当前位置:文档之家› “斐波那契数列”的两种算法

“斐波那契数列”的两种算法

“斐波那契数列”的两种算法
“斐波那契数列”的两种算法

斐波那契数列”的两种算法

斐波那契数列有个规律:从第三个数开始,每个数是前两个数之和,比如:1 1 2 3 5 8 13 21 34 55......

现在通过两种方式(递归与非递归)算数列中第N个值,代码如下:

public class Fib {

public static void main(String[] args) {

System.out.println(f(20));

System.out.println(fx(20));

}

//递归方式

public static int f(int n) {

//参数合法性验证

if (n < 1) {

System.out.println("参数必须大于1!");

System.exit(-1);

}

if (n == 1 || n == 2) return 1;

else return f(n - 1) + f(n - 2);

}

//非递归方式

public static intfx(int n) {

//参数合法性验证

if (n < 1) {

System.out.println("参数必须大于1!");

System.exit(-1);

}

//n为1或2时候直接返回值

if (n == 1 || n == 2) return 1;

//n>2时候循环求值

int res = 0;

int a = 1;

int b = 1;

for (inti = 3; i<= n; i++) {

res = a + b;

a = b;

b = res;

}

return res;

}

}

斐波那契数列资料

斐波那契数列

斐波那契数列 一、简介 斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展。故斐波那契数列又称“兔子数列”。 斐波那契数列指这样的数列:1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字。这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2. 兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子。按此规律,并假定兔子没有死亡,10个月后共有多少个兔子? 这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项。 二、性质 如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理。那么下面我们就通过初等代数的待定系数法计算出通项公式。 令常数p,q满足F n-pF n-1=q(F n-1-pF n-2)。则可得: F n-pF n-1=q(F n-1-pF n-2) =q2(F n-2-pF n-3) =…=q n-2(F2-pF1) 又∵F n-pF n-1=q(F n-1-pF n-2) ∴F n-pF n-1=qF n-1-pqF n-2 F n-1+F n-2-pF n-1-qF n-1+pqF n-2=0 (1-p-q)F n-1+(1+pq)F n-2=0 ∴p+q=1,pq=-1是其中的一种方程组 ∴F n-pF n-1= q n-2(F2-pF1)=q n-2(1-p)=q n-1 F n=q n-1+pF n-1=q n-1+p(q n-2+p(q n-3+…))=q n-1+pq n-2+p2q n-3+…+p n-1 不难看出,上式是一个以p/q为公比的等比数列。将它用求和公式求和可以得到: 而上面出现了方程组p+q=1,pq=-1,可以得到p(1-p)=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+0.25=1.25,(p-0.5)2=1.25,p=±√1.25+0.5。随意取出一组解即可: 这就是著名的斐波那契数列通项公式。有了它,斐波那契数列的一些性质 也不难得出了。比如斐波那契数列相邻两项的比值趋向于黄金分割比,即:

数列通项公式方法大全很经典精品

【关键字】方法、关键、关系、满足 1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以122 2 a 1 1==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故

数列的极限、数学归纳法

数列的极限、数学归纳法 一、知识要点 (一) 数列的极限 1.定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数ε,都能在数列中找到一项a N ,使得当n>N 时,|an-A|<ε恒成立,则称常数A 为数列{a n }的极限,记作 A a n n =∞ →lim . 2.运算法则:若lim n n a →∞ 、lim n n b →∞ 存在,则有 lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ±=±;lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ?=? )0lim (lim lim lim ≠=∞→∞ →∞→∞→n n n n n n n n n b b a b a 3.两种基本类型的极限:<1> S=?? ???-=>=<=∞ →)11() 1(1) 1(0lim a a a a a n n 或不存在 <2>设()f n 、()g n 分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为p a 、 p b 且)(0)(N n n g ∈≠,则??? ????>=<=∞→)()() (0)()(lim q p q p b a q p n g n f q p n 不存在 4.无穷递缩等比数列的所有项和公式:1 1a S q = - (|q|<1) 无穷数列{a n }的所有项和:lim n n S S →∞ = (当lim n n S →∞ 存在时) (二)数学归纳法 数学归纳法是证明与自然数n 有关命题的一种常用方法,其证题步骤为: ①验证命题对于第一个自然数0n n = 成立。 ②假设命题对n=k(k ≥0n )时成立,证明n=k+1时命题也成立. 则由①②,对于一切n ≥ 0n 的自然数,命题都成立。 二、例题(数学的极限)

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

专题12数列极限数学归纳法

专题三 函数 不等式 数列 极限 数学归纳法 一能力培养 1,归纳猜想证明 2,转化能力 3,运算能力 4,反思能力 二问题探讨 1 冋题1数列{ a n }满足3] , a i a 2 2 问题2已知定义在R 上的函数f(x)和数列{ a n }满足下列条件: a 1 a , a . f (a n 1) (n =2,3,4, ),a 2 印, f (a n ) f (a n 1) = k(a n a n 1) (n =2,3,4,),其中 a 为常数,k 为非零常数 (I) 令b n a n 1 a n ( n N ),证明数列{b n }是等比数列; (II) 求数列{ a n }的通项公式;(III)当k 1时,求 lim a n . n umv uuuv uuuv uuuv uuuiv uuv 问题3已知两点M ( 1,0) ,N (1,0),且点P 使MP MN , PM PN , NM NP 成公差小 于零的等差数列? uuuv uuuv (I)点P 的轨迹是什么曲线? (II)若点P 坐标为(X g , y 。),记 为PM 与PN 的夹角,求tan 2 a n n a n ,(n N ). (I)求{a n }的通项公式 (II)求丄 100n 的最小值; a n (III)设函数 f(n)是— 100n 与n 的最大者,求 f (n)的最小值.

三习题探讨 选择题 2 1数列{a n }的通项公式a n n kn ,若此数列满足a n a n ,(n N ),则k 的取值范围是 A, k 2 B, k 2 C,k 3 D, k 3 2等差数列{ a n },{ b n }的前n 项和分别为S n ,T n ,若」 --- ,贝V —= T n 3n 1 b n 2 2n 1 2n 1 2n 1 A,— B,- C,- D,- 3 3n 1 3n 1 3n 4 3已知三角形的三边构成等比数列 ,它们的公比为q ,则q 的取值范围是 若AF , BF , CF 成等差数列,则有 1 6在 ABC 中,ta nA 是以4为第三项,4为第七项的等差数列的公差,ta nB 是以-为 3 第三项,9为第六项的等比数列的公比,则这个三角形是 A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空 2m 项之和S 2m ___________________________________ 11等差数列{a n }中,S n 是它的前n 项和且S 6 S 7,S 7 S 8,则①此数列的公差 d 0, 1苗 A, (0, 丁) B,(1 5 1 、5 1 、、 5 c,[1, 丁) D,( 1_5) 2 4在等差数列{a n }中,a 1 8 B ,75 1 ,第10项开始比1大,记 25 t 色 25 4 C , 75 [ im A (a n n n _3 50 S n ) t ,则t 的取值范围是 4 D ,75 t 5o 5 设 A (x i , y i ),B (X 2, y 2),C (X 3, y 3)是椭圆 2 y b 2 1(a 0)上三个点 ,F 为焦点, A, 2X 2 X ] x 3 B,2y 2 y 1 y 3 2 C,— X 2 2 D, X X 1 X 3 X 1 X 3 7等差数列{a n }前n (n 6)项和& 324,且前6项和为36,后6项和为180,则n 22 32 23 33 62 63 {a n }中』m(a 1 a ? 10 一个数列{a n },当n 为奇数时,a . 9在等比数列 2n 3n 6n ,则 lim S n 1 a n ) ,则a 1的取值范围是 ________________ 15 n 5n 1 ;当n 为偶数时,a n 22 .则这个数列的前

斐波那契数列的通项公式推导解析

斐波那契数列的通项公式推导 山西省原平市原平一中任所怀 做了这些年的数学题,我时常有这样的感受。一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。 下面我们就由递推推导通项的问题,进行对比分析。 例1在数列中,,求数列的通项。(普通高中课程标准实验教科书人教A版必修5第69页6题) 分析:此题可分两步来进行,首先由构造一个等比数列,其中 ,并写出的通项;然后利用,两边同除以得 ,由累加法,就可求出数列的通项。 解:( 设,则()所以数列为等比数列,且首项为 ,公比为3。所以。 于是有,两边都除以得 设,则有 由累加法可得

因为所以() 于是有。 总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。 下面我们来研究一下著名的斐波那契数列的通项。 已知数列,其中,,求数列的通项。 解:首先我们要构造一个等比数列,于是设 则有。(1) 则由已知得(2) 对照(1)(2)两式得解得或。 我们取前一解,就会有。 设,则有 所以数列为等比数列,首项为,公比为

所以。即(3) 再次构造等比数列,设 则有 对照(3)式,可得所以 x=. 于是有 设,则有数列为等比数列,首项为,公比为,于是= 所以有。

数列通项公式方法大全

数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是 以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法

数列极限数学归纳法综合能力训练

1 mn 4(m n) mn 2(m n) 【综合能力训练】 一、选择题 1?数列{a n }是等比数列,下列结论中正确的是( ) A. a n ? a n+1 >0 B. a n ? a n+1 ? a n+2>0 C. a n ? a n+2 >0 D. a n ? a n+2 ? a n+4>0 2.在等比数列{a n }中,a 1=sec 0 ( B 为锐角),且前n 项和S n 满足lim S n = ,那么B 的 n a 1 取值范围是( ) A. (0, ) B. (0, ) C. (0, ) D. (0, 2 3 6 4 3.已知数列{a n }中,a n =p^ (n € N ),则数列{a n }的最大项是( ) n 156 A.第12项 B.第13项 C.第 项或13 . D.不存在 4.三个数成等差数列,如果将最小数乘 2,最大数加上 7,所得三数之积为 1000,且成 等比数列,则原等差数列的公差一定是( ) A.8 B.8 或—15 C. ± 8 D. ± 15 112 1 2 3 1 2 9 1 5.已知数列{a n }: , + , + +-, + + …+ ” , ... 那么数列{ 2 3 3 4 4 4 10 10 10 a n ?a n 1 的所有项的和为( ) A.2 B.4 C.3 D.5 n 1 | n n 1 . n 6.已知a 、b € —?a -> lim n ,贝V a 的取值范围是( ) n a n a A. a>1 B. — 11 D.a>1 或一1O ,且 |a 10|<|an|, S n 为其前 n 项之和, 则() A. S 1,S 2,…, S 10都小于零,S 11, S 12, …都大于零 B. S 1,S 2,…, S 5都小于零,S 6, S 7,… 都大于零 C. S 1,S 2,…, S 19都小于零,S 20, S 21 , …都大于零 D. S 1,S 2,…, S 20都小于零,S 21 , S 22 , …都大于零 9.将自然数1, 2, 3,…,n ,…按第k 组含k 个数的规则分组: (1), (2, 3), (4, 5, 6),…,那么1996所在的组是( ) A.第62组 B.第63组 C.第64组 D.第65组 10.在等差数列中,前 n 项的和为S n ,若 S m =2n,S n =2m,(m 、 n € N 且m ^ n ),则公差d 的 值为( )

求数列通项公式方法大全

求数列通项公式的常用方法 类型1、()n n S f a = 解法:利用???≥???????-=????????????????=-)2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去 n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例 1 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式? 1n n S a =-,∴ 111n n n n n a S S a a +++=-=-,∴ 112n n a a +=,又112a =,12n n a ??= ??? . 变式 1. 已知数列{}n a 中,3 1 1= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,求n a 变式2. 已知数列}{n a 的前n 项和为n S ,且满足322-=+n a S n n )(*N n ∈. 求数列}{n a 的通项公式 变式3. 已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列. 求数列{}a n 的通项公式; 变式4. 数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .求数列{}n a 的通项n a 变式5. 已知数列}{n a 的前n 项和为n S ,且满足322-=+n a S n n )(*N n ∈. 求数列}{n a 的通项公式; 变式6. 已知在正整数数列}{n a 中,前n 项和n S 满足2 )2(81+=n n a S (1)求证:}{n a 是等差数列 (2)若n b 3021 -=n a ,求}{n b 的前n 项 和的最小值

数列、极限、数学归纳法 归纳、猜想、证明 教案

数列、极限、数学归纳法·归纳、猜想、证明·教案 张毅 教学目标 1.对数学归纳法的认识不断深化. 2.帮助学生掌握用不完全归纳法发现规律,再用数学归纳法证明规律的科学思维方法. 3.培养学生在观察的基础上进行归纳猜想和发现的能力,进而引导学生去探求事物的内在的本质的联系.教学重点和难点 用不完全归纳法猜想出问题的结论,并用数学归纳法加以证明. 教学过程设计 (一)复习引入 师:我们已学习了数学归纳法,知道它是一种证明方法.请问:它适用于哪些问题的证明? 生:与连续自然数n有关的命题. 师:用数学归纳法证明的一般步骤是什么? 生:共有两个步骤: (1)证明当n取第一个值n0时结论正确; (2)假设当n=k(k∈N,且k≥n0)时结论正确,证明当n=k+1时,结论也正确. 师:这两个步骤的作用是什么? 生:第(1)步是一次验证,第(2)步是用一次逻辑推理代替了无数次验证过程. 师:这实质上是在说明这个证明具有递推性.第(1)步是递推的始点;第(2)步是递推的依据.递推是数学归纳法的核心.用数学归纳法证题时应注意什么? 生:两个步骤缺一不可.证第(2)步时,必须用归纳假设.即在n=k成立的前提下推出n=k+1成立.师:只有这样,才能保证递推关系的存在,才真正是用数学归纳法证题. 今天,我们一起继续研究解决一些与连续自然数有关的命题.请看例1. (二)归纳、猜想、证明 1.问题的提出 a3,a4,由此推测计算an的公式,然后用数学归纳法证明这个公式. 师:这个题目看起来庞大,其实它包括了计算、推测、证明三部分,我们可以先一部分、一部分地处理.(学生很快活跃起来,计算工作迅速完成,请一位同学口述他的计算过程,教师板演到黑板上) 师:正确.怎么推测an的计算公式呢?可以相互讨论一下.

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

详解由递推公式求斐波那契数列的通项公式

详解由递推公式求斐波那契数列的通项公式 武汉市黄陂区第四中学 蔡从江 斐波那契数列的递推公式是121==a a ,11-++=n n n a a a (2≥n 且N n ∈),那么它的通项公式是怎样的呢?不少同学经常问到这个问题。 下面详细解答用待定系数法构造过渡数列求其通项公式。 由递推公式11-++=n n n a a a ,可设)(11-++=+n n n n a a a a λμλ,比较得1=-λμ且1=μλ,即012=-+λλ,解得251±-= λ。若251+-=λ,则251+=μ;若251--=λ,则2 51-=μ。 先以2 51+-=λ,251+=μ求解, 此时)2)(2 15(21521511≥-++=-+-+n a a a a n n n n , 所以)2()215()215()215(2151211≥+=-++=-+ -+n a a a a n n n n , 即)2()2 15(2511≥++-=+n a a n n n , 再另)2]()215([251)215( 11≥+--=+-++n x a x a n n n n 即n n n x x )2 15()215(215)215(1+=+-+++, 所以12 15215=-++x x 即55=x , 所以 ])215(55[251)215(5511n n n n a a +--=+-++, )2]()2 15(551[)251()215(552111≥+--=+--++n a n n n ,

所以)2]()2 15(551[)251()215(552111≥+--=+--++n a n n n , )2]()251()251[(5 1])215(551[)251()215(55112111≥--+=+--++=++-++n a n n n n n 所以)3]()251()251[(5 1≥--+=n a n n n , 又121==a a 适合上式,故 *)]()251()251[(51N n a n n n ∈--+=, 同理可得251--=λ,2 51-=μ时,*)]()251()251[(51N n a n n n ∈--+=, 因此斐波那契数列的通项公式是 *)]()251()251[(51N n a n n n ∈--+=

课时考点数列极限数学归纳法

课时考点数列极限数学 归纳法 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

课时考点6 数列、极限、数学归纳法 考纲透析 考试大纲: 数学归纳法,数列的极限,函数的极限,极限的四则运算,函数的连续性。 高考热点: 数学归纳法,数列的极限 1专题知识整合 1.无穷递缩等比数列(q ?0,|q |<1)各项和1 1a S q = - 2.归纳法证猜想的结论,用数学归纳法证等式和不等式。 3.含有n 的无理式,如lim n →∞ 需分子有理化,转化为 0n = 4.指数型,如111lim n n n n n a b a b +++→∞-+,分子、分母同除以|a|n +1或|b|n +1转化为求lim n n q →∞ 热点题型1:数列与极限 样题1: (05全国卷II)已知{a n }是各项均为正数的等差数列,lga 1、lga 2、lga 4成等差数列.又21 n n b a = ,n=1,2,3,…. (Ⅰ)证明{b n }为等比数列; (Ⅱ)如果无穷等比数列{b n }各项的和1 3 S =,求数列{a n }的首项a 1和公差d . (注:无穷数列各项的和即当n ??时数列前n 项和的极限) 解:(Ⅰ)设数列{a n }的公差为d ,依题意,由 2142lg lg lg a a a =+ 得 2214a a a =

即)3()(1121d a a d a +=+,得d =0 或 d =a 1 因 1 221 +=+n n a a b b n n ∴ 当d =0时,{a n }为正的常数列 就有 11 221 ==++n n a a b b n n 当d =a 1时,1112112)12(,)12(1a a a a a a n n n n -+=-+=++,就有 1221+= +n n a a b b n n 2 1 = 于是数列{b n }是公比为1或 2 1 的等比数列 (Ⅱ)如果无穷等比数列{b n }的公比q =1,则当n →∞时其前n 项和的极限不存在。 因而d =a 1≠0,这时公比q =21,11 2b d = 这样{b n }的前n 项和为11[1()] 22112 n n d S -=- 则S=11[1()] 122lim lim 112 n n n n d S d →+∞→+∞-==- 由1 3 S =,得公差d =3,首项a 1=d =3 变式题型1 设数列{a n }是等差数列,a 1=1,其前n 项和为S n ,数列{b n }是等比数列,b 2=4, 其前n 项和为T n . 又已知lim n →∞ T n =16,S 5=2T 2+1.求数列{a n }、{b n }的通项公式。 样题2: (05天津)已知:u n =a n +a n -1b+a n -2b 2+…+ab n -1+b n (n ?N*,a >0,b >0)。 (Ⅰ)当a = b 时,求数列{a n }的前n 项和S n ; (Ⅱ)求1 lim n n n u u →∞-。 解:(I )当a = b 时,u n =(n+1)a n ,它的前n 项和 ()232341n n S a a a n a =+++++ ① ①两边同时乘以a ,得 ()23412341n n aS a a a n a +=+++ ++ ②

数列通项公式求法大全(配练习及答案)

数列通项公式的几种求法 注:一道题中往往会同时用到几种方法求解,要学会灵活运用。 一、公式法 二、累加法 三、累乘法 四、构造法 五、倒数法 六、递推公式为n S 与n a 的关系式(或()n n S f a = (七)、对数变换法 (当通项公式中含幂指数时适用) (八)、迭代法 (九)、数学归纳法 已知数列的类型 一、公式法 *11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 已知递推公式 二、累加法 )(1n f a a n n +=+ (1)()f n d = (2)()f n n = (3)()2n f n =

例 1 已知数列{} n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。(3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ (1)()f n d = (2)()f n n =, 1 n n +,2n 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 13211221 n n n n a a a a a a a a a ---?????L ,即得数列{}n a 的通项公式。 例4 (20XX 年全国I 第15题,原题是填空题) 已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。(! .2 n n a = ) 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 132122 n n n n a a a a a a a ---????L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

高三数学 教案 斐波那契数列通项公式推导过程

斐波那契数列 斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。 定义 斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........ 自然中的斐波那契数列 这个数列从第3项开始,每一项都等于前两项之和。 斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契,生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。 通项公式 递推公式 斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2) 显然这是一个线性递推数列。 通项公式

最新10.数学归纳法,数列极限

10.数学归纳法,数列 极限

第10讲数学归纳法、数列极限 一、知识要点 1.数学归纳法及其证明步骤 2.数列极限 3.数列极限的四则运算性质 4.无穷数列的各项和 二、经典例题 1.数学归纳法 例1.用数学归纳法证明: (1)?Skip Record If...? (2)设?Skip Record If...?,证明对一切?Skip Record If...?的自然数,等式 ?Skip Record If...?均成立 例2.?Skip Record If...?,用数学归纳法证明: (1)?Skip Record If...?能被13整除 (2)?Skip Record If...?能被9整除 例3.(1)数列?Skip Record If...?满足?Skip Record If...?,猜想并证明?Skip Record If...?的一个通项公式 (2)数列?Skip Record If...?的前?Skip Record If...?项和为?Skip Record If...?, 当?Skip Record If...?时,?Skip Record If...?,求?Skip Record If...?,并求证 ?Skip Record If...?是等比数列

2.数列的极限 例4.求下列各个数列极限 (1)?Skip Record If...? (2)?Skip Record If...? (3)?Skip Record If...? 例5.求下列各个数列极限 (1)?Skip Record If...? (2)?Skip Record If...? 例6.求下列各个数列极限: (1)?Skip Record If...? (2)?Skip Record If...? 例7.计算:(1)?Skip Record If...? (2)?Skip Record If...? (3)?Skip Record If...? (4)?Skip Record If...?

数列通项公式方法大全很经典 - 副本

1,数列通项公式的几种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是 以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法

不等式数列极限数学归纳法复习资料

不等式、数列、极限与数学归纳法 湖南省常德市一中曹继元 不等式、数列是高中数学的主干知识,也是高考的重点内容之一,每年都有与此相关的大题。其中,选择题和填空题一般以考查基础知识、基本方法为主,而解答题以考查数学思想方法、思维能力、以及创新意识为主。总体看来,本节内容对运算能力和逻辑推理能力有较高的要求。预测今年高考关于这一部分的内容, 仍然是以考能力为主,稳中有变,“小”中有新。与往年一样,可能出现基本题型、综合题型、应用题型等,个别题型还将会命出新意,把不等式、数列知识和现实生活、市场经济、理化生知识等紧密结合起来,甚至还会出现有较新创意的应用型题目。因此,我们必须引起高度重视。 1.不等式. 1.1 近三年湖南省高考考查情况统计

1.2 近三年考查情况分析 从近三年的高考湖南卷来看,虽然每年都有几道不等式的题,但大都是将不等式融入其它知识之中。一般来讲,选择题、填空题主要考查不等式性质、简单不等式的解法、函数最值的运用。解答题主要考查与不等式有关的基础知识、基本方法,以及运用相关知识去分析问题和解决问题的能力。 不等式作为工具知识,在高中数学的各个分支中都有广泛的应用。如确定函数的定义域、值域,确定函数的最值,确定集合的子集关系,确定方程的解等,无一不与不等式有着密切的关系。而不等式中往往蕴含有多种数学思想方法,如等价转化、分类讨论、数形结合、函数方程的思想方法,极易使得不等式与其它知识融会交融,体现“在知识交汇处设计命题”的特点,符合“多考一点想,少考一点算”的命题理念,也能有效的测试考生的“逻辑思维能力、运算能力、以及分析问题和解决问题的能力”。所以,我们复习时,要以此为重点,强化训练,提高能力。 1.3 今年考情预测 ①不等式仍将是高考数学的重点内容之一。选择题、填空题的难度不会增大,重在基础知识、基本方法的考查,但命题角度会有所变化,设问方式会有所创新,考查内容主要分布在不等式的性质、简单不等式的解法、不等式与集合、不等式与函数、不等式与方程等知识点中。解答题仍将以能力考查为主,重在考查代数推理能力,常以高中代数的主要内容(函数、方程、不等式、数列、导数、极限、数学归纳法)以及交叉综合内容为知识背景设计问题,主要考查含参数不等式的解法、均值不等式的运用、取值范围的求法等知识点,不排除应用题中直接涉及不等式相关知识的可能。 ②以不等式为中心设计函数、方程、不等式的综合题的可能性仍然较大,特别是含绝对值

用初等数学方法求斐波那契数列的通项公式

用初等数学方法求斐波那契数列的通项公式 斐波那契 (Fibonacci) 数列是着名的数列,有很高的实用价值。多年来,学者们一直在探究它的通项公式的求解方法,已经涌现出了多种方法。但据笔者们所知,这些方法大都需要比较高深的数学知识,例如组合数学的方法、概率的方等等,让人比较难理解,不容易接受。基于此,研究给出了一种简易的初等数学方法,先探求它们的特征多项式,然后通过求解线性方程组的思想,得出它们的通项公式。这种方法深入浅出,有一定的实用价值。 1.斐波那契数列的由来 13 世纪意大利数学家斐波那契在他的《算盘书》的修订版中增加了一道着名的兔子繁殖问题. 问题是这样的: 如果每对兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同),每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子.假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12 个月以后会有多少对兔子呢解释说明为:一个月:只有一对兔子;第二个月:仍然只有一对兔子;第三个月:这对兔子生了一对小兔子,共有1+1=2 对兔子.第四个月:最初的一对兔子又生一对兔子,共有2+1=3对兔子.则由第一个月到第十二个月兔子的对数分别是:1,1,2,3,5,8,13,21,34,55,89,144,……,人为了纪念提出兔子繁殖问题的斐波纳契,将这个兔子数列称为斐波那契数列,即把 1,1,2,3,5,8,13,21,34…这样的数列称为斐波那契数列。 2.斐波那契数列的定义 定义:数列F1,F2,… ,Fn,…如果满足条件121==F F ,21--+=n n n F F F (对所有的正整数n ≥ 3),则称此数列为斐波那契(Fibonacci)数列。

相关主题
文本预览
相关文档 最新文档