当前位置:文档之家› matlab符号微积分微分方程

matlab符号微积分微分方程

matlab符号微积分微分方程
matlab符号微积分微分方程

符号极限、微积分和符号方程的求解

1.语法:

sym(‘表达式’)%创建符号表达式

f1=sym('a*x^2+b*x+c')

f1 =

a*x^2+b*x+c

2.使用syms命令创建符号变量和符号表达式

语法:

syms arg1 arg2 …,参数%把字符变量定义为符号变量的简洁形式

syms a b c x %创建多个符号变量

f2=a*x^2+b*x+c %创建符号表达式

3.4.1符号极限

假定符号表达式的极限存在,Symbolic Math Toolbox提供了直接求表达式极限的函数limit,函数limit的基本用法如表3.2所示。

【例3.14】分别求1/x在0处从两边趋近、从左边趋近和从右边趋近的三个极限值。

f=sym('1/x')

limit(f,'x',0) %对x求趋近于0的极限

ans =

NaN

limit(f,'x',0,'left') %左趋近于0

ans =

-inf

limit(f,'x',0,'right') %右趋近于0

ans =

inf

程序分析:当左右极限不相等,表达式的极限不存在为NaN。

3.4.2符号微分

函数diff是用来求符号表达式的微分。

语法:

diff(f) %求f对自由变量的一阶微分

diff(f,t) %求f对符号变量t的一阶微分

diff(f,n) %求f对自由变量的n阶微分

diff(f,t,n) %求f对符号变量t的n阶微分

【例3.15】已知f(x)=ax2+bx+c,求f(x)的微分。

f=sym('a*x^2+b*x+c')

f =

a*x^2+b*x+c

diff(f) %对默认自由变量x求一阶微分

ans =

2*a*x+b

diff(f,'a') %对符号变量a求一阶微分

ans =

x^2

diff(f,'x',2) %对符号变量x求二阶微分

ans =

2*a

diff(f,3) %对默认自由变量x求三阶微分

ans = 0

微分函数diff 也可以用于符号矩阵,其结果是对矩阵的每一个元素进行微分运算。

【例3.15续】对符号矩阵???

?????x 2e tsin(x)t 2x 求微分。 syms t x g=[2*x t^2;t*sin(x) exp(x)] %创建符号矩阵

g = [ 2*x, t^2] [ t*sin(x), exp(x)] diff(g) %对默认自由变量x 求一阶微分

ans = [ 2, 0] [ t*cos(x), exp(x)] diff(g,'t') %对符号变量t 求一阶微分 ans = [ 0, 2*t] [ sin(x), 0] diff(g,2) %对默认自由变量x 求二阶微分 ans = [ 0, 0] [ -t*sin(x), exp(x)]

diff 还可以用于对数组中的元素进行逐项求差值。

【例3.15续】可以使用diff 计算向量间元素的差值。

x1=0:0.5:2; y1=sin(x1)

y1 = 0 0.4794 0.8415 0.9975 0.9093 diff(y1) %计算元素差

ans = 0.4794 0.3620 0.1560 -0.0882

程序分析:计算出的差值比原来的向量少一列。

3.4.3符号积分

积分有定积分和不定积分,运用函数int 可以求得符号表达式的积分。 语法:

int(f,’t’) %求符号变量t 的不定积分

int(f,’t’,a,b) %求符号变量t 的积分

int(f,’t’,’m’,’n’) %求符号变量t 的积分

说明:t 为符号变量,当t 省略则为默认自由变量;a 和b 为数值,[a,b]为积分区间;m 和n 为符号对象,[m,n]为积分区间;与符号微分相比,符号积分复杂得多。因为函数的积分有时可能不存在,即使存在,也可能限于很多条件,MATLAB 无法顺利得出。当MATLAB 不能找到积分时,它将给出警告提示并返回该函数的原表达式。

【例3.16】求积分?cos(x)和??cos(x) 。 f=sym('cos(x)'); int(f) %求不定积分

ans = sin(x) int(f,0,pi/3) %求定积分

ans = 1/2*3^(1/2) int(f,'a','b') %求定积分

ans = sin(b)-sin(a) int(int(f)) %求多重积分

ans = -cos(x)

diff 和int 命令,也可以直接对字符串f 进行运算: f='cos(x)';

【例3.16续】求符号矩阵???

?????x 2e tsin(x)t 2x 的积分。 syms t x g=[2*x t^2;t*sin(x) exp(x)] %创建符号矩阵

g = [ 2*x, t^2] [ t*sin(x), exp(x)] int(g) %对x 求不定积分

ans = [ x^2, t^2*x] [ -t*cos(x), exp(x)] int(g,'t') %对t 求不定积分

ans = [ 2*x*t, 1/3*t^3] [ 1/2*t^2*sin(x), exp(x)*t] int(g,sym('a'),sym('b')) %对x 求定积分

ans = [ b^2-a^2, t^2*(b-a)] [ -t*cos(b)+t*cos(a), exp(b)-exp(a)]

3.4.4符号级数

1. symsum 函数

语法:

symsum(s,x,a,b) %计算表达式s 的级数和

说明:x 为自变量,x 省略则默认为对自由变量求和;s 为符号表达式;

[a,b]为参数x 的取值范围。

【例3.17】求级数 +++++222k 1

31

21

1和1+x+x 2+…+x k +…的和。

syms x k s1=symsum(1/k^2,1,10) %计算级数的前10项和 s1 = 1968329/1270080 s2=symsum(1/k^2,1,inf) %计算级数和

s2 = 1/6*pi^2 s3=symsum(x^k,'k',0,inf)

%计算对k 为自变量的级数和

s3 = -1/(x-1)

2. taylor 函数

语法:

taylor (F,x,n) %求泰勒级数展开

说明:x 为自变量,F 为符号表达式;对F 进行泰勒级数展开至n 项,参数n 省略则默认展开前5项。

【例3.17续】求e x 的泰勒展开式为: +?++??+?++-1k 32x k!1x 321x 21x 1。 syms x s1=taylor(exp(x),8) %展开前8项

s1 = 1+x+1/2*x^2+1/6*x^3+1/24*x^4+1/120*x^5+1/720*x^6+1/5040*x^7 s2=taylor(exp(x)) %默认展开前5项

s2 = 1+x+1/2*x^2+1/6*x^3+1/24*x^4+1/120*x^5

3.6符号方程的求解

3.6.1代数方程

当方程不存在解析解又无其他自由参数时,MATLAB 可以用solve 命令给出方程的数值解。

语法:

solve(‘eq ’,’v ’) %求方程关于指定变量的解 solve(‘eq1’, ’eq2’,’v1’,’v2’,…) %求方程组关于指定变量的解

说明:eq 可以是含等号的符号表达式的方程,也可以是不含等号的符号表达式,但所指的仍是令eq=0的方程;当参数v 省略时,默认为方程中的自由变量;其输出结果为结构数组类型。

【例3.21】求方程ax 2+bx+c=0和sinx=0的解。 f1=sym('a*x^2+b*x+c') %无等号

f1 = a*x^2+b*x+c solve(f1) %求方程的解x

ans = [ 1/2/a*(-b+(b^2-4*a*c)^(1/2))] [ 1/2/a*(-b-(b^2-4*a*c)^(1/2))] f2=sym('sin(x)')

f2 = sin(x) solve(f2,'x')

ans = 0

程序分析:当sinx=0有多个解时,只能得出0附近的有限几个解。

【例3.22】求三元非线性方程组?????-==+=++1z *y 43z x 012x x 2的解。

eq1=sym('x^2+2*x+1'); eq2=sym('x+3*z=4'); eq3=sym('y*z=-1'); [x,y,z]=solve(eq1,eq2,eq3) %解方程组并赋值给x,y,z

x = -1 y = -3/5 z = 5/3

程序分析:输出结果为“结构对象”,如果最后一句为“S=solve(eq1,eq2,eq3) ”,则结果为:

S =

x: [1x1 sym]

y: [1x1 sym]

z: [1x1 sym]

3.6.2符号常微分方程

MATLAB 提供了dsolve 命令可以用于对符号常微分方程进行求解。 语法:

dsolve(‘eq ’,’con ’,’v ’) %求解微分方程 dsolve(‘eq1,eq2…’,’con1,con2…’,’v1,v2…’) %求解微分方程组

说明:’eq ’为微分方程;’con ’是微分初始条件,可省略;’v ’为指定自由变量,省略时则默认为x 或t 为自由变量;输出结果为结构数组类型。 ? 当y 是因变量时,微分方程’eq ’的表述规定为:

y 的一阶导数dx dy 或dt dy 表示为Dy ;

y 的n 阶导数n n dx y

d 或n n dt y d 表示为Dny 。

? 微分初始条件'con'应写成'y(a)=b ,Dy(c)=d'的格式;当初始条件少于微分方程数时,在所得解中将出现任意常数符C1,C2……,解中任意常数符的数目等于所缺少的初始条件数。

【例3.23】求微分方程222x dx

dy 3dx y

d x =-,y(1)=0,y(0)=0的解。 y=dsolve('x*D2y-3*Dy=x^2','x') %求微分方程的通解

y = -1/3*x^3+C1+C2*x^4 y=dsolve('x*D2y-3*Dy=x^2','y(1)=0,y(5)=0','x') %求微分方程的特解

y = -1/3*x^3+125/468+31/468*x^4

【例3.24】求微分方程组x dt dy y,dt dx -==的解。 [x,y]=dsolve('Dx=y,Dy=-x')

x = cos(t)*C1+sin(t)*C2 y = -sin(t)*C1+cos(t)*C2

程序分析:默认的自由变量是t ,C1、C2为任意常数,程序也可指定自由变量,结果相同:

[x,y]=dsolve('Dx=y,Dy=-x','t')

3.7符号函数的可视化

3.7.1符号函数的绘图命令

1. ezplot 和 ezplot3命令

ezplot 命令是绘制符号表达式的自变量和对应各函数值的二维曲线,ezplot3命令用于绘制三维曲线。

语法:

ezplot(F,[xmin,xmax],fig) %画符号表达式的图形 说明:F 是将要画的符号函数;[xmin,xmax]是绘图的自变量范围,省略时默认值为[-2л,2л];fig 是指定的图形窗口,省略时默认为当前图形窗口。 【例3.25】画出上一小节【例3.23】中y(x)特解的图形,如图3.2所示。 y =sym('-1/3*x^3+1/3*x^4')

y = -1/3*x^3+1/3*x^4

ezplot(y)

ezplot(y,[0,100]) %绘制符号函数y 在[0,100]中的图形

【例3.26】用ezplot3绘制三维符号表达式曲线,如图3.3所示。 x=sym('sin(t)'); z=sym('t'); y=sym('cos(t)');

图3.2 (a) y(x)在[-2л,2л]的图形 (b) y(x)在[0,100]的图形

ezplot3(x,y,z,[0,10*pi],'animate') %绘制t在[0,10*pi]范围的三维曲线

图3.3 符号表达式绘制三维曲线

2. 其它绘图命令

MATLAB提供的较常用绘图命令还有如表3.3所示。

表3.3 符号表达式和字符串的绘图命令

含义举例

画等高线ezcontour('x*sin(t)',[-4,4])

画带填充颜色等高ezcontourf('x*sin(t)',[-4,4])

说明:这些命令的举例都是对字符串函数进行绘图,同样也可用于符号表达式绘图。

3.7.2图形化的符号函数计算器

Symbolic Math Toolbox还提供了另一种符号计算方式即图形化的符号函数计算器,由funtool.m文件生成。在MATLAB命令窗口输入命令“funtool”,图3.4 (a) Figure No. 1窗口 (b) Figure No. 2窗口

图3.4 (c) Figure No. 3窗口

就会出现该图形化函数计算器。如图3.4所示。

在图形化函数计算器中可以方便地查看函数的计算结果和显示的曲线。

常用数学符号大全(注音及注解)

数学符号及读法大全 常用数学输入符号:≈≡≠=≤≥<>≦≧∷±+-× ÷/∫?∝∞??∑∏∪∩∈∮?//?‖∟?≌∽√()【】{}ⅠⅡ⊕?∠αβγδεδεζΓ

i -1的平方根 f(x) 函数f在自变量x处的值 sin(x) 在自变量x处的正弦函数值 exp(x) 在自变量x处的指数函数值,常被写作e x a^x a的x次方;有理数x由反函数定义 ln x exp x 的反函数 a x同 a^x log b a 以b为底a的对数; b log b a = a cos x 在自变量x处余弦函数的值 tan x 其值等于 sin x/cos x cot x 余切函数的值或 cos x/sin x sec x 正割含数的值,其值等于 1/cos x csc x 余割函数的值,其值等于 1/sin x asin x y,正弦函数反函数在x处的值,即 x = sin y acos x y,余弦函数反函数在x处的值,即 x = cos y atan x y,正切函数反函数在x处的值,即 x = tan y acot x y,余切函数反函数在x处的值,即 x = cot y asec x y,正割函数反函数在x处的值,即 x = sec y acsc x y,余割函数反函数在x处的值,即 x = csc y ζ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时 i, j, k 分别表示x、y、z方向上的单位向量 (a, b, c) 以a、b、c为元素的向量 (a, b) 以a、b为元素的向量 (a, b) a、b向量的点积 a?b a、b向量的点积 (a?b) a、b向量的点积 |v| 向量v的模 |x| 数x的绝对值 Σ 表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。 如j从1到100 的和可以表示成:。这表示1 + 2 + … + n M 表示一个矩阵或数列或其它 |v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量

用递推公式计算定积分(matlab版)

用递推公式计算定积分 实验目的: 1.充分理解不稳定的计算方法会造成误差的积累,在计算过程中会导致误差的迅速增加,从而使结果产生较大的误差。 2.在选择数值计算公式来进行近似计算时,应学会选用那些在计算过程中不会导致误差迅速增长的计算公式。 3.理解不稳定的计算公式造成误差积累的来源及具体过程; 4.掌握简单的matlab语言进行数值计算的方法。 实验题目: 对n=0,1,2,…,20,计算定积分: 实验原理: 由于y(n)= = – 在计算时有两种迭代方法,如下: 方法一: y(n)=– 5*y(n-1),n=1,2,3, (20) 取y(0)= = ln6-ln5 ≈ 0.182322 方法二: 利用递推公式:y(n-1)=-*y(n),n=20,19, (1) 而且,由 = * ≤≤* =

可取:y(20)≈*()≈0.008730. 实验容: 对算法一,程序代码如下: function [y,n]=funa() syms k n t; t=0.182322; n=0; y=zeros(1,20); y(1)=t; for k=2:20 y(k)=1/k-5*y(k-1); n=n+1; end y(1:6) y(7:11) 对算法二,程序代码如下: %计算定积分; %n--表示迭代次数; %y用来存储结果; function [y,n]=f(); syms k y_20;

y=zeros(21,1); n=1; y_20=(1/105+1/126)/2; y(21)=y_20; for k=21:-1:2 y(k-1)=1/(5*(k-1))-y(k)/5; n=n+1; end 实验结果: 由于计算过程中,前11个数字太小,后9个数字比较大,造成前面几个数字只显示0.0000的现象,所以先输出前6个,再输出7—11个,这样就能全部显示出来了。 算法一结果: [y,n]=funa %先显示一y(1)—y(6) ans = 0.1823 -0.4116 2.3914 -11.7069 58.7346

实验MATLAB符号运算

实验四 MATLAB 符号运算 一、实验目的 掌握符号变量和符号表达式的创建,掌握MATLAB 的symbol 工具箱的一些基本应用。 二、实验内容 (1) 符号变量、表达式、方程及函数的表示。 (2) 符号微积分运算。 (3) 符号表达式的操作和转换。 (4) 符号微分方程求解。 三、实验步骤 1. 符号运算的引入 在数值运算中如果求x x x πsin lim 0→,则可以不断地让x 接近于0,以求得表达式接近什么数,但是终究不能令0=x ,因为在数值运算中0是不能作除数的。MATLAB 的符号运算能解决这类问题。输入如下命令: >>f=sym('sin(pi*x)/x') >>limit(f,'x',0) >> f=sym('sin(pi*x)/x') f = sin(pi*x)/x >> limit(f,'x',0) ans = Pi 2. 符号常量、符号变量、符号表达式的创建 1) 使用sym( )创建 输入以下命令,观察Workspace 中A 、B 、f 是什么类型的数据,占用多少字节的内存空间。 >> A=sym('1') >> B=sym('x') >> f=sym('2*x^2+3*y-1') >> clear >> f1=sym('1+2') >> f2=sym(1+2) >> f3=sym('2*x+3') >> f4=sym(2*x+3) >> x=1 >> f4=sym(2*x+3) > A=sym('1') A = 1

>> B=sym('x') B = x >> f=sym('2*x^2+3*y-1') f = 2*x^2+3*y-1 >> clear >> f1=sym('1+2') f1 = 1+2 >> f2=sym(1+2) f2 = 3 >> f3=sym('2*x+3') f3 = 2*x+3 >> f4=sym(2*x+3) ??? Undefined function or variable 'x'. >> x=1 x = >> f4=sym(2*x+3) f4 =

常用数学符号大全 (2)

常用数学输入符号:≈ ≡ ≠ =≤≥ <>≮≯∷ ±+-× ÷/∫ ∮∝∞ ∧∨∑ ∏ ∪∩ ∈∵∴//⊥‖ ∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔ αβγδεζηθικλμνξοπρστυφχψω ΑΒΓΔΕΖΗΘΙΚ∧ΜΝΞΟ∏Ρ∑ΤΥΦΧΨΩ абвгдеёжзийклмнопрстуфхцчшщъыьэюя АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ

exp(x) 在自变量x处的指数函数值,常被写作e x a^x a的x次方;有理数x由反函数定义 ln x exp x 的反函数 a x同a^x log b a 以b为底a的对数;b log b a = a cos x 在自变量x处余弦函数的值 tan x 其值等于sin x/cos x cot x 余切函数的值或cos x/sin x sec x 正割含数的值,其值等于1/cos x csc x 余割函数的值,其值等于1/sin x asin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc y θ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时 i, j, k 分别表示x、y、z方向上的单位向量 (a, b, c) 以a、b、c为元素的向量 (a, b) 以a、b为元素的向量 (a, b) a、b向量的点积 a?b a、b向量的点积 (a?b)a、b向量的点积 |v| 向量v的模 |x| 数x的绝对值 Σ表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。如j从1到 100 的和可以表示成:。这表示1 + 2 + … + n M 表示一个矩阵或数列或其它 |v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量

数学符号大全

目录 数学符号起源 (1) 数学符号种类 (2) 数学符号读法 (10) 数学符号起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。 例如加号曾经有好几种,现在通用"+"号。 "+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"δ"最后都变成了"+"号。 "-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。 到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。 乘号曾经用过十几种,现在通用两种。一个是"3",最早是英国数学家奥屈特1631年提出的;一个是"2",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"3"号象拉丁字母"X",加以反对,而赞成用"2"号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。 到了十八世纪,美国数学家欧德莱确定,把"3"作为乘号。他认为"3"是"+"斜起来写,是另一种表示增加的符号。 平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“ⅳ”表示根号。“ⅳ”是由拉丁字线“r”变,“——”是括线。 "÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。

常用数学符号大全

常用数学符号大全 1 几何符号 ?ⅷⅶ????△ 2 代数符号 ⅴⅸⅹ~∫ ≠ ≤ ≥ ≈ ∞ ? 3运算符号 ×÷√ ± 4集合符号 ??ⅰ 5特殊符号 ∑ π(圆周率) 6推理符号 |a| ??△ⅶ??≠ ? ±≥ ≤ ⅰ????↖↗↘↙ⅷⅸⅹ &; § ??←↑→↓??↖↗ Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω α β γ δε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ω 1 几何符号 ?ⅷⅶ????△ 2 代数符号 ⅴⅸⅹ~?????ⅵ? 3运算符号 ×÷ⅳa 4集合符号 ??ⅰ 5特殊符号 ⅲπ(圆周率) 6推理符号

|a| ??△ⅶ????a??ⅰ ? ???↖↗↘↙ⅷⅸⅹ &; § ??←↑→↓??↖↗ ΓΓΘΛΞΟΠ?ΦΥΦΧ αβγδεδεζηθικλ μνπξζηυθχψω Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ ﹪ ﹫ ? ? ? ? ? ? ? ? ⅰⅱⅲ?ⅳⅴⅵ? ⅶ?ⅷⅸⅹ???? ??????????????????? ??? 指数0123:o123 上述符号所表示的意义和读法(中英文参照) + plus 加号;正号 - minus 减号;负号 a plus or minus 正负号 × is multiplied by 乘号 ÷ is divided by 除号 = is equal to 等于号

? is not equal to 不等于号 ? is equivalent to 全等于号 ? is approximately equal to 约等于 ? is approximately equal to 约等于号< is less than 小于号 > is more than 大于号 ? is less than or equal to 小于或等于? is more than or equal to 大于或等于% per cent 百分之… ⅵ infinity 无限大号 ⅳ (square) root 平方根 X squared X的平方 X cubed X的立方 ? since; because 因为 ? hence 所以 ⅶ angle 角 ? semicircle 半圆 ? circle 圆 ? circumference 圆周 △ triangle 三角形 ? perpendicular to 垂直于 ? intersection of 并,合集 ? union of 交,通集

matlab求定积分之实例说明

一、符号积分 符号积分由函数int来实现。该函数的一般调用格式为: int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分; int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分; int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。 例: 求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下: >>syms x y z %定义符号变量 >>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式 F2 = 1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解 >>VF2=vpa(F2) %给出默认精度的数值解 VF2 = 224.92153573331143159790710032805 二、数值积分 1.数值积分基本原理 求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)?法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。这样求定积分问题就分解为求和问题。 2.数值积分的实现方法 基于变步长辛普生法,MATLAB给出了quad函数来求定积分。该函数的调用格式为: [I,n]=quad('fname',a,b,tol,trace) 基于变步长、牛顿-柯特斯(Newton-Cotes)法,MATLAB给出了quadl函数来求定积分。该函数的调用格式为: [I,n]=quadl('fname',a,b,tol,trace) 其中fname是被积函数名。a和b分别是定积分的下限和上限。tol用来控制积分精度,缺省时取tol=0.001。trace控制是否展现积分过程,若取非0则展现积分过程,取0则不展现,缺省时取trace=0。返回参数I即定积分值,n为被积函数的调用次数。 例: 求函数'exp(-x*x)的定积分,积分下限为0,积分上限为1。 >>fun=inline('exp(-x.*x)','x'); %用内联函数定义被积函数fname

matlab图中特殊符号的输入

在MATLAB中使用LaTex字符 1.Tex字符表 在text对象的函数中(函数title、xlabel、ylabel、zlabel或text),说明文字除使用标准的ASCII字符外,还可使用LaTeX格式的控制字符,这样就可以在图形上添加希腊字母、数学符号及公式等内容。例如, text(0.3,0.5,‘sin({\omega}t+{\beta})’)将在图形窗口的(0.3,0.5)位置得 到标注效果sin(ωt+β)。 Tex字符在输出一些数学公式时经常使用,它只能由类型为text的对象创建。函数title、xlabel、ylabel、zlabel或text都能创建一个text对象,因此Tex字符转义符(带“\”的字符串)经常作为这些函数的输入参数。Tex字符及其函数见下表。 函数字符代表符号函数字符代表符号函数字符代表符号\alpha α\upsilon υ\sim ~ \beta β\phi φ\leq ≤ \gamma γ\chi χ\infty ∞ \delta δ\psi ψ\clubsuit ? \epsilon ε\omega ω\diamondsuit ? \zeta ζ\Gamma Γ\heartsuit ? \eta η\Delta ?\spadesuit ? \theta θ\Theta Θ\leftrightarrow ? \vartheta ?\Lambda Λ\leftarrow ← \iota ι\Xi Ξ\uparrow \kappa κ\Pi ∏\rightarrow → \lambda λ\Sigma ∑\downarrow ↓ \mu μ\Upsilon Y\circ ? \nu ν\Phi Φ\pm ± \xi ξ\Psi ψ\geq ≥ \pi π\Omega Ω\propto ∝ \rho ρ\formall ?\partial ? \sigma σ\exists ?\bullet ? \varsigma ?\ni ?\div ÷ \tau τ\cong ?\neq ≠ \equiv ≡\approx ≈\aleph ? \Im \Re ?\wp ? \otimes ?\oplus ⊕\oslash ? \cap ?\cup ?\supseteq ? \supset ?\subseteq ?\subset ? \int ?\in ∈\o ο \rfloor ?\lceil ?\nabla ?

数学常见符号读音

数学符号读法与含义大全

符号含义 i -1的平方根 f(x) 函数f在自变量x处的值 sin(x) 在自变量x处的正弦函数值 exp(x) 在自变量x处的指数函数值,常被写作e x a^x a的x次方;有理数x由反函数定义 ln x exp x 的反函数 a x同a^x log b a 以b为底a的对数;b log b a = a cos x 在自变量x处余弦函数的值 tan x 其值等于sin x/cos x cot x 余切函数的值或cos x/sin x

sec x 正割含数的值,其值等于1/cos x csc x 余割函数的值,其值等于1/sin x asin x y,正弦函数反函数在x处的值,即x = sin y acos x y,余弦函数反函数在x处的值,即x = cos y atan x y,正切函数反函数在x处的值,即x = tan y acot x y,余切函数反函数在x处的值,即x = cot y asec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc y 角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、ζ z用于表示空间中的点时 i, j, k 分别表示x、y、z方向上的单位向量 (a, b, c) 以a、b、c为元素的向量 (a, b) 以a、b为元素的向量 (a, b) a、b向量的点积 a?b a、b向量的点积 (a?b)a、b向量的点积 |v| 向量v的模 |x| 数x的绝对值 Σ表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。

常用数学符号大全

常用数学符号大全 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

常用数学输入符号:~~≈ ≡ ≠ =≤≥ <>≮≯∷ ±+- × ÷/∫ ∮∝∞ ∧∨∑ ∏ ∪∩ ∈∵∴//⊥‖ ∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔαβγδεζηθικλμνξοπρστυφχψω ΑΒΓΔΕΖΗΘΙΚ∧ΜΝΞΟ∏Ρ∑ΤΥΦΧΨΩ абвгдеёжзийклмнопрстуфхцчшщъыьэюя АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ

sin(x) 在自变量x处的正弦函数值 exp(x) 在自变量x处的指数函数值,常被写作e x a^x a的x次方;有理数x由反函数定义 ln x exp x 的反函数 a x同 a^x log b a 以b为底a的对数; b log b a = a cos x 在自变量x处余弦函数的值 tan x 其值等于 sin x/cos x cot x 余切函数的值或 cos x/sin x sec x 正割含数的值,其值等于 1/cos x csc x 余割函数的值,其值等于 1/sin x asin x y,正弦函数反函数在x处的值,即 x = sin y acos x y,余弦函数反函数在x处的值,即 x = cos y atan x y,正切函数反函数在x处的值,即 x = tan y acot x y,余切函数反函数在x处的值,即 x = cot y asec x y,正割函数反函数在x处的值,即 x = sec y acsc x y,余割函数反函数在x处的值,即 x = csc y θ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时 i, j, k 分别表示x、y、z方向上的单位向量 (a, b, c) 以a、b、c为元素的向量 (a, b) 以a、b为元素的向量 (a, b) a、b向量的点积 ab a、b向量的点积 (ab) a、b向量的点积 |v| 向量v的模 |x| 数x的绝对值 Σ表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。 如j从1到100 的和可以表示成:。这表示1 + 2 + … + n M 表示一个矩阵或数列或其它 |v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量

实验一B Matlab基本操作与微积分计算

实验一Matlab基本操作与微积分计算 实验目的 1.进一步理解导数概念及其几何意义. 2.学习matlab的求导命令与求导法. 3.通过本实验加深理解积分理论中分割、近似、求和、取极限的思想方法. 4.学习并掌握用matlab求不定积分、定积分、二重积分、曲线积分的方法. 5.学习matlab命令sum、symsum与int. 实验内容 一、变量 1、变量 MA TLAB中变量的命名规则是: (1)变量名必须是不含空格的单个词; (2)变量名区分大小写; (3)变量名最多不超过19个字符; (4)变量名必须以字母打头,之后可以是任意字母、数字或下划线,变量名中不允许使用标点符号. 1、创建简单的数组 x=[a b c d e f ]创建包含指定元素的行向量 x=first:step: last创建从first起,逐步加step计数,last结束的行向量, step缺省默认值为1 x=linspace(first,last,n)创建从first开始,到last结束,有n个元素的行向量 x=logspace(first,last,n)创建从first开始,到last结束,有n个元素的对数分隔行向量. 注:以空格或逗号分隔的元素指定的是不同列的元素,而以分号分隔的元素指定了不同行的元素. 2、数组元素的访问 (1)访问一个元素: x(i)表示访问数组x的第i个元素. (2)访问一块元素: x(a :b :c)表示访问数组x的从第a个元素开始,以步长为b到第c个元素(但

不超过c),b可以为负数,b缺损时为1. (3)直接使用元素编址序号: x ([a b c d]) 表示提取数组x的第a、b、c、d个元素构成一个新的数组[x (a) x (b) x(c) x(d)]. 3、数组的运算 (1)标量-数组运算 数组对标量的加、减、乘、除、乘方是数组的每个元素对该标量施加相应的加、减、乘、除、乘方运算. 设:a=[a1,a2,…,an], c=标量, 则: a+c=[a1+c,a2+c,…,an+c] a .*c=[a1*c,a2*c,…,an*c] a ./c= [a1/c,a2/c,…,an/c](右除) a .\c= [c/a1,c/a2,…,c/an] (左除) a .^c= [a1^c,a2^c,…,an^c] c .^a= [c^a1,c^a2,…,c^an] (2)数组-数组运算 当两个数组有相同维数时,加、减、乘、除、幂运算可按元素对元素方式进行的,不同大小或维数的数组是不能进行运算的. 设:a=[a1,a2,…,an], b=[b1,b2,…,bn], 则: a +b= [a1+b1,a2+b2,…,an+bn] a .*b= [a1*b1,a2*b2,…,an*bn] a ./b= [a1/b1,a2/b2,…,an/bn] a .\b=[b1/a1,b2/a2,…,bn/an] a .^b=[a1^b1,a2^b2,…,an^bn] 三、矩阵 1、矩阵的建立 矩阵直接输入:从“[ ” 开始,元素之间用逗号“,”(或空格),行之间用分号“;”(或回车),用“ ]”结束. 特殊矩阵的建立: a=[ ] 产生一个空矩阵,当对一项操作无结果时,返回空矩阵,空矩阵的大小为零. b=zeros (m,n) 产生一个m行、n列的零矩阵 c=ones (m,n) 产生一个m行、n列的元素全为1的矩阵 d=eye (m,n) 产生一个m行、n列的单位矩阵 eye (n) %生成n维的单位向量 eye (size (A)) %生成与A同维的单位阵 2、矩阵中元素的操作 (1)矩阵A的第r行A(r,:) (2)矩阵A的第r列A(:,r) (3)依次提取矩阵A的每一列,将A拉伸为一个列向量A(:) (4)取矩阵A的第i1~i2行、第j1~j2列构成新矩阵:A(i1:i2, j1:j2) (5)以逆序提取矩阵A的第i1~i2行,构成新矩阵:A(i2:-1:i1,:) (6)以逆序提取矩阵A的第j1~j2列,构成新矩阵:A(:, j2:-1:j1 ) (7)删除A的第i1~i2行,构成新矩阵:A(i1:i2,:)=[ ] (8)删除A的第j1~j2列,构成新矩阵:A(:, j1:j2)=[ ] (9)将矩阵A和B拼接成新矩阵:[A B];[A;B] 3、矩阵的运算 (1)标量-矩阵运算同标量-数组运算. (2)矩阵-矩阵运算 a. 元素对元素的运算,同数组-数组运算.(A/B %A右除B; B\A%A左除B) b. 矩阵运算: 矩阵加法:A+B 矩阵乘法:A*B 方阵的行列式:det(A) 方阵的逆:inv(A)

实验MATLAB符号计算

实验四符号计算 符号计算的特点:一,运算以推理解析的方式进行,因此不受计算误差积累问题困扰;二,符号计算,或给出完全正确的封闭解,或给出任意精度的数值解(当封闭解不存在时);三,符号计算指令的调用比较简单,经典教科书公式相近;四,计算所需时间较长,有时难以忍受。 在MATLAB中,符号计算虽以数值计算的补充身份出现,但涉及符号计算的指令使用、运算符操作、计算结果可视化、程序编制以及在线帮助系统都是十分完整、便捷的。 MATLAB的升级和符号计算内核Maple的升级,决定着符号计算工具包的升级。但从用户使用角度看,这些升级所引起的变化相当细微。即使这样,本章还是及时作了相应的更新和说明。如MATLAB 6.5+ 版开始启用Maple VIII的计算引擎,从而克服了Maple V计算“广义Fourier变换”时的错误(详见第5.4.1节)。 5.1符号对象和符号表达式 5.1.1符号对象的生成和使用 【例5.1.1-1】符号常数形成中的差异 a1=[1/3,pi/7,sqrt(5),pi+sqrt(5)] % <1> a2=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)]) % <2> a3=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)],'e') % <3> a4=sym('[1/3,pi/7,sqrt(5),pi+sqrt(5)]') % <4> a24=a2-a4 a1 = 0.3333 0.4488 2.2361 5.3777 a2 = [ 1/3, pi/7, sqrt(5), 6054707603575008*2^(-50)] a3 = [ 1/3-eps/12, pi/7-13*eps/165, sqrt(5)+137*eps/280, 6054707603575008*2^(-50)] a4 = [ 1/3, pi/7, sqrt(5), pi+sqrt(5)] a24 = [ 0, 0, 0, 189209612611719/35184372088832-pi-5^(1/2)] 【例5.1.1-2】演示:几种输入下产生矩阵的异同。 a1=sym([1/3,0.2+sqrt(2),pi]) % <1> a2=sym('[1/3,0.2+sqrt(2),pi]') % <2> a3=sym('[1/3 0.2+sqrt(2) pi]') % <3> a1_a2=a1-a2 % a1 = [ 1/3, 7269771597999872*2^(-52), pi] a2 = [ 1/3, 0.2+sqrt(2), pi] a3 = [ 1/3, 0.2+sqrt(2), pi] a1_a2 = [ 0, 1.4142135623730951010657008737326-2^(1/2), 0]

常用数学符号大全

常用数学符号大全 1、几何符号 ?‖∠??≡ ≌△° |a| ??∠∟ ‖| 2、代数符号 ? ∝∧∨~∫ ≤ ≥ ≈ ∞ ∶〔〕〈〉《》「」『』】【〖 3、运算符号 × ? √ ± ≠ ≡ ≮≯ 4、集合符号 ∪∩ ∈Φ ? ¢ 5、特殊符号 ∑ π(圆周率)@#☆★○●◎◇◆□■▓⊿※ ¥Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ω ∏ 6、推理符号 ← ↑ → ↓ ↖↗↘↙∴∵∶∷T ? ü 7、标点符号` ˉ ˇ ¨ 、· ‘’ 8、其他 & ; §℃№ $£¥‰ ℉♂ ♀ ?????????? Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ω α β γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ω ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ

∈∏ ∑ ∕ √ ∝∞ ∟ ∠∣‖∧∨∩ ∪∫ ∮ ∴∵∶∷?≈ ≌≈ ≠≡ ≤ ≥ ≤ ≥ ≮≯ ⊕??⊿? 指数0123:o123 〃? ? ? 符号意义 ∞ 无穷大 PI 圆周率 |x| 函数的绝对值 ∪集合并 ∩ 集合交 ≥ 大于等于 ≤ 小于等于 ≡ 恒等于或同余 ln(x) 以e为底的对数 lg(x) 以10为底的对数 floor(x) 上取整函数 ceil(x) 下取整函数 x mod y 求余数 {x} 小数部分x - floor(x) ∫f(x)δx 不定积分 ∫[a:b]f(x)δx a到b的定积分 ∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况,如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求极限 C(n:m) 组合数,n中取m P(n:m) 排列数 m|n m整除n (m,n)=1 m与n互质 a ∈A a属于集合A Card(A) 集合A中的元素个数 |a| ??△∠∩ ∪≠ ∵∴≡ ± ≥ ≤ ∈← ↑ → ↓ ↖↗↘↙‖∧∨

matlab微积分基本运算

matlab 微积分基本运算 §1 解方程和方程组解 1. 线性方程组求解 对于方程 AX = B ,其中 A 是( m ×n )的矩阵有三种情形: 1)当n=m 且A 非奇异时,此方程为“恰定”方程组。 2)当 n > m 时,此方程为“超定”方程组。 3)当n

0.3188 两种方法所求方程组的解相同。 (2)MATLAB 解超定方程AX=B 的方法 对于方程 AX = B ,其中 A 是( m ×n )的矩阵, n > m ,如果A 列满秩,则此方程是没有精确解的。然而在实际工程应用中,求得其最小二乘解也是有意义的。基本解法有: 1)采用求伪逆运算解方程 x=pinv(A)*B 说明:此解为最小二乘解x=inv(A ’*A)*A*B,这里pinv(A) =inv(A ’*A)*A. 2)采用左除运算解方程 x=A\B 例2 “求伪逆”法和“左除”法求下列方程组的解 ??? ??=+=+=+1 221421 221 2121x x x x x x 命令如下: >> a=[1 2;2 4;2 2]; >> b=[1,1,1]'; >> xc=a\b %用左除运算解方程 运行得结果: xc = 0.4000 0.1000 >> xd=pinv(a)*b %用求伪逆运算解方程 运行得结果: xd = 0.4000 0.1000 >> a*xc-b %xc 是否满足方程ax=b 运行得结果: ans = -0.4000 0.2000 0.0000 可见xc 并不是方程的精确解。 (3) MATLAB 解欠定方程AX=B 的方法 欠定方程从理论上说是有无穷多个解的,如果利用求“伪逆”法和“左除”法来求解,只能得到其中一个解。基本方法: 1)采用求伪逆运算解方程 x=pinv(A)*B 2)采用左除运算解方程

matlab期末考试复习资料

如何使某个窗口脱离桌面成为独立窗口?又如何将脱离出的窗口重新集成在桌面?MATLAB 操作桌面有几个窗口? 答: MATLAB的默认操作桌面包括命令窗口(Command Window)、启动平台窗口(Launch Dad)、工作空间窗口(Workspace)、命令历史窗口(Command History)和当前路径窗口(Current Directory)等5个窗口。 每个窗口的右上角都有按钮,可以使该窗口脱离操作桌面独立出来; 2、 who和whos命令有什么不同之处? 答: 查看工作空间中有哪些变量名,可以使用who命令完成;若想了解这些变量具体细节,可以使用whos命令查看。 3、分别使用help命令和lookfor命令查找plot函数的帮助信息。 答: >> help plot >> lookfor plot 4、一些命令在matlab中的应用 1.clf 清除图对象 clear清除工作空间内的所有变量 clc 清除当前屏幕上显示的所有内容,但不清除工作空间中的数据 2.ceil 沿+∞方向取整 factor符号计算的因式分解 3.box on 打开框状坐标轴开 grid off网格关一些 4.logspace 对数分度向量 cat 串接成高维数组 5.sym2poly 符号多项式转变为双精度多项式系数向量 poly2sym 双精度多项式系数转变为向量符号多项式 6.plot3 三维线图 poly2str 以习惯方式显示多项式 7.bar 二维直方图 pie 二维饼图 8.zoom on打开图形缩放模式 edit M文件编辑

9.whos 对当前工作空间变量的信息进行列表 figure 生成图形窗口 10.cart2sph 直角坐标变为球坐标 pol2cart 极或柱坐标变为直角坐标 11.diff数值差分、符号微分 dsolve 符号计算解微分方程 12.ezplot3画三维曲线的简捷指令 fix向零取整 factor 符号计算的因式分解 5. 在MATLAB中有几种获得帮助的途径? 答:(1)help 命令:在命令窗口输入help命令,也是MATLAB寻找在线帮助的一种方便而快捷的方式。(图示、操作演示) (2)帮助浏览器: MATLAB通过选择help可以获得各类帮助信息,通过勾选或删除勾选Desktop 菜单中的Help选项可打开或关闭窗口中独立的交互式帮助浏览器。 (3)lookfor 命令:(lookfor commend) 可以根据用户提供的完整或不完整的关键词,搜索出一组与之相关的命令或函数。(图示、操作演示) (4)模糊查询:(fuzzy Inquiry) 用户只须输入命令的前几个字母,然后键入Tab 键MATLAB 就会列出所有以这个字母开始的命令。(图示、操作演示) (5)帮助台:(doc)帮助台比帮助命令及帮助窗口提供更多的帮助信息。键入命令helpdesk可进入帮助台,可以利用浏览器的功能浏览帮助信息。 (6)在线帮助页:(doc)命令doc后加关键字,MATLAB会自动定位到相关页码,在线帮助页包括所有的字体、图形和图像都可以直接打印。 6. 在进行算术运算时,数组运算和矩阵运算各有什么特点,如何区分两种运算? 左除与右除有什麽区别? 答:普通的数组运算方式:(Array computation) 在数组中对应元素之间进行运算;矩阵运算方式:(matrix computations) 将标量当作1×1阶矩阵,一维数组当作一行或一列的矢量(即1×n阶或n×1阶的矩阵),二维数组当作m×n阶矩阵,然后按照矩阵的运算规则进行运算。 二者输入形式和书写方法相同,差别仅在于使用不同的运算符号,执行不同的计算过程,数组的运算是对应元素之间的运算,而矩阵运算是根据矩阵的运算规则进行。 数组的除法(Array division) 条件:a与b必须具有相同的维数。符号“. \ ”或“. / ”,运算结果相同,a.\b 表示b中的元素分别除以a中的对应元素,即z(i,j)=x(i,j)\y(i,j)=y(i,j)/x(i,j)。 矩阵除法(Matrix division) 条件:a矩阵是非奇异方阵,则a\b(左除)和b/a(右除)都可以实现。a\b等效于a矩阵的逆左乘b矩阵,即a\b=inv(a)*b,b/a等效于a矩阵的逆右乘b矩阵,即

常用数学符号大全、关系代数符号

常用数学符号大全、关系代数符号 1、几何符号 ⊥∥∠⌒⊙≡≌△ 2、代数符号 ∝∧∨~∫≠≤≥≈∞∶ 3、运算符号 如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。 4、集合符号 ∪∩∈ 5、特殊符号 ∑π(圆周率) 6、推理符号 |a| ⊥∽△∠∩∪≠≡±≥≤∈← ↑→↓↖↗↘↙∥∧∨ &; § ①②③④⑤⑥⑦⑧⑨⑩ ΓΔΘΛΞΟΠΣΦΧΨΩ αβγδεζηθικλμν ξοπρστυφχψω ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ

∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮ ∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥ ⊿⌒℃ 指数0123:o123 7、数量符号 如:i,2+i,a,x,自然对数底e,圆周率π。 8、关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。 9、结合符号 如小括号“()”中括号“[]”,大括号“{}”横线“—” 10、性质符号 如正号“+”,负号“-”,绝对值符号“| |”正负号“±” 11、省略符号 如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠), ∵因为,(一个脚站着的,站不住) ∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。

MATLAB符号计算实验报告

实验六符号计算 学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144 一、实验目的 1、了解富符号对象和数值对象之间的差别,以及它们之间的互相转换 2、了解符号运算和数值运算的特点、区别和优缺点 3、掌握符号对象的基本操作和运算,以及符号运算的基本运用 二、实验内容 1、符号常数形成和使用 (1)符号常数形成中的差异 >> a1=[1/3,pi/7,sqrt(5),pi+sqrt(5)] a1 = 0.3333 0.4488 2.2361 5.3777 >> a2=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)]) a2 = [ 1/3, pi/7, sqrt(5),

6054707603575008*2^(-50)] >> a3=sym('[1/3,pi/7,sqrt(5),pi+sqrt(5)]') a3 = [ 1/3, pi/7, sqrt(5), pi+sqrt(5)] >> a24=a2-a3 a24 = [ 0, 0, 0, 189209612611719/35184372088832-pi-5^(1/2)] (2)把字符表达式转化为符号变量 >> y=sym('2*sin(x)*cos(x)') y = 2*sin(x)*cos(x) >> y=simple(y)

y = sin(2*x) (3)用符号计算验证三角等式 >> syms fai1 fai2;y=simple(sin(fai1)*cos(fai2)-cos(fai1)*sin(fai2)) y = sin(fai1-fai2) (4)求矩阵的行列式值、逆和特征值 >> syms a11 a12 a21 a22;A=[a11,a12;a21,a22] A = [ a11, a12] [ a21, a22] >> DA=det(A),IA=inv(A),EA=eig(A) DA =

相关主题
文本预览
相关文档 最新文档