当前位置:文档之家› 线性顺序表——数据结构

线性顺序表——数据结构

线性顺序表——数据结构
线性顺序表——数据结构

//头文件

#include

#include

//预定义常量和类型:函数结果状态代码

#define OK 1

#define ERROR 0

#define TURE 1

#define FALSE 0

#define INFEASIBLE -1

#define OVERFLOW -2

//---线性表的动态分配顺序存储结构---

#define LIST_INIT_SIZE 100 //线性表存储空间的初始分配量

#define LINSTINCREMENT 10 //线性表存储空间的分配增量

//数据类型说明,其值是函数结果状态代码

typedef int Status;

typedef int ElemType;

typedef struct {

ElemType *elem; //存储空间基址

int length; //当前长度

int listsize; //当前分配的存储容量(以sizeof(ElemType)为单位}SqList; //定义了一个线性表的数据类型

//-------函数基本操作---------

// 函数InitList的主要功能是初始化一个线性表,构造一个空的线性表L。Status InitList(SqList &L) {

L.elem=(ElemType *)malloc(LIST_INIT_SIZE*sizeof(ElemType));

if(!L.elem)

{

printf("分配失败\n");

exit(OVERFLOW); //存储分配失败

}

L.length=0; //空表长度为0

L.listsize=LIST_INIT_SIZE; //初始存储容量

return OK;

} //InitList

//函数Exist的主要功能是判断线性表L是否存在。

Status exist(SqList &L) {

if((L.elem!=NULL)&&(L.listsize>=LIST_INIT_SIZE)) //检测线性表是否存在

return OK;

else

return ERROR;

}//若线性表存在返回OK,否则返回ERROR

//函数DestroyList的主要功能是销毁线性表L。

Status DestroyList(SqList &L){

if(exist(L))//判断线性表是否存在

{

free(L.elem); //释放空间

L.elem =NULL; //将指针赋值为空

L.length=-1; //当前长度赋值为-1,标志线性表不存在

L.listsize=0; //当前最大容量赋值为0

return OK;

}

else

return ERROR;

}//成功释放空间时返回OK,否则返回ERROR

//函数ClearList的主要功能是将L重置为空表。

Status ClearList(SqList &L){

if(!(L.elem=NULL)) //重置为空表

return OK;

else

return ERROR;

}//重置线性表,成功返回OK,失败返回ERROR

//函数ListEmpty的主要功能是判断线性表是否为空表。

Status ListEmpty(SqList L) {

if(!exist(L))

return ERROR;

else

{

if(ClearList(L))

return TURE;

else

return FALSE;

}

return OK;

}

//函数ListLength的主要功能是检测线性表的数据元素个数。

Status ListLength(SqList &L){

//返回数据元素个数

if(exist(L))//判断线性表是否存在

return L.length ;//返回元素个数

else

return -1;

}//检验线性表元素个数,成功返回数字,失败返回-1.

//函数GetElem的主要功能是返回线性表中指定位置的数据元素。

Status GetElem(SqList &L, int i, ElemType &e)

// 线性表已存在,用e返回线性表 L中第i个元素

{

if ( exist(L) && i > 0 && i < L.length+1) //判定线性表存在和元素位置 i是否合法

{

e = L.elem[i - 1]; //将指定位置元素赋给e

return OK;

}

else

return ERROR;

}////成功返回 OK, 失败返回ERROR

//函数compare的主要功能是判断线性表中有与输入元素相同的数值,函数默认程序

compare(ElemType e1, ElemType e2)

{

if(e1==e2)

return OK; //相等,返回OK

else

return ERROR;//不相等,返回ERROR

} //函数返回值是一个执行成功与否的状态标志

//函数LocateElem的主要功能是返回满足函数compare()的数据元素位序。

int LocateElem(SqList L,ElemType e, Status(*compare)(ElemType,ElemType)){

int i;

ElemType *p;

i=1 ; //i的处值为第1个元素的位序

p=L.elem; //p的初值为第1个元素的存储位置

while(i<=L.length&&!(*compare)(*p++,e))

++i;

if(i<=L.length)

return i;

else

return ERROR;

}//在顺序线性表L中查找第一个与e满足compare()的元素的位序//若找到,则返回其在L中的位序,否则返回ERROR

//函数PriorElem的主要功能是返回指定元素的前驱。

Status PriorElem(SqList L,ElemType cur_e,ElemType &pre_e){

int i=0; //初始化元素下标

while(i

{

if(L.elem[i]==cur_e)//若L.elem[i]的元素值与cur_e相等

{

if(i>0)//判断i值是否合法

{

pre_e=L.elem[i-1];

return pre_e;//满足条件,用pre_e返回元素cur_e前驱的值

}

else

return -1;

}

i++;//循环条件不满足,继续循环

}

if(i>=L.length)

return ERROR;//不满足循环条件,无法继续实行

return OK;//操作成功,返回OK

}//返回给定元素的前驱,成功则返回OK,由pre_e带回前驱值,失败则返回ERROR

//函数NextElem的主要功能是返回元素元素的后继。

Status NextElem(SqList L,ElemType cur_e,ElemType &next_e){ int i=0;

while(i

{

if(L.elem[i]==cur_e)//若L.elem[i]的元素值与cur_e相等

{

if(i!=L.length-1)//判断i值是否合法

{

next_e=L.elem[i+1];

return next_e;//满足条件,用next_e返回元素cur_e后继的值

}

else

return -1;

}

i++;//循环条件不满足,继续循环

}

if(i>=L.length)

return ERROR;//不满足循环条件,无法继续实行

return OK;//操作成功,返回1

}//若cur_e是L的数据元素,且不是最后一个,则用next_e返回他的后继,若失败,则next_e无定义

//函数visit的主要功能是判断是依次输出线性表的元素的值

Status visit(ElemType e)

{ printf("%d ",e);

return OK;//输出完成,返回OK

}

//函数ListInsert的主要功能是向线性表中插入新的元素。

Status ListInsert(SqList &L, int i, ElemType e){

//参数L表示的是一个已经初始化的线性表变量

//e表示待插入的数据

//函数返回值是一个执行成功与否的状态标志

//i的合法值为1<=i<=ListLength_Sq(L)+1

ElemType *newbase,*q,*p;

if(i<1||i>L.length+1)

return ERROR; //i值不合法

if(L.length>=L.listsize){ //当前存储空间已满,增加分配

newbase=(ElemType *)realloc(L.elem,(L.listsize +LINSTINCREMENT)*sizeof(ElemType));

if(!newbase)

exit(OVERFLOW);//存储分配失败

L.elem=newbase;//新基址

L.listsize+=LINSTINCREMENT;//增加存储容量

}

q=&(L.elem [i-1]); //q为插入位置

for(p=&(L.elem[L.length-1]);p>=q;--p)

*(p+1)=*p; //插入位置及之后的元素后移

*q=e; //插入e

++L.length ;//表长增加1

return OK;//插入成功,返回OK

}//ListInsert

//函数ListDelete的主要功能是删除线性表中的元素。

Status ListDelete(SqList &L,int i,ElemType &e){

//线性表L已存在且非空,在顺序线性表L中删除第i个元素,并用e 返回其值,L的长度-1

//i的合法值为1<=i<=LIstLength_Sq(L)

ElemType *q,*p;

if((i<1)||(i>L.length))

return ERROR; //i值不合法

p=&(L.elem[i-1]); //p为被删除元素的位置

e=*p; //被删除元素的值赋给e

q=L.elem+L.length-1; //表尾元素的位置

for(++p;p<=q;++p)

*(p-1)=*p; //被删除之后的元素往前移

--L.length; //表长减一

return OK;

}//ListDelete

//函数ListTraverse的主要功能是对每个元素调用visit()函数测试。

Status ListTraverse(SqList L,Status(*visit)(ElemType)){

ElemType *p=L.elem; //p指向第1个元素

int i;

for(i=1;i<=L.length;i++) //从表L的第1个元素到最后1个元素

visit(*p++); //对每个数据元素调用visit()

return OK;//操作成功

} //顺序线性表L已存在,依次对L的每个数据元素调用函数visit(),一旦visit()失败,则操作失败

int main()

{

SqList L;

ElemType e,cur_e,pre_e,next_e;

int i,j,n;

InitList(L);

printf("输入元素的个数为:");

scanf("%d",&n);

while(n<=0)//n的合法值为n>0

{

printf("输入错误,请重新输入\n");

printf("输入元素的个数为:");

scanf("%d",&n);

}

printf("请输入%d个元素:",n);

//输入元素

for(i=1;i<=n;i++)

{

scanf("%d",&e);

ListInsert(L,i,e);

}//调用函数ListInsert输入

//显示线性表的元素个数,依次显示元素

printf("线性表共有%d个元素,线性表中的元素依次为:",ListLength(L)); for(i=0;i

printf("%d ",L.elem[i]);

printf("\n");

//函数GetElem的应用,返回线性表L中第i个元素的值

printf("请输入要返回数据元素的位序:");

scanf("%d",&i);

while(i<1||i>L.length)//i的合法值为0

{

printf("输入错误,请重新输入\n");

printf("请输入元素的序数为:");

scanf("%d",&i);

}

GetElem(L,i,e);

printf("第%d个的元素的值为%d\n",i,e);

printf("\n");

//函数LocateElem和函数compare()的应用,查找第一个与e满足函数compare()的元素的位序

printf("请输入数据元素e:");

scanf("%d",&e);

printf("第一个与e满足关系的元素的位序为:%d\n",LocateElem(L,e,(*compare)));

printf("\n");

//函数priorElem的应用,输出某数据元素的前驱

printf("请输入数据元素cur_e:");

scanf("%d",&cur_e);

if(PriorElem(L,cur_e,pre_e)!=-1)

printf("%d的前驱为:%d\n",cur_e,PriorElem(L,cur_e,pre_e));

else

printf("线性表L中没有数据元素%d的前驱\n",cur_e);

printf("\n");

//函数NextElem的应用,输出某元素的后继

printf("请输入数据元素cur_e:");

scanf("%d",&cur_e);

if(NextElem(L,cur_e,next_e)!=-1)

printf("%d的后继为:%d\n",cur_e,NextElem(L,cur_e,next_e));

else

printf("线性表L中没有数据元素%d的后继\n",cur_e);

printf("\n");

//函数ListInsert的应用,插入元素

printf("请输入要插入的数据元素的位置i:");

scanf("%d",&i);

printf("请输入要插入的数据元素e:");

scanf("%d",&e);

if(i>=1&&i<=L.length)

{ ListInsert(L,i,e);

printf("插入新的数据元素后的线性表L中的数据元素为:");

for(i=0;i

printf("%d ",L.elem[i]);

printf("\n");

}

printf("\n");

//函数ListDelete的应用,删除元素

printf("请输入要删除的数据元素的位置j:");

scanf("%d",&j);

ListDelete(L,j,e);

printf("删除数据元素后的线性表L中的数据元素为:");

for(i=0;i

printf("%d ",L.elem[i]);

printf("\n");

printf("删除的第%d个元素值为:%d",j,e);

printf("\n");

printf("\n");

//函数ListTraverse和函数visit()的应用,L中的每个元素依次调用visit()

printf("此时线性表L中的元素的值为:");

ListTraverse(L,visit);

printf("\n");

printf("\n");

//函数ClearList和函数ListEmpty的应用,将线性表L重置为空表,并且判断操作是否成功

printf("将线性表L重置为空表\n");

ClearList(L);

printf("\n");

i=ListEmpty(L);//将函数ListEmpty返回的值赋值给i

if(i==1)//如果函数ListEmpty_Sq返回TURE

printf("线性表L已重置为空表,此时长度length为:%d\n",L.length);

else //如果函数ListEmpty_Sq返回FALSE

printf("线性表重置失败\n");

printf("\n");

//函数DestoryList的应用,销毁线性表L

printf("销毁线性表\n");

DestroyList(L);

printf("此时线性表L已不存在\n");

return 0;

}

线性表顺序存储结构上的基本运算

实验项目名称:线性表的顺序存储结构上的基本运算 (所属课程:数据结构--用C语言描述) 院系:计算机科学与信息工程学院专业班级:网络工程 姓名:000000 学号:0000000000 实验日期:2016.10.20 实验地点:A-06 406 合作者:指导教师:孙高飞 本实验项目成绩:教师签字:日期: (以下为实验报告正文) 一、实验目的 本次实验的目的掌握顺序表的存储结构形式及其描述和基本运算的实现;掌握动 态链表结构及相关算法设计 实验要求:输入和验证程序例题。正确调试程序,记录程序运行结果。完成实验报 告。 二、实验条件 Windows7系统的电脑,vc++6.0软件,书本《数据结构--用c语言描述》 三、实验内容 3.1 根据41页代码,用c语言定义线性表的顺序存储结构。 3.2 根据42页算法2.1实现顺序表的按内容查找。 3.3 根据43页算法2.2实现顺序表的插入运算。 3.4 根据45页算法2.3实现顺序表的删除运算。 四、实验步骤 3.2实验步骤 (1)编写头文件,创建ElemType。 (2)根据根据41页代码,“用c语言定义线性表的顺序存储结构”定义顺序表。

(3)根据42页算法2.1实现顺序表的按内容查找,创建Locate函数。 (4)创建main函数,输入SeqList L的数据元素。 (5)输入要查找的数据元素的值,调用Locate函数,输出结果。 3.3实验步骤 (1)编写头文件,创建ElemType。 (2)根据41页代码,“用c语言定义线性表的顺序存储结构”定义顺序表。 (3)根据43页算法2.2实现顺序表的插入运算,创建InsList函数。 (4)创建printList函数,逐项输出顺序表内的元素及顺序表元素的个数。 (5)创建main函数,输入插入的元素和其位置,调用printLinst函数输出顺序表,调用IntList函数,再次调用printLinst函数输出顺序表。 3.4实验步骤 (1)编写头文件,创建ElemType。 (2)根据根据41页代码,“用c语言定义线性表的顺序存储结构”定义顺序表。 (3)根据45页算法2.3实现顺序表的删除运算,创建DelList函数。 (4)创建printList函数,逐项输出顺序表内的元素及顺序表元素的个数。 (5)创建main函数,输入删除元素的位置,调用printLinst函数输出顺序表,调用DelList函数,再次调用printLinst函数输出顺序表。 五、实验结果 (1)实验3.2顺序表的按内容查找 # include typedef int Elemtype; typedef struct{ Elemtype elem[100]; int last; }SeqList; int Locate(SeqList L,Elemtype e){ int i; i=0;

数据结构试题及答案

数据结构试题 一、单选题 1、在数据结构的讨论中把数据结构从逻辑上分为(C ) A 内部结构与外部结构 B 静态结构与动态结构 C 线性结构与非线性结构 D 紧凑结构与非紧凑结构。 2、采用线性链表表示一个向量时,要求占用的存储空间地址(D ) A 必须是连续的 B 部分地址必须是连续的 C 一定是不连续的 D 可连续可不连续 3、采用顺序搜索方法查找长度为n的顺序表时,搜索成功的平均搜索长度为( D )。 A n B n/2 C (n-1)/2 D (n+1)/2 4、在一个单链表中,若q结点是p结点的前驱结点,若在q与p之间插入结点s,则执行( D )。 A s→link = p→link;p→link = s; B p→link = s; s→link = q; C p→link = s→link;s→link = p; D q→link = s;s→link = p; 5、如果想在4092个数据中只需要选择其中最小的5个,采用( C )方法最好。 A 起泡排序 B 堆排序 C 锦标赛排序 D 快速排序 6、设有两个串t和p,求p在t中首次出现的位置的运算叫做( B )。 A 求子串 B 模式匹配 C 串替换 D 串连接 7、在数组A中,每一个数组元素A[i][j]占用3个存储字,行下标i从1到8,列下标j从1到10。所有数组元素相继存放于一个连续的存储空间中,则存放

该数组至少需要的存储字数是( C )。 A 80 B 100 C 240 D 270 8、将一个递归算法改为对应的非递归算法时,通常需要使用( A )。 A 栈 B 队列 C 循环队列 D 优先队列 9、一个队列的进队列顺序是1, 2, 3, 4,则出队列顺序为( C )。 10、在循环队列中用数组A[0..m-1] 存放队列元素,其队头和队尾指针分别为front和rear,则当前队列中的元素个数是( D )。 A ( front - rear + 1) % m B ( rear - front + 1) % m C ( front - rear + m) % m D ( rear - front + m) % m 11、一个数组元素a[i]与( A )的表示等价。 A *(a+i) B a+i C *a+i D &a+i 12、若需要利用形参直接访问实参,则应把形参变量说明为( B )参数。 A 指针 B 引用 C 值 D 变量 13、下面程序段的时间复杂度为( C ) for (int i=0;i

数据结构实验报告 实验一 线性表链式存储运算的算法实现

昆明理工大学信息工程与自动化学院学生实验报告 (201 —201 学年第一学期) 课程名称:数据结构开课实验室:年月日年级、专业、班学号姓名成绩 实验项目名称线性表链式存储运算的算法实现指导教师 教 师 评语教师签名: 年月日 一.实验内容: 线性表链式存储运算的算法实现,实现链表的建立、链表的数据插入、链表的数据删除、链表的数据输出。 二.实验目的: 1.掌握线性表链式存储结构的C语言描述及运算算法的实现; 2.分析算法的空间复杂度和插入和删除的时间复杂度; 3.总结比较线性表顺序存储存储与链式存储的各自特点。 三.主要程序代码分析: LinkList creatListR1() //用尾插入法建立带头结点的单链表 { char *ch=new char(); LinkList head=(LinkList)malloc(sizeof(ListNode)); //生成头结点*head ListNode *s,*r,*pp; r=head; //尾指针初值指向头结点 r->next=NULL; scanf("%s",ch); //读入第一个结点的值 while(strcmp(ch,"#")!=0) { //输入#结束

pp=LocateNode(head,ch); if(pp==NULL) { s=(ListNode *)malloc(sizeof(ListNode)); //生成新的结点*s strcpy(s->data,ch); r->next=s; //新结点插入表尾 r=s; //尾指针r指向新的表尾 r->next=NULL; } scanf("%s",ch); //读入下一个结点的值 } return head; //返回表头指针 } int Insert(ListNode *head) //链表的插入 { ListNode *in,*p,*q; int wh; in=(ListNode *)malloc(sizeof(ListNode));in->next=NULL; //生成新结点p=(ListNode *)malloc(sizeof(ListNode));p->next=NULL; q=(ListNode *)malloc(sizeof(ListNode));q->next=NULL; scanf("%s",in->data); //输入插入的数据 scanf("%d",&wh); //输入插入数据的位置 for(p=head;wh>0;p=p->next,wh--); q=p->next; p->next=in; in->next=q; } void DeleteList(LinkList head,char *key) //链表的删除 { ListNode *p,*r,*q=head; p=LocateNode(head,key); //按key值查找结点的 if(p==NULL) exit(0); //若没有找到结点,退出 while(q->next!=p) //p为要删除的结点,q为p的前结点q=q->next; r=q->next; q->next=r->next; free(r); //释放结点*r } 四.程序运行结果:

3线性表及其顺序存储结构

1.3线性表及其顺序存储结构 1.线性表的基本概念 线性表是由n个数据元素组成的一个有限序列,表中的每一个数据元素,除了每一个外,有且只有一个前件,除了最后一个外,有且只有一个后件。即线性表或是一个空表。 显然线性表是一种线性结构,数据元素在线性表中的位置只取决于它们自己的序号,即数据元素之间的相对位置是线性的。 非空线性表有如下一些结构特征: (1)有且只有一个根结点,它无前件; (2)有且只有一个根结点,它无后件; (3)除了根结点与终端结点外,其他所有结点有且只有一个前件,也只有且只有一个后件。 2.线性表的存储结构 线性表的顺序存储结构具有以下两个特征: (1)线性表中所有元素所占的存储空间是连续的; (2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 由此可以看出,在线性表的顺序存储结构中,其前件和后件两个元素在存储空间中是紧邻的,且其前件元素一定存储在后件元素的前面。 在程序设计语言中,通常定义一个一维数组来表示线性表的顺序存储看见。因为程序设计语言中的一维数组与计算机中的实际的存储空间结构是类似的,这就便于用程序设计语言对线性表进行各种运算处理。 在线性表的顺序存储结构中,可以对线性表进行各种处理。主要的运算有如下几种: (1)在线性表的指定位置处加入一个新的元素; (2)在线性表中删除指定的元素; (3)在线性表中查找某个特定的元素; (4)对线性表中的元素进行整序; (5)按要求将一个线性表分解成多个线性表; (6)按要求将多个线性表合并成一个线性表; (7)复制一个线性表; (8)逆转一个线性表等。 3.顺序表的插入运算 设长度为n的线性表为 (a1,a2,a3,a4,…,ai, …,an) 现要在线性表的第i个元素ai之前插入一个新元素b,插入后得到长度为n+1的线性表为 (a1,a2,a3,a4,…,aj,aj+1, …,an,an+1) 则插入前后的两线性表中的元素满足如下关系: a j0

数据结构线性表2答案

习题二 一、选择题 1.在一个长度为n的顺序表中删除第i个元素(0<i

线性表ADT的顺序存储与链式存储实验报告

实验报告 题目:完成线性表ADT的顺序存储和链式存储方式的实现 一、需求分析 1、本演示程序中,线性表的数据元素类型限定为整型 2、演示程序以用户和计算机的对话方式执行,即在计算机的终端上显示“提 示信息”之后由用户在键盘上键入演示程序规定的运算命令,相应的输出 结果显示在后面。 3、程序的执行命令包括: 创建、撤销、清空、插入、修改、删除、定位等线性表ADT各项基本操作二、概要设计 为实现上述功能,我们给出线性表的抽象数据类型定义,具体的有单向链,双向 链,顺序表等,同时对于上述功能的实现还采用有/无头结点两种方式来实现 1.线性表的抽象数据类型定义为 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,…,n,n≥0} 数据关系:R1={|ai-1,ai∈D,i=2,…,n} 基本操作: InitList(&L) 操作结果:构造一个空的线性表L DestroyList(&L) 初始条件:线性表L已存在。 操作结果:销毁线性表L。 ClearList(&L) 初始条件:线性表L已存在。 操作结果:将L重置为空表。 ListEmpty(L) 初始条件:线性表L已存在。 操作结果:若L为空表,则返回TRUE,否则返回FALSE。 ListLength(L) 初始条件:线性表L已存在。 操作结果:返回L中的i个数据元素的值。 GetElem(L,i,&e) 初始条件:线性表L已存在,1≤i≤ListLength(L)。 操作结果:用e返回L中第i个数据元素的值。 LocateElem(L,e,compare()) 初始条件:线性表L已存在,compare()是数据元素判定函数 操作结果:返回L中第一个与e满足compare()的数据元素的位序。 若这样的数据元素不存在,则返回值为0. PriorElem(L,cur_e,&pre_e) 初始条件:线性表已存在 操作结果:若cur_e是L的数据元素,且不是第一个,则用pre_e 返回它的前驱,否则操作失败,pre_e无定义。

数据结构线性表答案

第一章线性表 2.1 描述以下三个概念的区别:头指针,头结点,首元结点(第一个元素结点)。 解:头指针是指向链表中第一个结点的指针。首元结点是指链表中存储第一个数据元素的结点。头结点是在首元结点之前附设的一个结点,该结点不存储数据元素,其指针域指向首元结点,其作用主要是为了方便对链表的操作。它可以对空表、非空表以及首元结点的操作进行统一处理。 2.2 填空题。 解:(1) 在顺序表中插入或删除一个元素,需要平均移动表中一半元素,具体移动的元素个数与元素在表中的位置有关。 (2) 顺序表中逻辑上相邻的元素的物理位置必定紧邻。单链表中逻辑上相邻的元素的物理位置不一定紧邻。 (3) 在单链表中,除了首元结点外,任一结点的存储位置由其前驱结点的链域的值指示。 (4) 在单链表中设置头结点的作用是插入和删除首元结点时不用进行特殊处理。 2.3 在什么情况下用顺序表比链表好?

解:当线性表的数据元素在物理位置上是连续存储的时候,用顺序表比用链表好,其特点是可以进行随机存取。 2.4 对以下单链表分别执行下列各程序段,并画出结果示意图。 解:

2.5 画出执行下列各行语句后各指针及链表的示意图。 L=(LinkList)malloc(sizeof(LNode)); P=L; for(i=1;i<=4;i++){ P->next=(LinkList)malloc(sizeof(LNode)); P=P->next; P->data=i*2-1; } P->next=NULL; for(i=4;i>=1;i--) Ins_LinkList(L,i+1,i*2); for(i=1;i<=3;i++) Del_LinkList(L,i); 解: 2.6 已知L是无表头结点的单链表,且P结点既不是

数据结构课后习题及答案

填空题(10 * 1’ = 10’) 一、概念题 .当对一个线性表经常进行的是插入和删除操作时,采用链式存储结构为宜。 .当对一个线性表经常进行的是存取操作,而很少进行插入和删除操作时,最好采用顺序存储结构。 .带头结点的单链表L中只有一个元素结点的条件是L->Next->Next==Null。 .循环队列的引入,目的是为了克服假溢出。 .长度为0的字符串称为空串。 .组成串的数据元素只能是字符。 .设T和P是两个给定的串,在T中寻找等于P的子串的过程称为模式匹配,又称P为模式。 .为了实现图的广度优先搜索,除一个标志数组标志已访问的图的结点外,还需要队列存放被访问的结点实现遍历。 .广义表的深度是广义表中括号的重数 .有向图G可拓扑排序的判别条件是有无回路。 .若要求一个稠密图的最小生成树,最好用Prim算法求解。 . 直接定址法法构造的哈希函数肯定不会发生冲突。 .排序算法所花费的时间,通常用在数据的比较和交换两大操作。 .通常从正确性﹑可读性﹑健壮性﹑时空效率等几个方面评价算法的(包括程序)的质量。 .对于给定的n元素,可以构造出的逻辑结构有集合关系﹑线性关系树形关系﹑图状关系四种。 .存储结构主要有顺序存储﹑链式存储﹑索引存储﹑散列存储四种。 .抽象数据类型的定义仅取决于它的一组逻辑特性,而与存储结构无关,即不论其内部结构如何变化,只要它的数学特性不变,都不影响其外部使用。 .一个算法具有五大特性:有穷性﹑确定性﹑可行性,有零个或多个输入﹑有一个或多个输入。 .在双向链表结构中,若要求在p指针所指的结点之前插入指针为s所指的结点,则需执行下列语句:s->prior= p->prior; s->next= p; p->prior- next= s; p->prior= s;。 .在单链表中设置头结点的作用是不管单链表是否为空表,头结点的指针均不空,并使得对单链表的操作(如插入和删除)在各种情况下统一。 .队列是限制在表的一端进行插入和在另一端进行删除的线性表,其运算遵循先进先出原则。 .栈是限定尽在表位进行插入或删除操作的线性表。 .在链式队列中,判定只有一个结点的条件是(Q->rear==Q->front)&&(Q->rear!=NULL)。 .已知链队列的头尾指针分别是f和r,则将x入队的操作序列是node *p=(node *)malloc(node); p->next=x; p->next=NULL; if(r) {r->next=p; r=p;} else {r=p; f=p;}。 .循环队列的满与空的条件是(rear+1)%MAXSIZE==fornt和(front=-1&&rear+1==MAXSIZE)。 .串是一种特殊的线性表,其特殊性表现在数据元素都是由字符组成。 .字符串存储密度是串值所占存储位和实际分配位的比值,在字符串的链式存储结构中其结点大小是可变的。 .所谓稀疏矩阵指的是矩阵中非零元素远远小于元素总数,则称该矩阵为矩阵中非零元素远远小于元素总数,则称该矩阵为稀疏矩阵。 .一维数组的逻辑结构是线性结构,存储结构是顺序存储结构;对二维或多维数组,分别按行优先和列优先两种不同的存储方式。 .在有向图的邻接矩阵表示中,计算第i个顶点入度的方法是求邻接矩阵中第i列非0元素的个数。 网中,结点表示活动,边表示活动之间的优先关系,AOE网中,结点表示事件,边表示活动。 .按排序过程中依据不同原则对内部排序方法进行分类,主要有选择排序﹑交换排序﹑插入排序归并排序等4类。 .在堆排序、快速排序和归并排序中若只从排序结果的稳定性考虑,则应选择归并排序方法;若只从平均情况下排序最快考虑,则应选择快速排序方法;若只从最坏情况下排序最快且要节省类存考虑,则应选择堆排序方法。 .直接插入排序用监视哨的作用是存当前要的插入记录,可又省去查找插入位置时对是否出界的判断。 .设表中元素的初始状态是按键值递增的,则直接插入排序最省时间,快速排序最费时间。 .下列程序判断字符串s是否对称,对称则返回1,否则返回0;如?(“abba”)返回1,?(”abab”)返回0. Int f (char*s) { Int i=0,j=0; 求串长*/

数据结构实验线性表的顺序存储结构

南昌航空大学实验报告 课程名称:数据结构实验名称:实验一线性表的链式存储结构班级:080611 学生姓名:冯武明学号:16 指导教师评定:XXX 签名: XXX 题目:设计并实现以下算法:给出用单链表存储多项式的结构,利用后接法生成多项式的单链表结构,实现两个多项式相加的运算,并就地逆置相加后的多项式链式。 一、需求分析 ⒈先构造两个多项式链表,实现两个多项式的和及删除值为零元素的操作,不同用户输入 的多项式不同。 ⒉在演示过程序中,用户需敲击键盘输入值,即可观看结果。 ⒊程序执行的命令包括: (1)构造多项式链表A (2)构造多项式链表B (3)求两张链表的和(4)删除值为零元素,即不创建链表。 二、概要设计 ⒈为实现上述算法,需要线性表的抽象数据类型: ADT Stack { 数据对象:D={a i:|a i∈ElemSet,i=1…n,n≥0} 数据关系:R1={|a i-1,a i∈D,i=2,…n≥0} 基本操作: init(linklist *L) 操作结果: destroylist(List *L) clearlist(List *L) 初始条件:线性表L已经存在,1≤i≤ListLength(&L) 操作结果:用e返回L中第i个数据元素的值。 insfirst(link h,link s) 初始条件:数据元素e1,e2存在 操作结果:以e1,e2中的姓名项作为判定e1,e2是否相等的依据。 delfirst(link h,link *q) 初始条件:数据元素e1,e2存在 操作结果:以e1,e2中的姓名项(为字符串)的≤来判定e1,e2是否有 ≤的关系。

数据结构实验一顺序表的实现

数据结构实验一顺序表的实现 班级学号分数 一、实验目的: 1.熟悉线性表的基本运算在两种存储结构(顺序结构和链式结构)上的实现; 2.以线性表的各种操作的实现为重点; 3.通过本次学习帮助学生加深C语言的使用,掌握算法分析方法并对已经设计 出的算法进行分析,给出相应的结果。 二、实验要求: 编写实验程序,上机运行本程序,保存程序的运行结果,结合程序进行分析并写出实验报告。 三、实验容及分析: 1.顺序表的建立 建立一个含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。 程序如下: 头文件SqList.h的容如下: #include #include #define LIST_INIT_SIZE 100 #define LISTINCREMENT 10 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 typedef int ElemType; typedef int Status; typedef struct{ ElemType *elem; int length; int listsize; }SqList; Status InitList_Sq(SqList *L) { L->elem=(ElemType *)malloc(LIST_INIT_SIZE*sizeof(ElemType));

if(!L->elem) return(OVERFLOW); L->length=0; L->listsize=LIST_INIT_SIZE; return OK; } Status CreatList_Sq(SqList *L,int n) { int i; printf("输入%d个整数:\n",n); for(i=0;ielem[i]); return OK; } //以下是整个源程序: #include #include"SqList.h" int main() { int i,n; SqList a; SqList *l = &a; if(InitList_Sq(l)==-2) printf("分配失败"); printf("\n输入要建立的线性表l的长度n:");//输入线性表得长度scanf("%d",&n); l->length=n; printf("线性表的长度是:%d\n",l->length); CreatList_Sq(l,n);//生成线性表 printf("输出线性表l中的元素值:");//输出线性表中的元素 for(i=0;ilength;i++) printf("%7d",l->elem[i]); getchar(); } 程序的运行结果:

数据结构试题答案

第一章概论 一、选择题 1、研究数据结构就是研究(D )。 A. 数据的逻辑结构 B. 数据的存储结构 C. 数据的逻辑结构和存储结构 D. 数据的逻辑结构、存储结构及其基本操作(研究非数值计算的程序设计问题中,计算机操作对象以及他们之间的关系和操作) 2、算法分析的两个主要方面是( A )。 A. 空间复杂度和时间复杂度 B. 正确性和简单性 C. 可读性和文档性 D. 数据复杂性和程序复杂性 3、具有线性结构的数据结构是( D )。(线性结构就是:在非空有限集合中,存在为一个被称为第一个的数据元素和最后一个元素,有除了第一个元素,集合中每一个元素均只有一个前驱,除了最后一个元素有唯一后继)(链表、栈、队列、数组、串) A. 图 B. 树 C. 广义表(线性表的推广) D. 栈 4、计算机中的算法指的是解决某一个问题的有限运算序列,它必须具备输入、输出、(B )等5个特性。 A. 可执行性、可移植性和可扩充性 B. 可执行性、有穷性和确定性 C. 确定性、有穷性和稳定性 D. 易读性、稳定性和确定性 5、下面程序段的时间复杂度是( C )。 for(i=0;i

6、算法是(D )。为了解决某一问题而规定的一个有限长的操作序列 A. 计算机程序 B. 解决问题的计算方法 C. 排序算法 D. 解决问题的有限运算序列 7、某算法的语句执行频度为(3n+nlog2n+n2+8),其时间复杂度表示(C )。 A. O(n) B. O(nlog2n) C. O(n2) D. O(log2n) 8、下面程序段的时间复杂度为( C )。 i=1; while(i<=n) i=i*3; A. O(n) B. O(3n) C. O(log3n) D. O(n3) 9、数据结构是一门研究非数值计算的程序设计问题中计算机的数据元素以及它们之间的(B )和运算等的学科。(关系和操作) A. 结构 B. 关系 C. 运算 D. 算法 10、下面程序段的时间复杂度是( A )。 i=s=0; while(s

线性表逆置(顺序表)实验报告

实验一:线性表逆置(顺序表)实验报告 (一)问题的描述: 实现顺序表的逆置算法 (二)数据结构的设计: 顺序表是线性表的顺序存储形式,因此设计如下数据类型表示线性表: typedef struct { ElemType *elem; /* 存储空间基址*/ int length; /* 当前长度*/ int listsize; /* 当前分配的存储容量(以sizeof(ElemType)为单位) */ }SqList; (三)函数功能、参数说明及概要设计: 1.函数Status InitList(SqList *L) 功能说明:实现顺序表L的初始化 算法设计:为顺序表分配一块大小为LIST_INIT_SIZE的储存空间 2.函数int ListLength(SqList L) 功能说明:返回顺序表L长度 算法设计:返回顺序表中的length变量 3.函数Status ListInsert(SqList *L,int i,ElemType e) 功能说明:将元素e插入到顺序表L中的第i个节点 算法设计:判断顺序表是否已满,已满则加空间,未满则继续,将元素e插入到第i个元素之前,并将后面的元素依次往后移 4.函数Status ListTraverse(SqList L,void(*vi)(ElemType*)) 功能说明:依次对L的每个数据元素调用函数vi() 算法设计:依次对L的每个数据元素调用函数vi() 5.函数void Exchange(SqList *L) 功能说明:实现顺序表L的逆置 算法设计:用for循环将顺序表L中的第i个元素依次与第(i+length)个元素交换6.函数void print(ElemType *c) 功能说明:打印元素c 算法设计:打印元素c 2. (四)具体程序的实现

线性表的顺序储存结构

交通大学《算法与数据结构》课程 实验报告 班级:计算机科学与技术2014级2班 实验项目名称:线性表的顺序储存结构 实验项目性质: 实验所属课程:算法与数据结构 实验室(中心): B01407 指导教师:鲁云平 实验完成时间:2016 年 3 月21 日

一、实验目的 1、实现线性表的顺序存储结构 2、熟悉C++程序的基本结构,掌握程序中的头文件、实现文件和主文件之 间的相互关系及各自的作用 3、熟悉顺序表的基本操作方式,掌握顺序表相关操作的具体实现 二、实验容及要求 对顺序存储的线性表进行一些基本操作。主要包括: (1)插入:操作方式为在指定元素前插入、在指定元素之后插入、在指定位置完成插入 (2)删除:操作方式可分为删除指定元素、删除指定位置的元素等,尝试实现逻辑删除操作。 (3)显示数据 (4)查找:查询指定的元素(可根据某个数据成员完成查询操作) (5)定位操作:定位指定元素的序号 (6)更新:修改指定元素的数据 (7)数据文件的读写操作等。 其它操作可根据具体需要自行补充。 要求线性表采用类的定义,数据对象的类型自行定义。 三、实验设备及软件 VC6.0 四、设计方案

㈠题目 线性表的顺序存储结构 ㈡设计的主要思路 1、新建SeqList.h头文件,定义SeqList模板类 2、设计类数据成员,包括:T *data(用于存放数组)、int maxSize (最大可容表项的项数)、int last(当前已存表项的最后位置) 3、设计类成员函数,主要包括: int search(T& x)const;//搜索x在表中位置,函数返回表项序号 int Locate(int i)const;//定位第i个表项,函数返回表项序号 bool getData(int i,T& x)const;//去第i个表项的值 void setData(int i,T& x)//用x修改第i个表项的值 bool Insert(int i,T& x);//插入x在第i个表项之后 bool Remove(int i,T& x); //删除第i个表项,通过x返回表项的值 bool IsEmpty();//判表空否,空则返回true;否则返回false bool IsFull();//判表满否,满则返回true;否则返回false void input(); //输入 void output();//输出 void ofile();/存储在文件中 void ifile();//读取文件并显示 ㈢主要功能 1、建立新表 2、对表进行插入(指定元素前、后以及指定位置插入)、删除(指定 元素删除及指定位置删除)、修改等操作 3、显示当前操作表的全部容 4、存储在文件中 5、从文件中读取表 五、主要代码 ㈠SeqList.h中的主要代码: 1、类成员声明部分: protected: T *data; //存放数组 int maxSize; //最大可容纳表项

数据结构线性表的主要程序代码

数据结构顺序表的主要代码(LIZHULIN) 1./***有头结点的单链表的初始化、建立(表头插入、表尾插入)、求长度、插入、删除、输出***/ /***********单链表的初始化、建立、输出*****************/ #include #include typedef struct Lnode { /*定义线性表的单链表存储结构*/ int data; struct Lnode *next; }LinkList; /****************单链表的初始化*************************/ Initlist(LinkList *L) { /*动态申请存储空间*/ L = (LinkList *)malloc(sizeof(struct Lnode));/*建立头结点*/ L->next = NULL; } /*************建立一个带头结点的单链表,在表尾插入***************/ Create_L(LinkList *L,int n) { LinkList *p,*q; int i; Initlist(L); /*单链表初始化*/ q=L; printf("input the value\n"); for(i = n;i>0;--i) { p = (LinkList*)malloc(sizeof(struct Lnode)); scanf("%d",&p->data); /*输入元素值*/ q->next = p; p->next = NULL; q=p; /*插入到表尾*/ } } /* Create_L */ /*************建立一个带头结点的单链表,在表头插入************** Create_L(LinkList *L,int n) { LinkList *p; int i;

数据结构习题与答案

第 1 章绪论 课后习题讲解 1. 填空 ⑴()是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。 【解答】数据元素 ⑵()是数据的最小单位,()是讨论数据结构时涉及的最小数据单位。 【解答】数据项,数据元素 【分析】数据结构指的是数据元素以及数据元素之间的关系。 ⑶从逻辑关系上讲,数据结构主要分为()、()、()和()。 【解答】集合,线性结构,树结构,图结构 ⑷数据的存储结构主要有()和()两种基本方法,不论哪种存储结构,都要存储两方面的内容:()和()。 【解答】顺序存储结构,链接存储结构,数据元素,数据元素之间的关系 ⑸算法具有五个特性,分别是()、()、()、()、()。 【解答】有零个或多个输入,有一个或多个输出,有穷性,确定性,可行性 ⑹算法的描述方法通常有()、()、()和()四种,其中,()被称为算法语言。 【解答】自然语言,程序设计语言,流程图,伪代码,伪代码 ⑺在一般情况下,一个算法的时间复杂度是()的函数。 【解答】问题规模 ⑻设待处理问题的规模为n,若一个算法的时间复杂度为一个常数,则表示成数量级的形式为(),若为n*log25n,则表示成数量级的形式为()。 【解答】Ο(1),Ο(nlog2n) 【分析】用大O记号表示算法的时间复杂度,需要将低次幂去掉,将最高次幂的系数去掉。 2. 选择题 ⑴顺序存储结构中数据元素之间的逻辑关系是由()表示的,链接存储结构中的数据元素之间的逻辑关系是由()表示的。 A 线性结构 B 非线性结构 C 存储位置 D 指针 【解答】C,D 【分析】顺序存储结构就是用一维数组存储数据结构中的数据元素,其逻辑关系由存储位置(即元素在数组中的下标)表示;链接存储结构中一个数据元素对应链表中的一个结点,元素之间的逻辑关系由结点中的指针表示。

《数据结构》实验一 线性表及其应用

实验一线性表及其应用 一、实验目的 1.熟悉C语言的上机环境,进一步掌握C语言的结构特点。 2.掌握线性表的顺序存储结构的定义及C语言实现。 3.掌握线性表的链式存储结构——单链表的定义及C语言实现。 4.掌握线性表在顺序存储结构即顺序表中的各种基本操作。 5.掌握线性表在链式存储结构——单链表中的各种基本操作。 二、实验内容 1.顺序线性表的建立、插入及删除。 2.链式线性表的建立、插入及删除。 三、实验步骤 1.建立含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。 2.利用前面的实验先建立一个顺序表L={21,23,14,5,56,17,31},然后在第i个位置插入元素68。 3.建立一个带头结点的单链表,结点的值域为整型数据。要求将用户输入的数据按尾插入法来建立相应单链表。 四、实现提示 1.由于C语言的数组类型也有随机存取的特点,一维数组的机内表示就是顺序结构。因此,可用C语言的一维数组实现线性表的顺序存储。 在此,我们利用C语言的结构体类型定义顺序表: #define MAXSIZE 1024 typedef int elemtype; /* 线性表中存放整型元素*/ typedef struct { elemtype vec[MAXSIZE]; int len; /* 顺序表的长度*/ }sequenlist; 将此结构定义放在一个头文件sqlist.h里,可避免在后面的参考程序中代码重复书写,另外在该头文件里给出顺序表的建立及常量的定义。 2. 注意如何取到第i个元素,在插入过程中注意溢出情况以及数组的下标与位序(顺序表中元素的次序)的区别。 3.单链表的结点结构除数据域外,还含有一个指针域。用C语言描述结点结构如下: typedef int elemtype; typedef struct node

数据结构 线性表 课后答案

第2章线性表 1.选择题 (1)顺序表中第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是()。 A.110 B.108 C.100 D.120 答案:B 解释:顺序表中的数据连续存储,所以第5个元素的地址为:100+2*4=108。 (2)在n个结点的顺序表中,算法的时间复杂度是O(1)的操作是()。 A.访问第i个结点(1≤i≤n)和求第i个结点的直接前驱(2≤i≤n) B.在第i个结点后插入一个新结点(1≤i≤n) C.删除第i个结点(1≤i≤n) D.将n个结点从小到大排序 答案:A 解释:在顺序表中插入一个结点的时间复杂度都是O(n2),排序的时间复杂度为O(n2)或O(nlog2n)。顺序表是一种随机存取结构,访问第i个结点和求第i个结点的直接前驱都可以直接通过数组的下标直接定位,时间复杂度是O(1)。 (3)向一个有127个元素的顺序表中插入一个新元素并保持原来顺序不变,平均要移动的元素个数为()。 A.8 B.63.5 C.63 D.7 答案:B 解释:平均要移动的元素个数为:n/2。 (4)链接存储的存储结构所占存储空间()。 A.分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针 B.只有一部分,存放结点值 C.只有一部分,存储表示结点间关系的指针 D.分两部分,一部分存放结点值,另一部分存放结点所占单元数 答案:A (5)线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。 A.必须是连续的B.部分地址必须是连续的 C.一定是不连续的D.连续或不连续都可以 答案:D (6)线性表L在()情况下适用于使用链式结构实现。 A.需经常修改L中的结点值B.需不断对L进行删除插入 C.L中含有大量的结点D.L中结点结构复杂 答案:B

数据结构作业及答案

第一章绪论 一、选择题 1.数据结构是一门研究非数值计算的程序设计问题中计算机的1以及它们之间的2和运算等的学科。1 A.数据元素 B.计算方法 C.逻辑存储 D.数据映像 2 A.结构 B.关系 C.运算 D.算法 2.数据结构被形式地定义为(K, R),其中K是1的有限集,R是K上的2有限集。 1 A.算法 B.数据元素 C.数据操作 D.逻辑结构 2 A.操作 B.映像 C.存储 D.关系 3.在数据结构中,从逻辑上可以把数据结构分成。 A.动态结构和静态结构 B.紧凑结构和非紧凑结构 C.线性结构和非线性结构 D.内部结构和外部结构 4.线性结构的顺序存储结构是一种1的存储结构,线性表的链式存储结构是一种2的存储结构。A.随机存取 B.顺序存取 C.索引存取 D.散列存取 5.算法分析的目的是1,算法分析的两个主要方面其一是指2,其二是指正确性和简单性。1 A.找出数据结构的合理性 B.研究算法中的输入和输出的关系 C.分析算法的效率以求改进 D.分析算法的易懂性和文档性 2 A.空间复杂度和时间复杂度 B.研究算法中的输入和输出的关系 C.可读性和文档性 D.数据复杂性和程序复杂性k 6.计算机算法指的是1,它必须具备输入、输出和2等5个特性。 1 A.计算方法 B.排序方法 C.解决问题的有限运算序列 D.调度方法 2 A.可执行性、可移植性和可扩充性 B.可行性、确定性和有穷性 C.确定性、有穷性和稳定性 D.易读性、稳定性和安全性 7.线性表的逻辑顺序与存储顺序总是一致的,这种说法。A.正确 B.不正确 8线性表若采用链式存储结构时,要求内存中可用存储单元的地址。 A.必须连续的 B.部分地址必须连续的 C.一定是不续的D连续不连续都可以 9.以下的叙述中,正确的是。A.线性表的存储结构优于链式存储结构 B.二维数组是其数据元素为线性表的线性表C.栈的操作方式是先进先出D.队列的操作方式是先进后出10.每种数据结构都具备三个基本运算:插入、删除和查找,这种说法。A.正确B.不正确 二、填空题1.数据逻辑结构包括三种类型、和,树形结构和图形结构合称为。2.在线性结构中,第一个结点前驱结点,其余每个结点有且只有个前驱结点;最后一个结点后续结点,其余每个结点有且只有个后续结点。3.算法的五个重要特性是、、、、。 4.下面程序段的时间复杂度是。 for( i = 0; i < n; i++) for( j = 0; j < m; j++) A[i][j] = 0; 5.下面程序段的时间复杂度是。 i = s = 0; while ( s < n) { i ++; /* i = i +1*/ s += i; /* s = s + i*/ } 6.下面程序段的时间复杂度是。 s = 0; for( i = 0; i < n; i++) for( j = 0; j < n; j++) s += B[i][j]; sum = s; 7.下面程序段的时间复杂度是。 i = 1; while ( i <= n ) i = i * 3;

相关主题
文本预览
相关文档 最新文档