当前位置:文档之家› 一种小型无人机半物理仿真系统实现

一种小型无人机半物理仿真系统实现

一种小型无人机半物理仿真系统实现
一种小型无人机半物理仿真系统实现

无人机飞控系统的原理、组成及作用详解

无人机飞控系统的原理、组成及作用详解 无人机已经广泛应用于警力、城市管理、农业、地质、气象、电力等领域,无人机的飞控系统、云台、图像传输系统都是关键部分。无人机飞控系统作为其大脑具体的作用是什么?由哪些部分组成?在设计时应该注意哪些问题? 无人机飞控的作用无人机飞行控制系统是指能够稳定无人机飞行姿态,并能控制无人机自主或半自主飞行的控制系统,是无人机的大脑,也是区别于航模的最主要标志,简称飞控。 固定翼无人机飞行的控制通常包括方向、副翼、升降、油门、襟翼等控制舵面,通过舵机改变飞机的翼面,产生相应的扭矩,控制飞机转弯、爬升、俯冲、横滚等动作。不过随着智能化的发展,无人机已经涌现出四轴、六轴、单轴、矢量控制等多种形式。 传统直升机形式的无人机通过控制直升机的倾斜盘、油门、尾舵等,控制飞机转弯、爬升、俯冲、横滚等动作。多轴形式的无人机一般通过控制各轴桨叶的转速来控制无人机的姿态,以实现转弯、爬升、俯冲、横滚等动作。飞控的作用就是通过飞控板上的陀螺仪对无人机进行控制,具体来说,要对四轴飞行状态进行快速调整,如发现右边力量大,向左倾斜,那么就减弱右边电流输出,电机变慢、升力变小,自然就不再向左倾斜。如果没有飞控系统,四轴飞行器就会因为安装、外界干扰、零件之间的不一致等原因形成飞行力量不平衡,后果就是左右、上下地胡乱翻滚,根本无法飞行。 无人机飞控的工作过程飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任

基于FSM的物理信息系统建模与仿真

基于FSM的物理信息系统建模与仿真 王云1,刘东1,宗明2 1电力传输与功率变换控制教育部重点实验室,上海交通大学电气工程系 2国网上海市电力公司 Email:oliver_8610@https://www.doczj.com/doc/a66013149.html, 摘要:物理信息系统(CPS)连接了物理实体与信息传递、处理环节。应用有限状态机(FSM)对物理信息系统建模,并应用于对物理设备的控制中,有利于更全面利用物理过程产生的信息量,并优化物理设备及控制环节的运行,本文研究了基于FSM的电力CPS建模与仿真,提出了建模方法及流程,并以光伏储能单元为例验证了所提方法的有效性。 关键词:物理信息系统;电力系统建模;仿真;控制 Modeling and Simulation of Cyber-Physical System Based on FSM Wang Yun1,Liu Dong1,Zhong Ming2 1Key Laboratory of Control of Power Transmission and Conversion,Ministry of Education,Dept.of Electrical Engineering,Shanghai Jiao Tong University,Minhang District,Shanghai200240,China 2.State Grid Shanghai Municipal Electric Power Company,Shanghai200122,China Email:oliver_8610@https://www.doczj.com/doc/a66013149.html, Abstract:Cyber-physical system connects the physical entity and information transportation and processing. Modeling the CPS with Finite-State machine,and using this kind of model into control,will be good for utilizing the information and data of physical process more comprehensive,and will optimize the operation of physical device and control link.This kind of modeling method is suitable for power system.This paper research the modeling method and simulation of power CPS based on FSM,proposing the method and procedure by an example of Photovoltaic-Battery system,and verifying the effectiveness. Keywords:Cyber-Physical System;Power System Modeling;Simulation;Control; 1引言 现代电力技术的发展,使得在电力系统网络中接入并调度大量分布式能源成为可能;同时,储能、电动汽车等非传统负荷在不确定时空灵活并网,以及负荷与供电端围绕经济用电策略而进行实时互动管理[1]。在这些应用与变革中,产生了许多新的测量数据、控制信息,形成了复杂庞大的数据信息流及海量存储。因此,传统电网逐渐从简单能量传输网络向信息及能量联合多向传递发展[2]。 物理信息系统(CPS)最早由美国国家基金委员会(NSF,National Science Foundation)于2006年提出[3]。CPS依托现实世界丰富的传感监测设备,以及完善可靠的通信网络,实现物理过程与其所涉及的内部数据、外部数据等信息量的集成融合、相互使用,更好地描述了现实对象,并能对物理过程进行更加精确有效的控制。CPS技术无论在工程应用还是实验研究中都将有广泛的应用。 CPS是新一代智能系统,属于较新研究领域,国内外正积极对其进行研究。文献[4]提出了面向服务的CPS架构,可以较为灵活地接入模型对象及服务。文献[5]介绍了CPS设计所涉及的挑战,包括从现实世界中抽象出合理的物理并建立信息模型,强调并行计算及同时性问题对设计产生的影响。应用方面,文献[6]通过实时调度算法,对系统负荷及其它可控对象进行即时操作,能够实现预测并消除由于时间差带来的延后。文献[7]充分运用电网运行信息,结合系统模型,在电力系统、计算系统、通讯网络系统三者间建立联系,对受扰网络即时施加调整,消除扰动造成的越限及系统失稳。 电力网络的工作特点决定了物理信息融合研究对优化电网运行的重要性。将CPS应用于电力工程实例, 资助信息:国家高技术研究发展计划(863计划)项目(2 012AA050803)

基于MATLAB的物理光学实验仿真平台构建

毕业设计(论文)开题报告题目:基于Matlab的物理光学实验仿真平台构建 院(系)光电工程学院 专业光信息科学与技术 班级120110 姓名闫武娟 学号120110127 导师刘王云 年月日

开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成。2.开题报告内容必须按教务处统一设计的电子文档标准格式(可从教务处网页上下载)填写并打印(禁止打印在其它纸上后剪贴),完成后应及时交给指导教师审阅。3.开题报告字数应在1500字以上,参考文献应不少于15篇(不包括辞典、手册,其中外文文献至少3篇),文中引用参考文献处应标出文献序号,“参考文献”应按附件中《参考文献“注释格式”》的要求书写。 4.年、月、日的日期一律用阿拉伯数字书写,例:“2005年11月26日”。

这些仿真平台的使用不仅方便了教学,而且也使学生更容易理解物理光实验的基本原理,加深对理论知识的理解与记忆。 2.课题研究的主要内容和拟采用的研究方案、研究方法 2.1课题研究的主要内容 (1). 在光的干涉基本理论基础上,实现两束平面波、球面波的干涉实验,杨氏双缝和杨氏双孔干涉实验,平行平板的等倾干涉实验,楔形平板的等厚干涉实验,牛顿环干涉实验,迈克尔逊干涉实验以及平行平板的多光束干涉实验。 (2). 在菲涅尔衍射及夫琅和费衍射基本理论基础上,实现矩孔、单缝、圆孔、双缝、多缝、平面光栅及闪耀光栅的衍射实验。 2.2 研究方法及方案 物理光学实验可分为两大类:干涉与衍射。光的干涉有光源、干涉装置和干涉图形三个基本要素;衍射分为菲涅尔衍射和夫琅禾费衍射。光学领域的大部分图像及曲线分布都可以用MATLAB 软件加以计算和实现[16], 以杨氏双缝干涉为例,简述实验方案 杨氏双缝干涉模型是典型的分波面干涉,其干涉装置图如图所示,用一个单缝与一个双缝,从同一波面上分出两个同相位的单色光,进而获得相干光源并观察分析干涉图样。 图1.1杨氏双缝干涉实验装置图 2.2.1数学建模 根据干涉的基本原理,点光源S 发出的光波经双缝分解为次波源S 1、S 2,这两个次波源发出的光波在空间相干叠加,继而在其后的接收屏形成一系列明暗相间的干涉条纹。 设入射光波波长为λ,两个次波源的强度相同,且间距为d (1)位相差的计算: 221)2 (y d x r ++ =222)2 - (y d x r +=(2.1) )(*12r r n -=?(2.2)

无人机培训教材

第一章 飞行原理 本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上过了或没兴趣学, 请跳过这一章直接往下看。 第一节 速度与加速度 速度即物体移动的快慢及方向,我们常用的单位是每秒多少公尺〔公尺 /秒〕 0 加速度即速度的改变率, 我们常用的单位是〔公尺 /秒/秒〕,如果加速度是负数, 则代表 减速。 第一定律:除非受到外来的作用力,否则物体的速度 (V )会保持不变。 没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时飞机所受的合 力为零,与一般人想象不同的是,当飞机降落保持相同下沉率下降, 这时升力与重力的合力仍 是零,升力并未减少,否则飞机会越掉越快。 第二定律:某质量为 m 的物体的动量(P = mv )变化率是正比于外加力 F 并且发生在力的方向 上。 此即着名的 F=ma 公式,当物体受一个外力后,即在外力的方向产生一个加速度,飞机 起飞滑行时引擎推力大于阻力, 于是产生向前的加速度,速度越来越快阻力也越来越大, 引擎推力会等于阻力,于是加速度为零,速度不再增加,当然飞机此时早已飞在天空了。 第三定律:作用力与反作用力是数值相等且方向相反。 第三节 力的平衡 如果不平衡就是合力不为零,依牛顿第二定律就会产生加 X 、Y 、Z 三个轴力的平衡及绕 X 、Y 、Z 三个轴弯矩的平衡。 轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻 力、推力〔如图1-1〕,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空 气产生,我们可以把力分解为两个方向的力,称 X 及y 方向〔当然还有一个z 方向,但对飞 机不是很重要,除非是在转弯中〕,飞机等速直线飞行时X 方向阻力与推力大小相同方向相反, 故X 方向合力为零,飞机速度不变,y 方向升力与重力大小相同方向相反,故 y 方向合力亦为 第二节 顿三大运动定律 迟早 你踢门一脚,你的脚也会痛, 因为门也对你施了一个相同大小的力 作用于飞机的力要刚好平衡, 速度,为了分析方便我们把力分为

信息物理系统共性技术测试床

AII测试床申请模板信息物理系统共性技术测试床信息物理系统共性技术测试床 引言 信息物理系统共性技术测试床由中国信息通信研究院牵头,联合海尔、中兴、树根互联、欧姆龙、西北工业大学等产学研单位共同建设。重点围绕离散行业生产模拟环境,开展机床、机器人、检测设备、物流设备等数据采集、数字化建模、双胞胎构建等,实现生产制造过程的三维可视化监测,探索开展基于数字双胞胎、大数据算法的优化,以及北京、上海的网络化协同。 一、关键词 基于北京实验室和上海实验室,开展哑设备数据采集、信息物理系统数字双胞胎、柔性产线重构、数据智能、网络化协同等共性关键技术的测试验证。 哑设备改造、数字双胞胎、网络化协同 二、测试床项目概述 1. 概述及该测试床目标 信息物理系统是目前工业互联网研究的前沿领域,是驱动传统行业智能化转型的核心技术集群和战略聚焦点,工业4.0、先进制造战略的内在驱动均是信息物理系统。 当前,工业生产面临诸多问题:设备数据、生产数据采集集成问题;产线、流程、工艺固化问题;海量产品数据的分析问题等。现有的技术处理起来有较大难度,例如:底层设备数据不开放,导致数据采集无法实现;系统异构性明显,导致系统集成效果不佳;产线编排灵活性低,新产品换线需要多次调试;工业数据技术应用有限,缺少结合工业机理的算法模型;网络可靠性低,系统间数据存储管理的统一标准缺失,导致网络协同应用水平较浅等。 YYYY-MM-DD Version 0.1

信息物理系统的应用将为上述问题提供一条有效的解决途径:通过数字双胞胎技术,叠加各类传感器、板卡,采集哑设备运转各类数据,并形成设备运行、诊断模型;通过产线柔性可重构技术,实现异构系统集成,并采用柔性连接和软件配置的方式实现产线布局快速调整,流程和工艺快速切换等。信息物理系统共性技术测试床选取离散行业机加工流程,配置常见的工业设备和信息系统,搭建工业网络环境,开展信息物理系统各项技术的测试验证。 信息物理系统共性技术测试床根据工业领域对信息物理系统共性技术、关键产品、解决方案试验验证需求的考虑,拟在北京与上海两地同步建设,一方面,可以结合本地的特色产业,扩大本平台的辐射范围,提高影响力和知名度;另一方面,异地环境能够更好的模拟网络化协同制造的实际需求,提高本平台的试验验证的准确性和真实性。 2. 目标 打造信息物理系统关键技术创新与解决方案孵化的开放创新平台,为工业企业开展信息物理系统共性关键技术和新模式研究提供一个通用的试验环境,降低企业采用新技术的风险,推进不同企业解决方案的适配测试,加快新技术、新模式跨地域、跨行业的推广,形成一批切实可行的信息物理系统解决方案,并促进企业间的交流、合作,提升我国信息物理系统研究水平和应用能力。 构建2条各具特色的离散行业生产模拟线,开发不少于5种以上设备的三维数字化模型并实现数据驱动模型,形成不少于包括机床、机器人在内的两类设备与系统数据采集方案(哑设备改造),建设1个异地协同信息物理系统监控平台,实现数字双胞胎、设备智能优化、纳米级产品检测、异地网络化协同的应用新模式。 三、测试床项目解决方案

物理仿真实验报告1

物理仿真实验报告1

物理仿真实验报告 受迫振动 班级应物01 姓名赵锦文 学号10093020

一、实验简介 在本实验中,我们将研究弹簧重物振动系统的运动。在这里,振动中系统除受弹性力和阻尼力作用外,另外还受到一个作正弦变化的力的作用。这种运动是一类广泛的实际运动,即一个振动着的力学体系还受到一个作周期变化的力的作用时的运动的一种简化模型。如我们将会看到的,可以使这个体系按照与施加力相同的频率振动,共振幅既取决于力的大小也取决于力的频率。当力的频率接近体系的固有振动频率时,“受迫振动”的振幅可以变得非常大,这种现象称为共振。共振现象是重要的,它普遍地存在于自然界,工程技术和物理学各领域中.共振概念具有广泛的应用,根据具体问题中共振是“利”还是“害”,再相应地进行趋利避害的处理。 两个相互耦合的简谐振子称为耦合振子,耦合振子乃是晶体中原子在其平衡位置附近振动的理想模型。 本实验目的在于研究阻尼振动和受迫振动的特性,要求学生测量弹簧重物振动系统的阻尼常数,共振频率。 二、实验原理 1.受迫振动 砝码和挂钩 弹簧 弹簧 振荡器 图13.1 受迫振动 质量M 的重物按图1放置在两个弹簧中间。静止平衡时,重物收到的合外力为0。当重物被偏离平衡位置时,系统开始振动。由于阻尼衰减(例如摩擦力),最终系统会停止振动。振动频率较低时,可以近似认为阻力与振动频率成线性关系。作用在重物上的合力: x M x Kx x x k x k F 21=--=---=ββ 其中k1, k2是弹簧的倔强系数。

K = k1+ k2是系统的等效倔强系数。 x 是重物偏离平衡位置的距离, β 是阻尼系数。 因此重物的运动方程可表示为: 22 0=++x x x ωγ 其中 γβ=M and ω02 =K M 。 在欠阻尼状态时(ωγ0>),方程解为: ) cos(22 0 φγωγ+-=-t Ae x t A, φ 由系统初始态决定。方程的解是一个幅度衰减的谐振动,如图2所示。 T 图13.2 衰减振动 振动频率是: f T = =-11202 2π ωγ (13.1) 如果重物下面的弹簧1k 由一个幅度为a 的振荡器驱动,那么这个弹簧作用于重物的力是) cos (1x t a k -ω。此时重物的运动方程为: M t a k x x x cos 212 0ωωγ= ++ . 方程的稳态解为: ) cos(4)(2 2 2 22 1θωω γωω-+-= t M a k x (13.2) 其中 )2(tan 2 201 ωωγω θ-=-。图13.3显示振动的幅度与频率的关系。

AOPA无人机驾驶证模拟题汇总

1、空中交通管制单位为飞行中的民用航空器提供的空中交通服务中含有(1 分) A.飞行情报服务B.机场保障服务C.导航服务 2、空域管理的具体办法由________制定(1 分) A.民用航空局B.中央军事委员会C.国务院和中央军事委员会 3、空域通常划分为①机场飞行空域②航路.航线③空中禁区.空中限制区和空中危险区 ________(1 分) A.①②B.①③C.①②③ 4、机场标高指着陆区______的标高。(1 分)p143 A.最高点B.最低点C.平均海拔 5、______主要用于飞行区域内重点目标的标注,如建筑物、禁飞区、人口密集区等易影响飞行安全的区域(1 分) A.场地标注B.任务区域标注C.警示标注 6、飞机过载和载荷因子是同一概念________(1 分) A.是B.不是C.不确定 过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,载荷因子:是飞行时的作用于飞机的全部负荷和飞机总重。 7、无人机特殊飞行许可颁发前,由局方检察官或局方认证人员或__________进行检查以确定位于预期的飞行是安全的。(1 分) A.适当认证修理站 B.经验丰富的无人机飞行员 C.经验丰富的有人机飞行员 8、无人机系统无线电资源的使用__________局方无线电管理部门的许可证。(1 分)A.需要B.不需要C.一般情况下不需要 9、关于粗猛着陆描述正确的是________(1 分) A.粗猛着陆就是使飞机接地的动作太快 B.不按规定的着陆高度、速度及接地角,导致受地面撞击力超过规定 C.粗猛着陆时前轮先接地 10、谁对民用无人驾驶航空器系统的维护负责(1 分) A.签派B.机长C.运行人 11、可能需要处置的危机情况不包括:______ (1 分) A.动力装置故障B.任务设备故障C.舵面故障 12、活塞发动机在慢车状态下工作时间过长,易带来的主要危害是________(1 分) A.电嘴挂油积炭B.滑油消耗量过大C.气缸头温度过高

基于实时操作系统的无人机飞行控制系统设计综述

电子电路设计与方案 0 引言 无人机是一种由动力驱动,无人驾驶且重复使用的航空器简称。其体积小、成本低,可装配制导系统、机载雷达系统、传感器及摄像机等设备,用途广泛并且不易造成人员伤亡[1]。无人机飞行控制系统是一个多任务系统, 要求不仅能够采集传感器数据、进行飞控/导航计算、驱动执行机构等, 还要求可靠性高、实时性强[2]。由于传统无人机所运用的数据复杂且繁多,使其在操作上灵活度不高,不具有实时性。实时操作系统会简化复杂的数据,将数据集合化,条理化。如将实时操作系统应用于无人机中,能够完善功能检查,功能维护,做到实时性,高灵活性,并延长无人机的使用寿命。近年来学术界在性能、应用等方面对搭载了实时操作系统的无人机进行了深入研究,极大地推动了无人机的发展。文献[4]从机构设计和飞行控制两方面介绍了微小型四旋翼飞行器的发展现状,叙述了小型四旋翼飞行器的发展技术路线。在飞控系统的原理和功能层面,文献[3]主要利用UML例图来系统地描述了飞控系统的构造,并从整体、静态、动态角度刻画飞控系统的性能指标;文献[5]阐述了飞控系统的基本原理并引入实时内核,对调度管理和通信机制给出了详细设计和分析。本文将回顾并总结在无人机领域的发展问题,并对无人机的飞控系统设计进行综述。 1 无人机整体概述 ■1.1 发展背景及发展历程 无人驾驶飞机是一种有动力、可控制、能携带多种任务设备、执行多种任务,并能重复使用的无人驾驶航空器,简称无人机,英文上常用unmanned aerial vehicle表示,缩写为UAN。早在1907年,Bruet—Richet就让世界上第一架四旋翼飞行器“Gyroplane No.1”升上了天空[6]。但由于构造复杂、不易操纵等原因,大型四旋翼飞行器的发展一直都比较缓慢。20世纪60、70年代,随着美苏之间冷战形式的加剧,无人机得到了广泛应用。美国将无人机用语军事侦察,情报获取,无线电干扰等军用属性。近年来,随着新型材料以及飞行控制等技术的进步,无人机逐渐向微小型、实时性、可操作性强的方向过渡。微小型四旋翼飞行器的迅速发展,逐渐成为人们关注的焦点。 ■1.2 无人机应用领域 无人机在军用领域及民用领域都得到广泛应用。在军用领域,可用作战术无人侦察机执行侦察搜索[7]、无人战斗机、训练飞行员的靶机等。在民用领域,利用它易操作、实时性好等特点,广泛运用于农业、种植业、林牧业、旅游业、拯救濒危物种等各个领域。 2 无人机硬件结构 ■2.1 无人机结构 无人机的动力组成主要为无刷电机、螺旋桨、电子调速器等,控制系统主要由飞行控制器、遥控器等组成,动力储 备由电池、充电器等组成。其结构组成示意图如图1所示。 图1 ■2.2 飞行控制系统 无人机飞行控制系统是指能够稳定无人机飞行姿态,并能控制无人机自主或半自主飞行的控制系统。 无人机飞控主要由陀螺仪,加速计,地磁感应,气压传感器,超声波传感器,光流传感器,GPS模块,以及控制电路组成[9]。无人机飞控内含测量飞行控制所需的测量元件及利用输出信号驱动旋翼转动的执行机构等。 无人机飞控可将遥控器的输入命令对应电机动力的输出大小,并将飞控感知量与期望姿态产生误差进行对比,通过PID进行调节。利用地面站查看实时飞行数据,实现控制参数的在线修改。根据飞行的指令和要求,结合空置率给 基于实时操作系统的无人机飞行控制系统设计综述 崔圣钊 (山东省青州第一中学,山东青州,262500) 摘要:小型四旋翼无人机广泛应用在专业级航拍、农业植保、军事侦察、设备巡检等领域。目前飞行控制系统多采用前后台系统来实现,当系统规模较大,处理模块增多时,实时性很难得到保障。本文首先对无人机领域发展情况进行概述,其次详细阐述了无人机的外部结构、部件功能等硬件组成,最后对无人机通过实时操作系统设计后的飞控系统控进行分析。通过分析可知,经过实时操作系统设计的飞行控制系统能够满足飞行要求,并具有一定的实时性、可靠性。 关键词:无人机;飞行控制系统;实时操作系统;四旋翼飞行器 www?ele169?com | 23

控制系统中各环节的物理实现及其PROTEUS仿真

控制系统中各环节的物理实现及其PROTEUS仿真 摘要:对PID控制系统中的各个环节,包括比例环节,微分环节,积分环节,加法和减法环节等在PROTEUS中进行电路图绘制并进行仿真,并用虚拟的电压表和示波器测得相应的数值和波形,得出与理论值相近的结论。 关键词:PROTEUS 电路仿真PID Abstract: PID control system at various points of the proportion of links, link differential, integral aspect of links, such as addition and subtraction in the circuit in PROTEUS mapping and simulation, and virtual oscilloscope voltage meter and the measured values and the corresponding waveform drawn with the theoretical value is similar to the conclusions 1.引言 Proteus的ISIS是一款电路分析实物仿真系统,可仿真各种电路和IC,并支持单片机,元件库齐全,使用方便,是不可多得的专业的单片机软件仿真系统。 该软件全部满足我们提出的单片机软件仿真系统的标准,并在同类产品中具有明显的优势。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS一232动态仿真、1 C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。目前支持的单片机类型有:68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。支持大量的存储器和外围芯片。总之该软件是一款集单片机和SPICE分析于一身的仿真软件,功能极其强大,可仿真51、AVR、PIC。 2.实验过程 2.1比例环节 比例环节的线路连接如图1.1 图1.1 由虚短和虚断的概念可以计算U1A的输出 Vout1=-Vin*R2/R1 由图3.1可以看出,输入电压5V经由U1A组成的比例电路输出为-0.498712V,再经由U1B组成的反向电路输出为0.50088V,近似等于理论值电压0.5V. 2.2. 微分环节 微分环节的线路连接如图1.2

信息物理系统下的耦合映射跟驰模型

Computer Engineering and Applications 计算机工程与应用 2017,53(12)1引言经济的飞速发展,小轿车进入千家万户。车辆的大众化普及带来交通拥堵与交通事故问题日趋严重,交通物理与交通信息的紧耦合研究实现越发显得重要且紧迫。2006年2月,基于美国国会评估美国的技术竞争力和维持提高这种竞争力的要求,美国科学院发布的《美国竞争力计划》将CPS 列为重要的研究项目[1]。信息物理系统是通过集成计算,通信与控制技术,将信息基元与物理技术融为一体,并基于信息系统与物理系统之间的相互作用与反馈,进而实现对物理系统的精确认知和有效控制的前沿技术[2]。CPS 的出现将改变人与世界的交互方式[3]。现代交通系统是个典型的信息物理系统[4]。国内外已有多种关于交通本质现象的研究从优化 速度模型的提出,到车辆之间的耦合,耦合映射跟驰模型不断演进[5-10]。跟车模型能很好地解释交通现象,但却很少有从交通物理与交通信息融合的角度来宏观提出随着车辆越来越多路况越来越复杂的交通系统中抑制交通拥堵的方法,很少有考虑响应延迟时间这一不可忽略的变量在行驶过程中,对交通流状态的影响。信息物理系统(Cyber Physical System ,CPS )技术的发展,为研究降低跟车模型中信息响应延迟时间提供了基础。CPS 要让控制建立于对不同信息的收集与处理之上,实现物理世界的信息化与网络化,通过信息系统与物理世界的融合,才能达到对物理世界安全、可靠、信息物理系统下的耦合映射跟驰模型 曹张保,安吉尧,黄仲,周兴 CAO Zhangbao,AN Jiyao,HUANG Zhong,ZHOU Xing 湖南大学信息科学与工程学院,长沙410082 College of Information Science and Engineering,Hunan University,Changsha 410082,China CAO Zhangbao,AN Jiyao,HUANG Zhong,et al.Coupled map car following model under cyber physical https://www.doczj.com/doc/a66013149.html,puter Engineering and Applications,2017,53(12):158-165. Abstract :In view of the delay time of the car following model which leads to the traffic congestion.The paper redefines the coupled map car following model under CPS (Cyber Physical System ).In the process of the interaction between the physical end which delay causes congestion and the network terminal embedded the computation function,the concept of the equilibrium distance is proposed.On this basis,the response delay time is quantified.Thus,it can increase the vehicle distance,lengthen the operating time line indirectly,and provide a predictive function to the driving system.The feedback control of the front and rear cars is considered,and different feedback coefficients are selected.Simulation results show that the model of the coupled map car following under CPS can suppress traffic congestion significantly. Key words :cyber physical system;coupled map car following model;response delay time;feedback control;suppress traffic congestion 摘要:针对车辆跟驰模型中信息响应延迟时间导致交通拥堵,通过信息物理系统对耦合映射跟驰模型重新定义,在嵌入计算功能的网络端与延迟导致拥堵的物理端相互作用下,提出均衡车头距的概念,在此基础上量化跟驰过程中的响应延迟时间,从而间接增大了车头距,拉长可操作时间线,给驾驶系统提供预估功能。考虑前车、后车对己车的反馈控制,并选取不同的反馈系数,仿真结果表明CPS 定义下的耦合映射跟驰模型,对交通拥堵具有明显的抑制效果。关键词:信息物理系统;耦合映射跟驰模型;信息响应延迟;反馈控制;拥堵抑制 文献标志码:A 中图分类号:TP 391.9doi :10.3778/j.issn.1002-8331.1601-0144 基金项目:国家自然科学基金(No.61370097)。 作者简介:曹张保(1990—),男,硕士研究生,主要研究领域为信息物理系统;安吉尧(1972—),男,博士,副教授,CCF 高级会员, 主要研究领域为信息物理系统,智能控制,智能车辆,E-mail :jt_anbob@https://www.doczj.com/doc/a66013149.html, 。 收稿日期:2016-01-11修回日期:2016-04-18文章编号:1002-8331(2017)12-0158-08 CNKI 网络优先出版:2016-06-17,https://www.doczj.com/doc/a66013149.html,/kcms/detail/11.2127.TP.20160617.1547.008.html 158万方数据

西安交大物理仿真实验

西安交大物理仿真实验 大学物理仿真实验 ——《受迫振动》 电气12 高加西 2110401039 一、实验简介 在本实验中,我们将研究弹簧重物振动系统的运动。在这里,振动中系统除受弹性力和阻尼力作用外,另外还受到一个作正弦变化的力的作用。这种运动是一类广泛的实际运动,即一个振动着的力学体系还受到一个作周期变化的力的作用时的运动的一种简化模型。如我们将会看到的,可以使这个体系按照与施加力相同的频率振动,共振幅既取决于力的大小也取决于力的频率。当力的频率接近体系的固有振动频率时,“受迫振动”的振幅可以变得非常大,这种现象称为共振。共振现象是重要的,它普遍地存在于自然界,工程技术和物理学各领域中(共振概念具有广泛的应用,根据具体问题中共振是“利”还是“害”,再相应地进行趋利避害的处理。二、实验目的 研究阻尼振动和受迫振动的特性,要求学生测量弹簧重物振动系统的阻尼常数,共振频率。 三、实验原理 1.受迫振动

图1 受迫振动 质量M的重物按图1放置在两个弹簧中间。静止平衡时,重物收到的合外力为0。当重物被偏离平衡位置时,系统开始振动。由于阻尼衰减(例如摩擦力),最终系统会停止振动。振动频率较低时,可以近似认为阻力与振动频率成线性关系。作用在重物上的合力: 其中 k, k 是弹簧的倔强系数。 12 K = k+ k 是系统的等效倔强系数。 12 x 是重物偏离平衡位置的距离, , 是阻尼系数。 因此重物的运动方程可表示为: 其中 and 。 在欠阻尼状态时() ,方程解为:

由系统初始态决定。方程的解是一幅度衰减的谐振动,如图2所示。 A,, 图2 衰减振动 振动频率是: (1) 如果重物下面的弹簧由一个幅度为a 的振荡器驱动,那么这个弹簧作用于重物的力 是。此时重物的运动方程为: 方程的稳态解为: (2) 其中。图3显示振动的幅度与频率的关系。 图3 衰减振动幅度与振动频率关系

电子信息系统仿真

XX航空工业管理学院 《电子信息系统仿真》课程设计 级专业班级 题目一阶动态电路特性分析与仿真 姓名学号 指导教师 二О一年月日

内容摘要 在电子学课程学习中,大学生往往会碰到比较复杂的数学公式。各种定律、定理的推导也往往是通过求解微分方程等复杂的过程得出的,许多结论性的东西也难以用比较直观的图像来表达出来,因此学生们在理解相关知识时比较困难。对电路暂态过程的分析也是如此。由于学生很难描绘出各种电流、电压的变化过程曲线,形成不了一个比较形象的各变量变化过程的概念,因此常常难以准确理解和记忆个物理量的变化。 Matlab语言,自1984年问世以来,至今已成为科学计算领域最优秀的科技应用软件,在数学计算、数值分析、数学型号处理、自动控制论等领域得到了广泛的应用,其数据处理的可视化、易于使用和理解等特点受到广大科学工作者的欢迎。本文将通过几个实例,介绍Matlab在电路暂态过程分析中的应用。 运用Matlab进行电路暂态过程分析,编程简便,方法易学,可将用复杂函数表达的推导、计算结果一直观、形象的图像表示出来,便于学生理解和掌握。改方法可推广到电子学其他课程的教学中。

关键字 MATLAB;测试和仿真;图形处理;一阶动态电路特性 一、设计目的及任务 1.1设计目的 利用matlab强大的图形处理功能,符号运算功能和数值计算功能,实现一阶动态电路时域特性的仿真波形。 1.2 设计任务 1、以RC串联电路为例绘出u C (t),u R (t),i(t),p C (t),p R (t)波形,以RL 并联电路的零输入响应为例汇出i L(t),i R(t),u(t),p L(t),p R(t)的波形; 2、以RC串联电路的直流激励的零状态响应为例绘出 u C(t),u R(t),i(t),p C(t),p R(t),p us(t)波形; 3、以RC串联电路的直流激励的全响应为例绘出u C(t),u R(t),i(t)波形,RL并联电路的i L(t),i R(t),u(t)波形; 4、以RC串联电路的正弦激励的零状态响应为例绘出 u C(t),u R(t),i(t),u s(t)波形,RL并联的i L(t),i R(t),u(t),i S(t)波形; 5、以RC串联电路的冲激响应为例绘出u C(t), i(t)波形,RL并联电路的i L(t), u(t)波形; 6、撰写MATLAB课程设计说明书。

大学物理仿真实验(Online版)部署手册

大学物理仿真实验(Online版)部署手册 一、系统环境要求: 1.服务器 ●操作系统 Windows Server 2003 中文版企业版 ●数据库服务器 Microsoft SQL server 2005 中文版 ●.net framework .net framework 3.5 sp1中文版 ●其他 Internet信息服务(IIS)6.0 Microsoft Word 2007中文版, Excel 2007中文版 2.用户机 ●操作系统 Microsoft Windows XP中文版 ●浏览器 Internet Explore 6.0及以上 ●.net framework .net framework 3.5 sp1中文版 二、大学物理仿真实验(Online版)部署方法 1.大学物理仿真实验(Online版)安装 在确保服务器的推荐软件环境后,运行本公司提供的安装程序。安装过程中的相关设置如下: 1)在用户信息输入界面,客户需要输入自己学校完整名称,例如“中国科 学技术大学”,完成后点击“下一步”按钮。

2)在数据库服务器设置页面,用户需要在“数据库服务器”输入框内输入 数据库服务器的IP地址,并选择登陆模式,输入登陆用户名和密码。完成后点击“下一步”按钮。 3)在目标文件夹选择界面,保证上一步输入正确的情况下,用户可选择文 件的存放位置。选择完成后点击“下一步”按钮。

4)其他操作根据程序提示进行,即可完成系统安装。 2.大学物理仿真实验(Online版)服务器Web服务配置 在运行完安装程序后,用户还需要对IIS进行一些设置,并在程序中写入服务器的IP地址。 1)IIS设置: 右键点击我的电脑/管理/服务和应用程序/Internet信息服务,找到由安 装程序建立的站点ExamSystem,右击该站点点击属性。 选择http头,在mine类型中增加: 扩展名:.xaml MIME类型:application/xaml+xml和.xap 扩展名:.xap MIME类型:application/x-silverlight-app

跨学科物理系统建模和仿真工具Simscape.

——跨学科物理系统建模和仿真工具 Simscape 是在 Simulink 基础上的扩展工具模块,用来建立多种不同类型物理系统的建模并进行仿真,例如由机械传动,机构,液压和电气元件构成的系统。Simscape 可以广泛应用于汽车业,航空业,国防和工业装备制造业。 Simscape 同SimMechanics , SimDriveline , SimHydraulics 和 SimPowerSystems 一起,可以支持复杂的不同类型(多学科物理系统混合 建模和仿真。 ?使用统一环境实现多种类型物理系统建模和仿真, 包括机械, 电气和液压系统; ?使用基本物理建模单元构造模型, 并提供了建模所需的模块库和相关简单数学运算单元; ?用户可自己指定参数和变量的单位,模块内部自动实行单位转换和匹配; ?具有连接不同类型物理系统的桥接模块; ?具备扩展产品所建模型的全权仿真和受限编辑功能, 单独运行仿真时无需SimMechannics , SimDriveline 和 SimHydraulics 的产品使用许可。强大功能

在 Simscape 的环境中,用户的建模过程如同装配真实的物理系统。 Simscape 采用物理拓扑网络方式构建模型:每一个建模模块都对应一个实际的物理元器件,例如油泵、马达或者运算放大器;模块之间的连接线代表元件之间装配和能量传递关系。这种建模方式直观的表现出物理系统的组成结构, 而不是用晦涩的数学方程。Simscape 根据模型所表达的系统组成关系, 自动构造出可以计算系统动态特性的数学方程。这些方程可同其他 Simulink 模型一起结合运算。 Simscape 的建模库提供超过 24个电气建模单元, 15个液压建模单元, 23个机械建模单元;这些单元之间可以互相连接,联合建模。这些基本的单元也可以组合起来,构造更加复杂的器件模型。 Simscape 模型中的 Sensor 模块用来测量机械量(力 /力矩,速度,液压量 (压力,流量或电气量(电压,电流,测量输出的信号量可以输出给标准的 Simulink 模块处理。 而 Source 模块能够将标准的 Simulink 信号转换成同等量值的上述物理信号。Sensor 和 Source 模块的使用将 Simulink 控制算法模型同 Simscape 物理网络拓扑模型有机的结合起来, 可实现闭环控制算法开发。 Simscape 的基础建模单元库支持从基本的建模单元组合定制模型元件。?机械系统建模

(完整版)第一章系统仿真的基本概念与方法

第一章控制系统及仿真概述 控制系统的计算机仿真是一门涉及到控制理论、计算数学与计算机技术的综合性新型学科。这门学科的产生及发展差不多是与计算机的发明及发展同步进行的。它包含控制系统分析、综合、设计、检验等多方面的计算机处理。计算机仿真基于计算机的高速而精确的运算,以实现各种功能。 第一节控制系统仿真的基本概念 1.系统: 系统是物质世界中相互制约又相互联系着的、以期实现某种目的的一个运动整体,这个整体叫做系统。 “系统”是一个很大的概念,通常研究的系统有工程系统和非工程系统。 工程系统有:电力拖动自动控制系统、机械系统、水力、冶金、化工、热力学系统等。 非工程系统:宇宙、自然界、人类社会、经济系统、交通系统、管理系统、生态系统、人口系统等。 2.模型: 模型是对所要研究的系统在某些特定方面的抽象。通过模型对原型系统进行研究,将具有更深刻、更集中的特点。 模型分为物理模型和数学模型两种。数学模型可分为机理模型、统计模型与混合模型。 3.系统仿真: 系统仿真,就是通过对系统模型的实验,研究一个存在的或设计中的系统。更多的情况是指以系统数学模型为基础,以计算机为工具对系统进行实验研究的一种方法。 要对系统进行研究,首先要建立系统的数学模型。对于一个简单的数学模型,可以采用分析法或数学解析法进行研究,但对于复杂的系统,则需要借助于仿真的方法来研究。 那么,什么是系统仿真呢?顾名思义,系统仿真就是模仿真实的事物,也就是用一个模型(包括物理模型和数学模型)来模仿真实的系统,对其进行实验研究。用物理模型来进行仿真一般称为物理仿真,它主要是应用几何相似及环境条件相似来进行。而由数学模型在计算机上进行实验研究的仿真一般则称为数字仿真。我们这里讲的是后一种仿真。 数字仿真是指把系统的数学模型转化为仿真模型,并编成程序在计算机上投入运行、实验的全过程。通常把在计算机上进行的仿真实验称为数字仿真,又称计算机仿真。

无人机仿真平台及虚拟测试解决方案

无人机仿真平台及虚拟测试解决方案 概述 近年来无人机在国防和民用领域发展迅速。无人机操控人员的训练、无人 机仿真测试的需求的越来越大。为此,本方案搭建了无人机作战仿真推演平台,该平台能够通过错综复杂的战场仿真来实现进行无人机驾驶员的操控训练,无 人机的智能算法测试,无人机作战性能测试等功能。同时具有功能完善的人机 交互终端和三维视景显示功能。方案介绍1.1 系统架构如下图所示,无人平台仿真平台主要包括四部分内容:作战想定及推演系统、地面站系统、装备仿 真系统(包括无人机系统、有人机系统和其他武器装备系统)、三维视景系统。图中括号内为各子系统中有代表性的货架产品、定制模型和相关硬件平台。系 统各个部分可以通过实时网络进行数据传输。无人装备仿真平台系统组成1.2 系统功能1.2.1 作战想定生成及推演系统作战想定生成及推演系统以Presagis 公司战场仿真推演平台软件STAGE 为核心,可生成作战环境、集成武器装备 模型、植入无人机智能算法、编辑作战想定、完成战场推演功能。1.2.1.1 作战想定生成系统作战想定生成系统包括作战兵力生成和作战任务部署两个部分。 作战兵力生成:主要完成战场中兵力的生成和部署,为整个测试环境提供敌、我、临、指四方面的兵力部署情况以及传感器、武器携带情况,主要由 STAGE 的兵力模型编辑部分完成。?作战兵力设置:STAGE 提供大量作战实体的数学模型,并可以根据需要对这些参数进行设置,自定义武器装备。如果 自带模型不能满足要求,可以接入第三方的细粒度模型或接入半实物仿真系统;?作战兵力布署:根据作战想定对作战实体进行布置。可以精确地布置实体的位置,如设置飞机的坐标、朝向等,也可以在指定区域按一定规则随机布置兵力,如地面防空导弹阵地、地面雷达阵地。

相关主题
文本预览
相关文档 最新文档