性能在材料领域独树一帜,受到人们的高度重视,在未来的社会发展中将发挥非常重要的作用。陶瓷材料按其性能及用途可分为两大类:结构陶瓷和功能陶瓷。现代先进陶瓷的性能稳定、高强度、高硬度、耐高温、耐腐蚀、耐酸耐碱、耐磨损、抗氧化以及良好的光学性能、声学性能、电磁性能、敏感性等性能远优于金属材料和高分子材料;而且,先进陶瓷是根据所要求的产品性能,经过严格的成分和生产工艺制造出来的高性能材料,因此可用于高温和腐蚀介质的环境当中,是现代材料科学发展最活跃的领域之一。在此,笔者将对先进陶瓷的种类及应用领域做详细的介绍。 1.结构陶瓷 陶瓷材料优异的特性在于高强度、高硬度、高的弹性模量、耐高温、耐磨损、耐腐蚀、抗氧化、抗震性、高导热性能、低膨胀系数、

质轻等特点,因而在很多场合逐渐取代昂贵的超高合金钢或被应用到金属材料所不可胜任的的场合,如发动机气缸套、轴瓦、密封圈、陶瓷切削刀具等。结构陶瓷可分为三大类:氧化物陶瓷、非氧化物陶瓷、陶瓷基复合材料。 1.1氧化物陶瓷 氧化物陶瓷主要包括氧化镁陶瓷、氧化铝陶瓷、氧化铍陶瓷、、氧化锆陶瓷、氧化锡陶瓷、二氧化硅陶瓷、莫来石陶瓷,氧化物陶瓷最突出的优点是不存在氧化问题。 氧化铝陶瓷,利用其机械强度较高,绝缘电阻较大的性能,可用作真空器件、装置瓷、厚膜和薄膜电路基板、可控硅和固体电路外壳、火花塞绝缘体等。利用其强度和硬度较大的性能,可用作磨料磨具、纺织瓷件、刀具等。 氧化镁陶瓷具有良好的电绝缘性,属于弱碱性物质,几乎不被碱性物质侵蚀,对碱性金属熔渣有较强的抗侵蚀能力。不少金属如铁、镍、铀、釷、钼、镁、铜、铂等都不与氧化镁作用。因此,氧化镁陶瓷可用作熔炼金属的坩埚,浇注金属的模子,高温热电偶的保护管,以及高温炉的炉衬材料等。氧化镁在空气中易吸潮水化生成Mg(OH)2,在制造过程中必须注意。为了减少吸潮,应适当提高煅烧温度,增大粒度,也可增加一些添加剂,如TiO2、Al2O3等。 氧化铍陶瓷具有与金属相似的良好的导热系数,约为209.34W/(m.k),可用来做散热器件;氧化铍陶瓷还具有良好的核性能,对中子减速能力强,可用作原子反应堆的减速剂和防辐射材料;另外,

相关主题
文本预览
相关文档 最新文档