当前位置:文档之家› 闪烁探测器 练习题

闪烁探测器 练习题

闪烁探测器 练习题
闪烁探测器 练习题

1.闪烁探测器是利用________________在核辐射的作用下会发光的特性探测辐射的,光电

器件将微弱的闪烁光转变为______,经过多次倍增放大后,输出一个______。

2.无机闪烁体的特点是:对带电粒子的阻止本领__(大或小),时间相应__(快或慢),发

光效率__(高或低),能量线性相应__(好或差)。

3.发光效率C发光与光输出S成______(正比或反比)关系。

4.对于有机闪烁体而言,发光衰减时间有快、慢两种成分,其衰减规律表达式为:_________.

5.同一种有机闪烁体下发光曲线中慢成分的强度主要与入射核辐射的粒子______(能量或

种类)相关。

6.__________是用来描述光在闪烁体中的传输情况,标志着闪烁体所能使用的最大尺度的

一个量。

7.能量响应是表示____________与____________之间的关系,其理想的曲线是______(正态

分布、泊松分布或线性的)。

8.核辐射测量中经常用到NaI(Tl)探测γ射线,其中测量β辐射和中子选用____________,

也可以选用____________,测量α辐射一般选用____________,测量低能X射线和高能γ射线选用____________。(BGO闪烁体,塑料闪烁体,有机液体闪烁体,ZnS(Ag)闪烁体)

9.光学收集系统主要包括______,______和______。其中______可以减少光在交界面的全

反射,使光有效的传输到光电倍增管的阴极;______能够把闪烁体中各个方向发射的光有效的发射到光电倍增管的阴极上。

10.

上图是闪烁探测器的输出信号的过程示意图,请依照正确组成填写空白处。(闪烁体;

光电倍增管;前置放大器;阳极;放大器;直流偏压;光阴极;打拿级;)

11.NaI闪烁体探测器对于β和γ射线的平均电离能为______;半导体探测器Si和Ge的平

均电离能为______;气体探测器中气体的平均电离能为_______。(2eV,3eV,20eV,30eV,200eV,300eV)。

12.闪烁探测器从核辐射进入闪烁体到输出电压脉冲经历了一系列过程,其中间过程按照正

确的时间顺序为:__________________________,其中时间分辨是探测器对两组相继发生的事件的最小时间间隔,造成时间分辨的因素是时间的离散,那么时间离散的主要因素是______过程。

A:闪烁光子从发光地点到达光阴极的时间;

B:辐射粒子或引起的次级电子在闪烁体中耗尽能量的时间;

C:阳极收集电荷在输出回路上输出脉冲电压;

D:光电子的渡越时间;、

13. γ射线能谱中,单逃逸峰比双逃逸峰显著的是________;双逃逸峰比单逃逸峰显著的是

________;(康普顿仪;HPGe探测器;NaI闪烁体)

14. 反散射峰是由放射源γ射线与探测器中的________发生康普顿散射时,反散射的光子进入探测器发生________形成的。其能量总是在__________KeV范围内出现。

15. 碘逃逸峰是γ射线在NaI中发生光电效应是产生的,该峰对应的能量总是比入射能量小_______KeV.

16. 单逃逸峰和双逃逸峰是由于发生__________作用产生的,其能量相对于入射γ射线能量分别为______eV和_______eV。

17. 理想的闪烁体具有什么特点?

经典闪烁体探测器原理.docx

闪烁体探测器原理 闪烁体探测器(Scintillation Detector )是利用电离辐射在某些物质中产生的闪光来进行探测的,也是目前应用最多、最广泛的电离辐射探测器之一。 入射辐射射入闪烁体并在闪烁体中损耗能量,引起闪烁体原子的电离和激发,受激电子会激发出可见光; 光子经过光传输过程打在光电倍增管光阴级上发生光电效应产生光电子; 光电子的光电倍增管内倍增,最后电子经阳级进入信号处理电路,形成电脉冲信号,被电子学仪器记录下来。 1K PL qeME Q neME U C h C C εν= ==, 1K PL q N n h E εν==式中,是入射粒子单位能量产生的光电子数。

(4)光阴极吸收光子发射光电子。光电转换率为ε,从阴极到倍增系统中的第一打拿极的传输系数为q ,则光阴极发射并到达第一打拿极的光电子数为'N qR ε=。 (5)光电子在倍增管中倍增,最后到阳极形成电压脉冲。设光电的倍增系数为M ,则在输出端得到MN 个电子,相应的脉冲电荷Q=Emn ,如果它们被全部输出到电容C 收集,则形成一个电压脉冲U 。 (6)这个脉冲通过成形后由射极跟随器或前置放大器输出,被电子学仪器分析记录。 闪烁体探测器的输出脉冲的幅度与入射粒子能量成正比,选择光产额(一定数量的入射粒子所能产生的光子数)大的晶体,提高光收集系数L (要求闪烁体的发射光谱和吸收光谱的重合部分尽量少,同时为减少在闪烁体和倍增管界面上光的损失,常在它们中间加光导或光耦合剂),提高光阴极的光电转换效率ε、电子传输系数q 和光电倍增管的放大倍数M ,都可以使脉冲幅度增大。 闪烁体基本特性 1.发光效率 表征闪烁体将吸收的粒子能量转化为光的本领。常用光输出强度和能量转换效率来表示。光输出强度S 定义:在一次闪烁过程中产生的光子数目R 和带点粒子在闪烁体内损失的能量之比。 ()/'R S MeV E = 光子数 能量转换效率P 定义:在一次闪烁过程中产生的光子总能量和带电粒子损失的能量之比。 ()00' Rh P Sh E νν==

双鉴红外探测器工作原理

微波—被动红外复合的探测器,它将微波和红外探测技术集中运用在一体。在控制范围内,只有二种报警技术的探测器都产生报警信号时,才输出报警信号。它既能保持微波探测器可靠性强、与热源无关的优点又集被动红外探测器无需照明和亮度要求、可昼夜运行的特点,大大降低探测器的误报率。这种复合型报警探测器的误报率则是单技术微波报警器误报率的几百分之一。简单的说,就是把被动红外探测器和微波探测器做在了一起,主要是提高探测性能,减少误报。除此之外,市场上也有把微波和主动红外、振动探测器、声音探测器等组合的产品,大家可参考说明书了解。 被动红外探测技术是一探测人体红外辐射与背景物体(墙、家具、树木、地形等)红外辐射相比较而产生的差异部分依据的,背景红外辐射量往往是微弱而稳定的。入侵者(包括各种动物在内)的红外辐射量往往是大的,可以引起警报信号。如果只用一种技术进行探测,各种动物(如狗、猫、老鼠等)及各种非动物的红外辐射源(如暖气、强灯光、太阳光等)往往也会引起警报的,这种报警是符合工作原理的,专门从事双技术探测器研究的科研人员,将微波探测技术和被动红外探测技术组合在一个机壳里构成一种入侵探测器。组成的这种双技术探测器,都选用了不同的工作原理的两种技术组合在一起,使从工作原理上无法避免的误报警的到了抑制。因为双技术探测器要求两种技术都提供报警信息时,才提供一个触发报警信息。其中任何一种提供报警信息,都不触发报警。因此使误报问题得到有效的控制,同时也扩大了探测器的使用范围 微波红外复合探测器的内部结构 下图中是一款有线红外微波复合探测器,其中最上端部分为信号接收、信号处理、信号输出部分;中间为微波探测,下端为红外探测;

闪烁探测器实验报告及数据处理

深圳大学实验报告课程名称:近代物理实验 实验名称:γ射线的吸收与物质吸收系数μ的测定学院:物理科学与技术学院 专业:物理学班级:08 指导教师:陈羽 报告人:学号: 实验地点S223 实验时间: 实验报告提交时间:

一、实验目的: 1、了解γ射线与物质相互作用的特性。 2、了解窄束γ射线在物质中的吸收规律,测量其在不同物质中的吸收系数。 二.实验内容: 1、测量137Cs的γ射线(取0.661MeV光电峰)在一组吸收片(铅、铝)中的吸收曲线, 并用最小二乘原理拟合求线性吸收系数。 2、测量60Co的γ射线(取1.17、1.33MeV光电峰或1.25MeV综合峰)在一组吸收片 (铅、铝)中的吸收曲线,并用最小二乘原理拟合求线性吸收系数。 3、根据已知一定放射源对一定材料的吸收系数来测量该材料的厚度。 三、实验原理: 1、γ吸收装置原理 做γ射线吸收实验的一般做法是如上图(a)所示,在源和探测器之间用中间有小圆孔的铅砖作准直器。吸收片放在准直器中间,前部分铅砖对源进行准直;后部分铅砖则滤去γ射线穿过吸收片时因发生康普顿散射而偏转一定角度的那一部分射线。这样的装置体积比较大,且由于吸收片前后两个长准直器使放射源与探测器的距离较远,因此放射源的源强需在毫居里量级。但它的窄束性、单能性较好,因此只需闪烁计数器记录。 本实验中,在γ源的源强约2微居里的情况下,由于专门设计了源准直孔(φ 3 12mm),基本达到使γ射线垂直出射;而由于探测器前有留有一狭缝的挡板,更主 要由于用多道脉冲分析器测γ能谱,就可起到去除γ射线与吸收片产生康普顿散射影响的作用。因此,实验装置就可如上图(b)所示,这样的实验装置在轻巧性、直观性及放射防护方面有前者无法比拟的优点。 2、γ射线的三种基本作用 (1)光子(γ射线)会与下列带电体发生相互作用: ①被束缚在原子中的电子; ②自由电子(单个电子); ③库仑场(核或电子的); ④核子(单个核子或整个核)。 (2)这些类型的相互作用可以导致下列三种效应中的一种: ①光子的完全吸收;②弹性散射;③非弹性散射。 从理论上讲,γ射线可能的吸收和散射有12种过程,但在从约10KeV到约10MeV 范围内,大部分相互作用产生下列过程中的一种:

各类探探测器优劣比较

三大类探测器比较(闪烁体、半导体、电离室) (闪烁体)碘化钠探头:他的激活剂是(TI),对γ射线,当能量大于150keV时响应是线性的;对质子和电子,线性响应范围很宽,光输出和能量的关系接近通过原点的直线,仅在能量低于几百keV(对电子)和(1~2)MeV(对质子)时才偏离直线;对α粒子,能量大于4~5MeV后近似线性,但其直线部分延长不过原点。因此测量α粒子(或其他重粒子)时,比须进行能量校准。NaI(TI)烁体的主要优点是密度大,原子序数高,因而对γ射线探测效率高。另外它的发光效率高,因而能量分辨率也较好。它的缺点是容易潮解,因此使用必须密封。 碘化铯探头:CsI(TI)碘化铯是另一种碱金属卤化物,作为闪烁体材料常用铊或纳作激活剂。铊的能量线性与碘化钠的接近,能量分辨率比碘化钠的差一些。碘化铯的密度和平均原子序数比碘化钠更大,因此对γ射线的探测效率也更高。与碘化钠相比,碘化铯的机械强度大,易于加工成薄片或做成极薄的蒸发薄膜。此外,它不易潮解,也不易氧化。但若暴露在水或高湿度环境中它也会变质。碘化铯的主要缺点是光输出比较低,原材料价格较贵。 锗酸铋探头:与碘化钠(TI)同体积时,探测效率比碘化钠的高的多。对0.511MeV γ光子,与NaI(TI)、CsF、和Ge半导体、塑料闪烁体相比,锗酸铋(BGO)有最大的效率和最好的信噪比。BGO主要用于探测低能x射线、高能γ射线以及高能电子。在低能区(<<0.5MeV)的能量分辨率比碘化钠的差,例如对于0.511MeV的γ射线,BGO的时间分辨为1.9ns,而碘化钠NaI(TI)的的为0.75ns。BGO的主要缺点是折射率较高,尺寸大的BGO难以将光输出去。价格高。 硫化锌:ZnS(Ag)它对α粒子的发光效率高,而对γ射线和电子不灵敏,很适合在强β、γ本底下探测重带点粒子如α、核裂片等,探测效率可达100%。

各种探测器介绍说明资料讲解

报警系统由哪几部分组成? 简单的报警系统由前端探测器、中间传输部分和报警主机组成。大一些的系统也可将探测器和报警主机看做是前端部分,从报警主机到接警机之间是传输部分,中心接警部分看做是后端部分。 报警系统按信息传输方式不同,可分哪几种? 按信息传输方式不同,从探测器到主机之间可分为有线和无线2种。从主机到中心接警机之间也可分为有线和无线2种,其中有线系统还可分为基于电话线传输和基于总线传输2种类型。 探测器分为哪几种类型?市面上常见的有哪些类型? 红外、微波、震动、烟感、气感、玻璃破碎、压力、超声波等等。其中红外探测器还可分为主动红外和被动红外,烟感还可分为离子式和光电式。市面上常见的有红外探测器(被动红外)、对射、栅栏(主动红外)、双鉴探测器、震动探测器、玻璃破碎探测器。 主动红外探测器的工作原理? 主动红外探测器由红外发射器和红外接收器组成。红外发射器发射一束或多数经过调制过的红外光线投向红外接收器。发射器与接收器之间没有遮挡物时,探测器不会报警。有物体遮挡时,接收器输出信号发生变化,探测器报警。 被动红外探测器工作原理? 被动红外探测器中有2个关键性元件,一个是菲涅尔透镜,另一个是热释电传感器。自然界中任何高于绝对温度(-273o)的物体都会产生红外辐射,不同温度的物体释放的红外能量波长也不同。人体有恒定的体温,与周围环境温度存在差别。当人体移动时,这种差别的变化通过菲涅尔透镜被热释电传感器检测到,从而输出报警信号。 微波探测器工作原理? 微波探测器应用的是多普勒效应原理。在微波段,当以一种频率发送时,发射出去的微波遇到固定物体时,反射回来的微波频率不变,即f发=f收,探测器不会发出报警信号。当发射出去的微波遇到移动物体时,反射回来的微波频率就会发生变化,即f发≠f收,此时微波探测器将发出报警信号。 什么是双元红外探测器?什么是四元红外探测器?

塑料闪烁体探测器时间分辨

塑料闪烁体探测器时间分辨 一、实验原理 (一)塑料闪烁体工作原理及特征 塑料闪烁体是一种有机闪烁体计数器,其工作原理可分为以下五个过程: 1.射线进入闪烁体,发生相互作用,闪烁体电离,激发; 2.受激原子、分子退激发射荧光光子; 3.光子收集到光电倍增管的光阴极上,打出光子; 4.光子在光电倍增管上倍增,产生电子流,在阳极负载上产生电信号; 5.电子仪器记录和分析电信号 塑料闪烁体是一种用途广泛的有机闪烁体,他可以测量α、β、γ、快中子、质子、宇宙射线及裂变碎片等。它有以下几个特点: 1.制作简便; 2.发光衰减时间短(1~3ns); 3.透明度高,光传输性能好; 4.性能稳定,机械强度高,耐振动,耐冲击,耐潮湿,不需要封装; 5.耐辐射性能好 其主要不足是能量分辨本领较差,因此一般只做强度测量。 (二)TAC工作原理 时幅转换器有两路输入型号,一路作为起始信号,一路作为结束信号,将两信号之间的时间间隔转换为电压幅度 有两种类型的TAC:起停型时幅变换和重叠型时幅变换 起停型时幅变换:线性好,时间间隔范围宽(微妙到纳秒),时间分辨好(ps),

通用性强 脉冲重叠型时幅变换:变换速度快,死时间小,线性和精度较差,用于短时间间隔测量,即高计数率时间分析实验中。 (三)时间分辨 对于能量和质量确定的粒子,飞行一定距离所需要的时间是单一的。实际上用飞行时间方法测得的这时间是围绕某一平均值的一个分部,分布的宽度通常用半高 宽FWHM表示,成为时间测量系统的时间分辨,它直接影响到时间测量的精度。 二、实验过程及数据 (一)塑闪响应曲线的测量 由于在不同的电压下塑料闪烁体的性能不同,因此先测量探测器在不同电压下对辐射信号的响应变化。 将放射源放在两个塑闪的中间,测量1000V~1800V电压范围内,10秒时间内定标器所记录的计数:

红外探测器原理

红外探测器原理 安防2007-10-16 10:17:07 阅读888 评论3 字号:大中小订阅 被动红外探测器 凡是温度超过绝对0℃的物体都能产生热辐射,而温度低于1725℃的物体产生的热辐射光谱集中在红外光区域,因此自然界的所有物体都能向外辐射红外热。而任 何物体由于本身的物理和化学性质的不同、本身温度不同所产生的红外辐射的波 长和距离也不尽相同,通常分为三个波段。 近红外:波长范围0.75~3μm 中红外:波长范围3~25μm 远红外:波长范围25~1000μm 人体辐射的红外光波长3~50μm,其中8~14μm占46%,峰值波长在9.5μm。㈠被动红外报警探测器 在室温条件下,任何物品均有辐射。温度越高的物体,红外辐射越强。人是恒温动物,红外辐射也最为稳定。我们之所以称为被动红外,即探测器本身不发 射任何能量而只被动接收、探测来自环境的红外辐射。探测器安装后数秒种已适 应环境,在无人或动物进入探测区域时,现场的红外辐射稳定不变,一旦有人体 红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报 。被动红外入侵探测器形成的警戒线一般可以达到数十米。 被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警 控制器等部分组成。其核心是不见是红外探测器件,通过关学系统的配合作用可 以探测到某个立体防范空间内的热辐射的变化。红外传感器的探测波长范围是8~14μm,人体辐射的红外峰值波长约为10μm,正好在范围以内. 被动式红外探测器(Passive Infared Detector,PIR)根据其结构不同、警 戒范围及探测距离也有所不同,大致可以分为单波束型和多波束型两种。单波束PIR采用反射聚焦式光学系统,利用曲面反射镜将来自目标的红外辐射汇聚在红外传感器上。这种方式的探测器境界视场角较窄,一般在5°以下,但作用距离较远,可长达百米。因此又称为直线远距离控制型被动红探测器,适合保护狭长的走廊、通道以及封锁门窗和围墙。多波束型采用透镜聚焦式光学系统,目前大都采 用红外塑料透镜——多层光束结构的菲涅尔透镜。这种透镜是用特殊塑料一次成

闪烁计数器工作原理及应用

闪烁计数器的工作原理 闪烁计数器是一种利用射线引起闪烁体的发光而进行记录的辐射探测器。1947年由J.W. 科尔特曼和H.P.卡尔曼所发明。它由闪烁体、光电倍增管(见光电管)和电子仪器等单元组成。 它是由闪烁体(也称荧光体)和光电倍增管构成。常用的闪烁体有NaI(TI)[铊激活]、ZnS(Ag)和有机晶体“蒽”等,它们在射线照射下会发光(闪烁)。它的工作原理是:射线在闪烁体中产生的光子,打到光电倍增管的阴极上产生光电子,光电子的电子流通过倍增管放大并被阳极接收,形成了一个电脉冲,再由仪器的其他部件加以放大记录。碘化钠晶体常用来测量γ射线,硫化锌晶体常用来测量α射线。闪烁计数器的优点是,效率高、记录快,可以测定射线的能量。 闪烁计数器的应用 射线同闪烁体相互作用,使其中的原子、分子电离或激发,被激发的原子、分子退激时发出微弱荧光(见固体发光),荧光被收集到光电倍增管,倍增的电子流形成电压脉冲,由电子仪器放大分析和记录。利用这种现象可探测带电粒子。可用的闪烁体种类很多,用得较多的有NaI(加微量Tl)、CSI(加微量Tl)、ZnS(加微量Ag )等无机盐晶体和蒽、茋、对联三苯等有机晶体,也有用液体、塑料或气体的闪烁体。闪烁计数器的优点是效率高,有很好的时间分辨率和空间分辨率,时间分辨率达10^-9秒,空间分辨率达毫米量级。它不仅能探测各种带电粒子,还能探测各种不带电的核辐射;不仅能探测核辐射是否存在,还能鉴别它们的性质和种类;不但能计数,还能根据脉冲幅度确定辐射粒子的能量。在核物理和粒子物理实验中应用十分广泛。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/aa7728724.html,/

闪烁探测器的分析报告

在研究放射性检测方法的过程中,根据阅读资料与分析得知建材中包含的Ra、Th、K等元素发出的γ射线能量分别为352.8、328.6、1460keV。不同能量的γ射线照射到NaI闪烁体上产生的光子数不同,γ射线能量越大产生的光子数也越多,经过光电倍增管和前置放大电路后输出的电压脉冲峰值也越大。当某一元素在建材中含量较高时,它产生的对应某一峰值的脉冲数越多。再经过后期信号调理、峰值检测、A/D采集、信号计算处理便可完成检测。故选用NaI 闪烁探测器作为传感器部分。闪烁探测器由于其对γ射线的探测分辨时间短、探测效率高、能测量射线的能量的优点,所以它是目前应用的最广的γ射线探测器。 所选用的闪烁探测器为北京滨松光子公司生产的CH149-01型探测器,它包括闪烁体、光电倍增管、高压电源和前置放大器。 闪烁体的种类很多,按其化学性质不同可分为无机晶体闪烁体和有机闪烁体。有机闪烁体包括有机晶体闪烁体、有机液体闪烁体和有机塑料闪烁体等。最常用的无机晶体是铊激活的碘化钠单晶闪烁体,常记为NaI(Tl),属离子型晶体。纯粹的碘化钠晶体,其能带结构是在价带和导带之间有比较宽的禁带,如有带电粒子进入到闪烁体中,将引起后者产生电离或激发过程,即可能有电子从价带激发到导带或激发到激带,然后这些电子再退激到价带。退激的可能过程之一是发射光子,这种光子的能量还会使晶体中其它原子产生激发或电离,也就是光子可能被晶体吸收而不能被探测到,为此要在晶体中掺入少量的杂质原子(激活原子),如在碘化钠晶体中掺入铊原子,其关键作用是可以在低于导带和激带的禁带中形成一些杂质能级。这些杂质原子会捕获一些自由电子或激子到达杂质能级上,然后以发光的形式退激到价带,这就形成了闪烁过程的发光,而这种光因能量小于禁带宽度而不再被晶体吸收,不再会产生激发或电离。这说明只有加入少量激活杂质的晶体,才能成为实用的闪烁体。对于NaI(Tl)单晶闪烁体而言,其发射光谱最强的波长是415 nm的蓝紫光,其强度反映了进入闪烁体内的带电粒子能量的大小,选择适当大小的闪烁体,可使这些光子一射出闪烁体就被探测到。我们选择的即为NaI闪烁体,其规格为φ40mm*40mm,它通过光电效应可将γ射线的能量转化为成比例的荧光量。 光电倍增管直径为φ51mm。光电倍增管是一种真空管,它由入射窗、光电

闪烁体探测器的基本介绍

闪烁体探测器的基本介绍 秦1林2 (中国石油大学华东,青岛,255680) 摘要:闪烁体探测器是利用电离辐射在某些物质中产生的闪光来进行探测的,也是目前应用最多、最广泛的电离辐射探测器之一。 关键词:闪烁体;辐射;电离激发 早在1903年,威廉·克鲁克斯就发明了由硫化锌荧光材料制成的闪烁镜并用其观察镭衰变放出的辐射;卢瑟福在其著名的卢瑟福散射实验中也曾使用硫化锌荧光屏观测α粒子。不过,由于传统荧光材料在使用上很不方便,闪烁探测器一直没有大的进展。1947年Coltman和Marshall成功利用光电倍增管测量了辐射在闪烁体内产生的微弱荧光光子,这标志着现代闪烁体探测器的发端。 1.基本构成与原理 闪烁体主要由闪烁体、光的收集部件和光电转换器件组成的辐射探测器。 图1 闪烁体探测器基本构造 入射辐射在闪烁体内损耗并沉积能量,引起闪烁体中原子(或离子、分子)的电离激发,之后受激粒子退激放出波长接近于可见光的闪烁光子。闪烁光子通过光导射入光电倍增管的光阴极并打出光电子,光电子受打拿级之间强电场的作用加速运动并轰击下一打拿级,打出更多光电子,由此实现光电子的倍增,直到最终到达阳极并在输出回路中产生信号。 2.闪烁体的分类 很多物质都可以在粒子入射后而受激发光,因此闪烁体的种类很多,可以是固体、液体或气体。 闪烁体材料大致可分为以下三类:

(1)用于γ射线探测的CsI(Tl)晶体无机闪烁体:包括碱金属卤化物晶体(如NaI(Tl)、CsI(Tl)等,其中Tl是激活剂)、其他无机晶体(如CdWO4、BGO等)、玻璃体。 (2)有机闪烁体:有机晶体(如蒽、芪等)、有机液体、塑料闪烁体。 (3)气体闪烁体:如氩、氙等。 3 闪烁体的性质 3.1发光效率高 能够将入射带电粒子的动能尽可能多地转换为闪烁光子数。 3.2线性好 入射带电粒子损耗的能量在很大范围内与产生闪烁光子数保持线性关系。3.3发射光谱与吸收光谱不重叠 闪烁体介质对自身发射光是透明的,不存在自吸收。 3.4发光衰减时间短 入射粒子产生闪光的持续时间短,探测器反应快。 3.5其它性质 加工性能好、折射率合适、原料易得且无毒、成本低廉等。一般而言,无机闪烁体的光子产额高、线性好,但发光衰减时间较长;有机闪烁体发光衰减时间短,但光子产额较低。 4 闪烁体的发光机理 不同闪烁体在电离辐射作用下发光的物理机制有很大区别。 4.1无机闪烁体 这类闪烁体的发光机制以掺杂激活剂的碱金属卤化物晶体最为典型。在此类晶体中各原子呈周期性排列,在原子核电场的作用下,原本属于单个原子的核外电子可以以在相邻原子间转移,这样的电子不再固定从属于某个原子,而是从属于整个晶体,这种现象称为晶体中电子的共有化。原先孤立原子中的能级也相互交错重叠形成晶体能带,这些能带又可分为价带与导带,二者之间存在一定宽度的禁带。当电离辐射进入晶体中,原先处于价带的电子受激发跃迁至导带,之后

红外探测器原理与应用

主动红外探测器原理与应用 一、主动红外探测器组成与工作原理 主动红外入侵探测器是由主动红外发射机和主动红外接收机组成。探测器利用发射机发车红外射线,由接收机接收。当发射机与接收机之间的红外光束被完全遮断或按给定百分比遮断时,产生报警信号。 主动红外发射机通常采用红外发光二极管作光源,其主要优点是体积小、重量轻、寿命长,交直流均可使用,并可用晶体管和集成电路直接驱动。现在的主动红外入侵探测器多数是采用互补型自激多谐振荡电路作驱动电源,直接加在红外发光二级管两端,使其发出经脉冲调制的、占空比很高的红外光束,这既降低了电源的功耗,又增强了主动红外入侵探测器的抗干扰能力。 主动红外接收机中的光电传感器通常采用光电二极管、光电三极管、硅光电池、硅雪崩二极管等,按GBl0408.4—2000《入侵探测器第4部分:主动红外入侵探测器》规定:“探测器在制造厂商规定的探测距离工作时,辐射信号被完全或按给定百分比遮光的持续时间大于40ms时,探测器应产生报警状态。”目前市售的主动红外入侵探测器均给出最短遮光时间范围。例如:某品牌的主动红外入侵探测器最短遮光时间范围是30ms—600ms。给出一个范围的原因是不同的使用部位可以设定(调节)不同的最短遮光时间,这有益于减少系统的误报警。例如:将主动红外入侵探测器构成电子篱笆警戒时,就应将最短遮光时间调至30ms附近;用在围墙上或围墙内侧警戒时,就应将最短遮光时间调至600ms附近。具体数值使用者可通过试验确定。 主动红外发射机所发红外光束定发散角,在GBl0408.4—2000标准中规定:“室内使用时,发射机与接收机经正确安装和对准,并工作在制造厂商规定的探测距离,辐射能量有75%。被持久地遮挡时,接收机不应产生报警状态。”从另一角度理解这句话的意思就是:当接收机接收的能量小于25%时,系统就要产生误报警。为了减少由此引起的误报警,安装使用中应让发射机与接收机轴线重合。 目前,除单光束主动红外入侵探测器外,还有双光束和4光束的。工作原理

闪烁体、半导体、电离室探测器比较

闪烁体、半导体、电离室三大类探测器比较(闪烁体)碘化钠探头:他的激活剂是(TI),对γ射线,当能量大于150keV时响应是线性的;对质子和电子,线性响应范围很宽,光输出和能量的关系接近通过原点的直线,仅在能量低于几百keV(对电子)和(1~2)MeV(对质子)时才偏离直线;对α粒子,能量大于4~5MeV后近似线性,但其直线部分延长不过原点。因此测量α粒子(或其他重粒子)时,比须进行能量校准。NaI(TI)烁体的主要优点是密度大,原子序数高,因而对γ射线探测效率高。另外它的发光效率高,因而能量分辨率也较好。它的缺点是容易潮解,因此使用必须密封。 碘化铯探头:CsI(TI)碘化铯是另一种碱金属卤化物,作为闪烁体材料常用铊或纳作激活剂。铊的能量线性与碘化钠的接近,能量分辨率比碘化钠的差一些。碘化铯的密度和平均原子序数比碘化钠更大,因此对γ射线的探测效率也更高。与碘化钠相比,碘化铯的机械强度大,易于加工成薄片或做成极薄的蒸发薄膜。此外,它不易潮解,也不易氧化。但若暴露在水或高湿度环境中它也会变质。碘化铯的主要缺点是光输出比较低,原材料价格较贵。 锗酸铋探头:与碘化钠(TI)同体积时,探测效率比碘化钠的高的多。对0.511MeVγ光子,与NaI(TI)、CsF、和Ge半导体、塑料闪烁体相比,锗酸铋(BGO)有最大的效率和最好的信噪比。BGO主要用于探测低能x射线、高能γ射线以及高能电子。在低能区(<<0.5MeV)的能量分辨率比碘化钠的差,例如对于0.511MeV的γ射线,BGO的时间分辨为1.9ns,而碘化钠NaI(TI)的的为0.75ns。BGO的主要缺点是折射率较高,尺寸大的BGO难以将光输出去。价格高。硫化锌:ZnS(Ag)它对α粒子的发光效率高,而对γ射线和电子不灵敏,很适合在强β、γ本底下探测重带点粒子如α、核裂片等,探测效率可达100%。 laBr3是新型卤化物闪烁体,其基本性能已经全面超越了传统的碘化钠闪烁体,谱仪具有比碘化钠更好的能量分辨率、峰形和稳定性。液体闪烁体:对脉冲形状甄别的性能极好,主要用于强γ场中测量快中子,也常用于测量低能弱β射线的发射率。测量β辐射和中子大都选用塑料闪烁体,也可采用有机液体闪烁体; 测量α辐射一般用ZnS(Ag)闪烁体;BGO闪烁体适用于测量低能x射线和高能γ射线;NaI(TI)主要用于探测γ射线。检测3H和14C等放射源的低能β辐射的微弱放射性活度,经常使用液体闪烁体。 (半导体)高纯锗探测器:普遍用于γ射线谱仪中。硅探测器对γ射线的探测效率 很低,锗探测器使用时需要在液氮温度下冷却,这是由于他们的原子序数低和禁带宽度很窄

同步辐射标定闪烁体探测器灵敏度

1001- 4322(2012)07-1575-04 同步辐射标定闪烁体探测器灵敏度 何小安1杜华冰1李朝光1易荣清1肖体乔2 1.中国工程物理研究院激光聚变研究中心,四川绵阳621900;2.中国科学院上海应用物理研究所,上海201800 摘要: 利用上海同步辐射光源BL13W1光束线开展了闪烁体探测器的灵敏度标定方法的研究。对光源的高次谐波以及闪烁体探测器的工作线性动态范围进行了实验研究,在此基础上建立了一种新的同步辐射标定闪烁体探测器灵敏度的方法。通过对实验结果的理论拟合,得到与放射源方法相符合的灵敏度数据,验证了方法的准确性,提高了标定数据的精度。 同步辐射; 闪烁体探测器; 灵敏度; 等离子体 TN247 A10.3788/HPLPB20122407.15752012-03-262012-05-21 何小安(1984-),男,从事激光聚变X射线诊断工作;hexiaoan1984@163.com。

£减,观察_区,则探测;测器信号

@@[1] McDonald J W, Suter L J, Landen O L, et al. Hard X-ray and hot electron environment in vacuum hohlraums at the National Ignition Facili

ty[J]. Phys Plasmas, 2006, 13:032703. @@[2] Juan C F, Goldman SR, KlineJ L, et al. Gas-filled hohlraum experiments at the National Ignition Facility[J]. Phys Plasmas, 2006,13: 056319. @@[3]蔡涓涓,黄文忠,谷渝秋,等.双荧光层靶Ka线强度比诊断靶内超热电子温度[J].强激光与粒子束,2011,23(5):1303-1306.(Cai Juanjuan,Huang Wenzhong, Gu Yuqiu, et al. Diagnosis of hot electron temperature by ratio of Kα lines from two-layer fluorescent target. High Power Laser and Particle Beams, 2011 , 23(5) : 1303-1306) @@[4]蔡达锋,王剑,谷渝秋,等.超热电子能量分布的实验和模拟研究[J].强激光与粒子束,2011,23(7):1945-1948.(Cai Dafeng, Wang Jian,Gu Yuqiu, et al. Experimental and simulative study on energy distribution of hot electrons. High Power Laser and Particle Beams, 2011, 23 (7) : 1945-1948) @@[5] McDonald J W, Kauffman R L, Celeste J R, et al. Filter-fluorescer diagnostic system for the National Ignition Facility[J]. Review of Scien tific Instruments, 2004, 75(10):3753-3755. @@[6] Bruns H C, James A E, Thoe S R, et al. Filtered Fluoresscer X-ray Detector[R]. UCRL-JC-119323,1995. @@[7] 汪晓莲.粒子探测技术[M].合肥:中国科学技术大学出版社,2009:232-234.(Wang Xiaolian.Detector technology of particle.Hefei: University of Science and Technology of China, 2009:232-234) @@[8]久米英浩,冈野和芳,酒井四郎,等.光电倍增管[M].日本:滨松光子学株式会社,1993:126-129.(Jiumi Yinghao,Gangye Hefang, Jiujing Silang, et al. Photomultiplier. Japan: Hamamastu, 1993:126-129) @@[9]李三伟,祁兰英,易荣清,等.激光聚变中硬X光谱回推方法[J].强激光与粒子束,1995,7(2):205-209.(Li Sanwei,Qi Lanying,Yi Rongqing, et al. A unfolding of hard X-ray spectrum in laser fusion. High Power Laser and Particle Beams, 1995, 7(2) :205-209) Scintillator's sensitivity calibration method  in synchrotron radiation facility Du HuabingLi ChaoguangYi RongqingXiao Tiqiao He Xiaoan

探测器原理

各种探测器的工作原理 主动红外探测器的工作原理:主动红外探测器由红外发射器和红外接收器组成。由发射端主动发射红外线,由接收端接收红外线,形成红外线的网状。这种探测器能够对入侵物进行主动的防范,不会因为小宠物的穿越或气候的影响而产生误报警情,从而最大限度地降低了误报率。红外发射器发射一束或多束经过调制过的红外光线投向红外接收器。发射器与接收器之间没有遮挡物时,探测器不会报警。有物体遮挡时,接收器输出信号发生变化,探测器报警。 被动红外探测器工作原理:被动红外探测器是依靠被动的吸收热能动物活动时身体散发出的红外热能进行报警的,也称热释红外探头,其探测器本身不发射红外线的。被动红外探测器中有2个关键性元件,一个是菲涅耳透镜,另一个是热释电传感器。自然界中任何高于绝对零度的物体都会产生红外辐射,不同温度的物体释放的红外能量波长也不同。人体有恒定的体温,与周围环境温度存在差别。当人体移动时,这种差别的变化通过菲涅耳透镜被热释电传感器检测到,从而输出报警信号。 微波探测器工作原理:微波探测器应用的是多普勒效应原理。在微波段,当以一种频率发送时,发射出去的微波遇到固定物体时,反射回来的微波频率不变,探测器不会发出报警信号。当发射出去的微波遇到移动的物体时,反射回来的微波频率就会发生变化,此时微波探测器将发出报警信号。 震动探测器的工作原理:振动探测器是以探测入侵者进行各种破坏活动时所产生的振动信号作为报警依据,根据所使用的振动传感器的不同,振动探测器可分为:机械式振动探测器、惯性棒电子式振动探测器、电动式振动探测器、压电式振动探测器、电子式全面型振动探测器等多种类型。近来常见的以压电晶体振动探测器居多,其原理是利用压电晶体的压电效应。压电晶体是一种特殊的晶体,它可

红外探测器是什么,红外探测器的原理和使用方法

红外探测器是什么,红外探测器的原理和使用方法如今,随着社会的进步,经济的发展,越来越多人开始重视安防产品,家庭安防产品销售量开始逐年增长,红外探测器普及到越来越多的家庭,那么,什么是红外探测器的原理和使用方法? 一、什么是红外探测器? 红外探测器是将入射的红外辐射信号转变成电信号输出的器件。 红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出大都是电量,或者可用适当的方法转变成电量。

二、红外探测器的原理 无线红外探测器的基本原理是,将入射的红外辐射信号转变成电信号输出的器件。红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。 在红外线探测器中,热电元件检测人体的存在或移动,并把热电元件的输出信号转换成电压信号。然后,对电压信号进行波形分析。于是,只有当通过波形分析检测到由人体产生的波形时,才输出检测信号。例如,在两个不同的频率范围内放大电压信号,且将被放大的信号用于鉴别由人体引起的信号。于是,误将诸如热电元件的爆米花噪声一类噪声当作为由人体所产生而在准备加以检测乃得以防止。 三、红外探测器的使用方法 而红外探测器有很多种类,不同分类的红外探测器有不同的使用方法。 1. 接近探测器:是一种当入侵者接近它时能触发报警的探测装置。在接近探测器中,通常有一个高频率的LC震荡电路,震荡电路的LC回路通过导线连

红外线探测原理

红外探测器的原理及特点 人体都有恒定的体温,一般在37度左右,会发出特定波长10μm左右的红外线,被动红外探测器就是靠探测人体发射的10μm左右的红外线而进行工作的。人体发射的10μm左右的红外线通过菲涅尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。 1.被动红外探测器是以探测人体辐射为目标的,所以热释电元件对波长为10μm左右的红外辐射必须非常敏感。 2.为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。 3.其传感器包含两个互相串联或并联的热释电元件。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4.一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释

电元接收到的热量不同,热释电也不同不能抵消,经信号处理而报警。 被动红外深测器优缺点 优点:本身不发任何类型辐射,器件功耗很小,隐蔽性较好,价格低廉。 缺点:容易受各种热源、阳光源干扰;被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探测器接收;易受射频辐射的干扰;环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。 如何正确安装与使用被动红外探测器 被动红外探测器是一种在安防工程中使用极为普遍的一类探测器。但要其正常使用,既要防止漏报,又要减少误报,主要是将误报现象降到最低的限度。要做到这一点,必须首先要了解被动红外探测器的一些基本概念及其技术特点,这样才能根据这些基本的技术特点,从安装、调试、使用等各个环节,按照探测器的基本技术特点,这样才能最大限度的发挥探测器的最大功效。

CdZnTe探测器性能的研究

CdZnTe核探测器性能测试研究 作者姓名:孙浩学号:201306020207指导教师:周建斌 摘要 本文主要研究基于平面CZT晶体开发的DT-01B系列探测器的能谱响应性能。通过改变多道能谱仪的参数偏置电压,脉冲成型时间等。以及对不同放射源的不同能谱响应情况做对比,来分析对CZT探测器性能造成影响的因素。本文还讲述了CZT晶体的基本性质以及发展历史;介绍了CZT平面探测器的制备流程;CZT 探测器的优缺点;以及CZT核辐射探测器的种类,国内外的研究现状,工作原理等。 关键词:核辐射探测器;CdZnTe晶体;CZT核探测器;半导体探测器;Abstract:This paper mainly studies the energy spectrum response of DT-01B series detectors based on planar CZT crystal development. By changing the parameters of the multi-channel spectrometer bias voltage, pulse molding time. As well as the different radioactive sources of different energy spectrum response to do the comparison, to analyze the CZT detector performance impact factors. This paper also introduces the basic properties and development history of CZT crystal. The preparation process of CZT planar detector, the advantages and disadvantages of CZT detector, the types of CZT nuclear radiation detectors, the research status at home and abroad, and the working principle are introduced. Key words: nuclear radiation detector; CdZnTe crystal; CZTnuclear detector;Semiconductor detectors;

红外探测器的原理和使用方法

如今,随着社会的进步,经济的发展,越来越多人开始重视安防产品,家庭安防产品销售量开始逐年增长,红外探测器普及到越来越多的家庭,那么,什么是红外探测器的原理和使用方法? 一、什么是红外探测器? 红外探测器是将入射的红外辐射信号转变成电信号输出的器件。 红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。现代红外探测器所利用的主要是红外热效应和光电效应。这些效应的输出大都是电量,或者可用适当的方法转变成电量。

二、红外探测器的原理 无线红外探测器的基本原理是,将入射的红外辐射信号转变成电信号输出的器件。红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到。要察觉这种辐射的存在并测量其强弱,把它转变成可以察觉和测量的其他物理量。一般说来,红外辐射照射物体所引起的任何效应,只要效果可以测量而且足够灵敏,均可用来度量红外辐射的强弱。 三、红外探测器的使用方法 而红外探测器有很多种类,不同分类的红外探测器有不同的使用方法。 1. 接近探测器:是一种当入侵者接近它时能触发报警的探测装置。在接近探测器中,通常有一个高频率的LC震荡电路,震荡电路的LC回路通过导线连通到外部的金属部件上。当人体靠近时,通过空间的电磁偶合,会改变LC回路的谐振频率,引起震荡频率改变,探测器的检测电路能够识别这种频率的改变而发出警示信号。

接近探测器比较适用于室内,如对写字台、文件柜、保险柜等一些特殊物件提供保护,也可以用于对门窗的保护。通常被保护的物件是金属的,实际上可以构成保护电路的一部分,因而只要有人试图破坏系统时,就会立即触发报警。 2.移动/震动探测器机器:能够探测固定物体位置被移动的传感器称为移动探测器。其实运动是无处不在的,地球在转动,地球上的任何东西都在“移动”,这里所要探测的其实是相对的移动,比如放置在桌面上的物体被移开了桌面、停放的车辆被开动或搬动了等等。 移动探测器应用于如文件柜、保险箱等贵重、机要特殊物件的保护,也适宜于与其他系统结合使用,来防止盗贼破墙而入。移动探测器的有效性与应用的正确与否有很大关系。它常常用来对某些一般情况下有人员在活动的保护区内的特

闪烁探测器结构改进及性能测试的研究

闪烁探测器结构改进及性能测试的研究 目前在核辐射测量中常用HPGe探测器测量活化样品的能谱信息,因为其具有高能量分辨率、响应时间快、但其抗辐照能力差当中子注入通量较大时,锗晶体原子会发生位移,持续辐照会使大量锗晶格错位,HPGe晶体本征区结构遭到破坏、探测器电荷收集率降低致使HPGe探测的能量分分辨率变差;同时HPGe探测器价格贵、工作环境需液氮冷却,给维护带来不便限制其在工业生产实践中被广泛地应用。与HPGe探测器相比,闪烁探测器种类比较多,具较好的能量分辨率、探测效率、更广的探测区间、价格较低且具有很好的抗辐照性能是当前应用最广泛的核辐射探测器,但往往由于分辨率相对较低不能分辨相近能量的γ射线给数据分析带来较大难度。 针对上述问题本文立足于闪烁探测器原理﹑结构及成熟的核电子学技术基础,结合电子技术以及材料科学的发展,通过理论计算﹑模拟论证及实验测试等方法对闪烁探测器的形体规格及荧光出射方式、反射层材料及厚度、光学耦合材料及增透膜、闪烁探测系统外接电压源稳定性对探测器性能的影响做出探究。通过这一新型高光子输出闪烁探测器展开研究不同条件对探测器性能的影响,最后得出以下结论:(1)通过新型高光子输出探测器与传统的探测器对比发现同等体积闪烁体,采取侧开窗模式出射后,闪烁光子出射能力明显增强,分辨率也得到改善且稳定性、能量线性关系都不惜可以满足实验要求;(2)探测系统工作状态的稳定与否会受到外接电源的影响,且对不同元器件影响程度和效果也不尽相同,主放大器受到的影响最明显多道系统最不明显;(3)不同材料对光的反射效果不同,当所使材料反射率较低时,反射效果与厚度成正相关;(4)探测器的工作状态受测试环境温度影响较为明显,随测试环境温度降低,BGO晶体光产额逐步增

相关主题
文本预览
相关文档 最新文档